1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <kvm.h> 39 #include <math.h> 40 #include <nlist.h> 41 #include <paths.h> 42 #include <pwd.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <strings.h> 47 #include <unistd.h> 48 #include <vis.h> 49 50 #include "top.h" 51 #include "machine.h" 52 #include "screen.h" 53 #include "utils.h" 54 #include "layout.h" 55 56 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 57 #define SMPUNAMELEN 13 58 #define UPUNAMELEN 15 59 60 extern struct process_select ps; 61 extern char* printable(char *); 62 static int smpmode; 63 enum displaymodes displaymode; 64 #ifdef TOP_USERNAME_LEN 65 static int namelength = TOP_USERNAME_LEN; 66 #else 67 static int namelength = 8; 68 #endif 69 static int cmdlengthdelta; 70 71 /* Prototypes for top internals */ 72 void quit(int); 73 74 /* get_process_info passes back a handle. This is what it looks like: */ 75 76 struct handle { 77 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 78 int remaining; /* number of pointers remaining */ 79 }; 80 81 /* declarations for load_avg */ 82 #include "loadavg.h" 83 84 /* define what weighted cpu is. */ 85 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 86 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 87 88 /* what we consider to be process size: */ 89 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 90 91 #define RU(pp) (&(pp)->ki_rusage) 92 #define RUTOT(pp) \ 93 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 94 95 96 /* definitions for indices in the nlist array */ 97 98 /* 99 * These definitions control the format of the per-process area 100 */ 101 102 static char io_header[] = 103 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 104 105 #define io_Proc_format \ 106 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 107 108 static char smp_header_thr[] = 109 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 110 static char smp_header[] = 111 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 112 113 #define smp_Proc_format \ 114 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s" 115 116 static char up_header_thr[] = 117 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; 118 static char up_header[] = 119 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; 120 121 #define up_Proc_format \ 122 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" 123 124 125 /* process state names for the "STATE" column of the display */ 126 /* the extra nulls in the string "run" are for adding a slash and 127 the processor number when needed */ 128 129 char *state_abbrev[] = { 130 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 131 }; 132 133 134 static kvm_t *kd; 135 136 /* values that we stash away in _init and use in later routines */ 137 138 static double logcpu; 139 140 /* these are retrieved from the kernel in _init */ 141 142 static load_avg ccpu; 143 144 /* these are used in the get_ functions */ 145 146 static int lastpid; 147 148 /* these are for calculating cpu state percentages */ 149 150 static long cp_time[CPUSTATES]; 151 static long cp_old[CPUSTATES]; 152 static long cp_diff[CPUSTATES]; 153 154 /* these are for detailing the process states */ 155 156 int process_states[8]; 157 char *procstatenames[] = { 158 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 159 " zombie, ", " waiting, ", " lock, ", 160 NULL 161 }; 162 163 /* these are for detailing the cpu states */ 164 165 int cpu_states[CPUSTATES]; 166 char *cpustatenames[] = { 167 "user", "nice", "system", "interrupt", "idle", NULL 168 }; 169 170 /* these are for detailing the memory statistics */ 171 172 int memory_stats[7]; 173 char *memorynames[] = { 174 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 175 "K Free", NULL 176 }; 177 178 int swap_stats[7]; 179 char *swapnames[] = { 180 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 181 NULL 182 }; 183 184 185 /* these are for keeping track of the proc array */ 186 187 static int nproc; 188 static int onproc = -1; 189 static int pref_len; 190 static struct kinfo_proc *pbase; 191 static struct kinfo_proc **pref; 192 static struct kinfo_proc *previous_procs; 193 static struct kinfo_proc **previous_pref; 194 static int previous_proc_count = 0; 195 static int previous_proc_count_max = 0; 196 197 /* total number of io operations */ 198 static long total_inblock; 199 static long total_oublock; 200 static long total_majflt; 201 202 /* these are for getting the memory statistics */ 203 204 static int pageshift; /* log base 2 of the pagesize */ 205 206 /* define pagetok in terms of pageshift */ 207 208 #define pagetok(size) ((size) << pageshift) 209 210 /* useful externals */ 211 long percentages(); 212 213 #ifdef ORDER 214 /* 215 * Sorting orders. The first element is the default. 216 */ 217 char *ordernames[] = { 218 "cpu", "size", "res", "time", "pri", "threads", 219 "total", "read", "write", "fault", "vcsw", "ivcsw", 220 "jid", NULL 221 }; 222 #endif 223 224 /* Per-cpu time states */ 225 static int maxcpu; 226 static int maxid; 227 static int ncpus; 228 static u_long cpumask; 229 static long *times; 230 static long *pcpu_cp_time; 231 static long *pcpu_cp_old; 232 static long *pcpu_cp_diff; 233 static int *pcpu_cpu_states; 234 235 static int compare_jid(const void *a, const void *b); 236 static int compare_pid(const void *a, const void *b); 237 static const char *format_nice(const struct kinfo_proc *pp); 238 static void getsysctl(const char *name, void *ptr, size_t len); 239 static int swapmode(int *retavail, int *retfree); 240 241 int 242 machine_init(struct statics *statics, char do_unames) 243 { 244 int pagesize; 245 size_t modelen; 246 struct passwd *pw; 247 248 modelen = sizeof(smpmode); 249 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, 250 NULL, 0) != 0 && 251 sysctlbyname("kern.smp.active", &smpmode, &modelen, 252 NULL, 0) != 0) || 253 modelen != sizeof(smpmode)) 254 smpmode = 0; 255 256 if (do_unames) { 257 while ((pw = getpwent()) != NULL) { 258 if (strlen(pw->pw_name) > namelength) 259 namelength = strlen(pw->pw_name); 260 } 261 } 262 if (smpmode && namelength > SMPUNAMELEN) 263 namelength = SMPUNAMELEN; 264 else if (namelength > UPUNAMELEN) 265 namelength = UPUNAMELEN; 266 267 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 268 if (kd == NULL) 269 return (-1); 270 271 GETSYSCTL("kern.ccpu", ccpu); 272 273 /* this is used in calculating WCPU -- calculate it ahead of time */ 274 logcpu = log(loaddouble(ccpu)); 275 276 pbase = NULL; 277 pref = NULL; 278 nproc = 0; 279 onproc = -1; 280 281 /* get the page size and calculate pageshift from it */ 282 pagesize = getpagesize(); 283 pageshift = 0; 284 while (pagesize > 1) { 285 pageshift++; 286 pagesize >>= 1; 287 } 288 289 /* we only need the amount of log(2)1024 for our conversion */ 290 pageshift -= LOG1024; 291 292 /* fill in the statics information */ 293 statics->procstate_names = procstatenames; 294 statics->cpustate_names = cpustatenames; 295 statics->memory_names = memorynames; 296 statics->swap_names = swapnames; 297 #ifdef ORDER 298 statics->order_names = ordernames; 299 #endif 300 301 /* Adjust display based on ncpus */ 302 if (pcpu_stats) { 303 int i, j, empty; 304 size_t size; 305 306 cpumask = 0; 307 ncpus = 0; 308 GETSYSCTL("kern.smp.maxcpus", maxcpu); 309 size = sizeof(long) * maxcpu * CPUSTATES; 310 times = malloc(size); 311 if (times == NULL) 312 err(1, "malloc %zd bytes", size); 313 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 314 err(1, "sysctlbyname kern.cp_times"); 315 pcpu_cp_time = calloc(1, size); 316 maxid = (size / CPUSTATES / sizeof(long)) - 1; 317 for (i = 0; i <= maxid; i++) { 318 empty = 1; 319 for (j = 0; empty && j < CPUSTATES; j++) { 320 if (times[i * CPUSTATES + j] != 0) 321 empty = 0; 322 } 323 if (!empty) { 324 cpumask |= (1ul << i); 325 ncpus++; 326 } 327 } 328 329 if (ncpus > 1) { 330 y_mem += ncpus - 1; /* 3 */ 331 y_swap += ncpus - 1; /* 4 */ 332 y_idlecursor += ncpus - 1; /* 5 */ 333 y_message += ncpus - 1; /* 5 */ 334 y_header += ncpus - 1; /* 6 */ 335 y_procs += ncpus - 1; /* 7 */ 336 Header_lines += ncpus - 1; /* 7 */ 337 } 338 size = sizeof(long) * ncpus * CPUSTATES; 339 pcpu_cp_old = calloc(1, size); 340 pcpu_cp_diff = calloc(1, size); 341 pcpu_cpu_states = calloc(1, size); 342 statics->ncpus = ncpus; 343 } else { 344 statics->ncpus = 1; 345 } 346 347 /* all done! */ 348 return (0); 349 } 350 351 char * 352 format_header(char *uname_field) 353 { 354 static char Header[128]; 355 const char *prehead; 356 357 switch (displaymode) { 358 case DISP_CPU: 359 /* 360 * The logic of picking the right header format seems reverse 361 * here because we only want to display a THR column when 362 * "thread mode" is off (and threads are not listed as 363 * separate lines). 364 */ 365 prehead = smpmode ? 366 (ps.thread ? smp_header : smp_header_thr) : 367 (ps.thread ? up_header : up_header_thr); 368 snprintf(Header, sizeof(Header), prehead, 369 ps.jail ? " JID" : "", 370 namelength, namelength, uname_field, 371 ps.wcpu ? "WCPU" : "CPU"); 372 break; 373 case DISP_IO: 374 prehead = io_header; 375 snprintf(Header, sizeof(Header), prehead, 376 ps.jail ? " JID" : "", 377 namelength, namelength, uname_field); 378 break; 379 } 380 cmdlengthdelta = strlen(Header) - 7; 381 return (Header); 382 } 383 384 static int swappgsin = -1; 385 static int swappgsout = -1; 386 extern struct timeval timeout; 387 388 389 void 390 get_system_info(struct system_info *si) 391 { 392 long total; 393 struct loadavg sysload; 394 int mib[2]; 395 struct timeval boottime; 396 size_t bt_size; 397 int i, j; 398 size_t size; 399 400 /* get the cp_time array */ 401 if (pcpu_stats) { 402 size = (maxid + 1) * CPUSTATES * sizeof(long); 403 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 404 err(1, "sysctlbyname kern.cp_times"); 405 } else { 406 GETSYSCTL("kern.cp_time", cp_time); 407 } 408 GETSYSCTL("vm.loadavg", sysload); 409 GETSYSCTL("kern.lastpid", lastpid); 410 411 /* convert load averages to doubles */ 412 for (i = 0; i < 3; i++) 413 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 414 415 if (pcpu_stats) { 416 for (i = j = 0; i <= maxid; i++) { 417 if ((cpumask & (1ul << i)) == 0) 418 continue; 419 /* convert cp_time counts to percentages */ 420 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 421 &pcpu_cp_time[j * CPUSTATES], 422 &pcpu_cp_old[j * CPUSTATES], 423 &pcpu_cp_diff[j * CPUSTATES]); 424 j++; 425 } 426 } else { 427 /* convert cp_time counts to percentages */ 428 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 429 } 430 431 /* sum memory & swap statistics */ 432 { 433 static unsigned int swap_delay = 0; 434 static int swapavail = 0; 435 static int swapfree = 0; 436 static int bufspace = 0; 437 static int nspgsin, nspgsout; 438 439 GETSYSCTL("vfs.bufspace", bufspace); 440 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 441 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 442 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 443 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 444 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 445 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 446 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 447 /* convert memory stats to Kbytes */ 448 memory_stats[0] = pagetok(memory_stats[0]); 449 memory_stats[1] = pagetok(memory_stats[1]); 450 memory_stats[2] = pagetok(memory_stats[2]); 451 memory_stats[3] = pagetok(memory_stats[3]); 452 memory_stats[4] = bufspace / 1024; 453 memory_stats[5] = pagetok(memory_stats[5]); 454 memory_stats[6] = -1; 455 456 /* first interval */ 457 if (swappgsin < 0) { 458 swap_stats[4] = 0; 459 swap_stats[5] = 0; 460 } 461 462 /* compute differences between old and new swap statistic */ 463 else { 464 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 465 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 466 } 467 468 swappgsin = nspgsin; 469 swappgsout = nspgsout; 470 471 /* call CPU heavy swapmode() only for changes */ 472 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 473 swap_stats[3] = swapmode(&swapavail, &swapfree); 474 swap_stats[0] = swapavail; 475 swap_stats[1] = swapavail - swapfree; 476 swap_stats[2] = swapfree; 477 } 478 swap_delay = 1; 479 swap_stats[6] = -1; 480 } 481 482 /* set arrays and strings */ 483 if (pcpu_stats) { 484 si->cpustates = pcpu_cpu_states; 485 si->ncpus = ncpus; 486 } else { 487 si->cpustates = cpu_states; 488 si->ncpus = 1; 489 } 490 si->memory = memory_stats; 491 si->swap = swap_stats; 492 493 494 if (lastpid > 0) { 495 si->last_pid = lastpid; 496 } else { 497 si->last_pid = -1; 498 } 499 500 /* 501 * Print how long system has been up. 502 * (Found by looking getting "boottime" from the kernel) 503 */ 504 mib[0] = CTL_KERN; 505 mib[1] = KERN_BOOTTIME; 506 bt_size = sizeof(boottime); 507 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 508 boottime.tv_sec != 0) { 509 si->boottime = boottime; 510 } else { 511 si->boottime.tv_sec = -1; 512 } 513 } 514 515 #define NOPROC ((void *)-1) 516 517 /* 518 * We need to compare data from the old process entry with the new 519 * process entry. 520 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 521 * structure to cache the mapping. We also use a negative cache pointer 522 * of NOPROC to avoid duplicate lookups. 523 * XXX: this could be done when the actual processes are fetched, we do 524 * it here out of laziness. 525 */ 526 const struct kinfo_proc * 527 get_old_proc(struct kinfo_proc *pp) 528 { 529 struct kinfo_proc **oldpp, *oldp; 530 531 /* 532 * If this is the first fetch of the kinfo_procs then we don't have 533 * any previous entries. 534 */ 535 if (previous_proc_count == 0) 536 return (NULL); 537 /* negative cache? */ 538 if (pp->ki_udata == NOPROC) 539 return (NULL); 540 /* cached? */ 541 if (pp->ki_udata != NULL) 542 return (pp->ki_udata); 543 /* 544 * Not cached, 545 * 1) look up based on pid. 546 * 2) compare process start. 547 * If we fail here, then setup a negative cache entry, otherwise 548 * cache it. 549 */ 550 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 551 sizeof(*previous_pref), compare_pid); 552 if (oldpp == NULL) { 553 pp->ki_udata = NOPROC; 554 return (NULL); 555 } 556 oldp = *oldpp; 557 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 558 pp->ki_udata = NOPROC; 559 return (NULL); 560 } 561 pp->ki_udata = oldp; 562 return (oldp); 563 } 564 565 /* 566 * Return the total amount of IO done in blocks in/out and faults. 567 * store the values individually in the pointers passed in. 568 */ 569 long 570 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 571 long *vcsw, long *ivcsw) 572 { 573 const struct kinfo_proc *oldp; 574 static struct kinfo_proc dummy; 575 long ret; 576 577 oldp = get_old_proc(pp); 578 if (oldp == NULL) { 579 bzero(&dummy, sizeof(dummy)); 580 oldp = &dummy; 581 } 582 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 583 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 584 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 585 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 586 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 587 ret = 588 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 589 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 590 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 591 return (ret); 592 } 593 594 /* 595 * Return the total number of block in/out and faults by a process. 596 */ 597 long 598 get_io_total(struct kinfo_proc *pp) 599 { 600 long dummy; 601 602 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 603 } 604 605 static struct handle handle; 606 607 caddr_t 608 get_process_info(struct system_info *si, struct process_select *sel, 609 int (*compare)(const void *, const void *)) 610 { 611 int i; 612 int total_procs; 613 long p_io; 614 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 615 int active_procs; 616 struct kinfo_proc **prefp; 617 struct kinfo_proc *pp; 618 struct kinfo_proc *prev_pp = NULL; 619 620 /* these are copied out of sel for speed */ 621 int show_idle; 622 int show_self; 623 int show_system; 624 int show_uid; 625 int show_command; 626 627 /* 628 * Save the previous process info. 629 */ 630 if (previous_proc_count_max < nproc) { 631 free(previous_procs); 632 previous_procs = malloc(nproc * sizeof(*previous_procs)); 633 free(previous_pref); 634 previous_pref = malloc(nproc * sizeof(*previous_pref)); 635 if (previous_procs == NULL || previous_pref == NULL) { 636 (void) fprintf(stderr, "top: Out of memory.\n"); 637 quit(23); 638 } 639 previous_proc_count_max = nproc; 640 } 641 if (nproc) { 642 for (i = 0; i < nproc; i++) 643 previous_pref[i] = &previous_procs[i]; 644 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 645 qsort(previous_pref, nproc, sizeof(*previous_pref), 646 compare_pid); 647 } 648 previous_proc_count = nproc; 649 650 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 651 if (nproc > onproc) 652 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 653 if (pref == NULL || pbase == NULL) { 654 (void) fprintf(stderr, "top: Out of memory.\n"); 655 quit(23); 656 } 657 /* get a pointer to the states summary array */ 658 si->procstates = process_states; 659 660 /* set up flags which define what we are going to select */ 661 show_idle = sel->idle; 662 show_self = sel->self == -1; 663 show_system = sel->system; 664 show_uid = sel->uid != -1; 665 show_command = sel->command != NULL; 666 667 /* count up process states and get pointers to interesting procs */ 668 total_procs = 0; 669 active_procs = 0; 670 total_inblock = 0; 671 total_oublock = 0; 672 total_majflt = 0; 673 memset((char *)process_states, 0, sizeof(process_states)); 674 prefp = pref; 675 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 676 677 if (pp->ki_stat == 0) 678 /* not in use */ 679 continue; 680 681 if (!show_self && pp->ki_pid == sel->self) 682 /* skip self */ 683 continue; 684 685 if (!show_system && (pp->ki_flag & P_SYSTEM)) 686 /* skip system process */ 687 continue; 688 689 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 690 &p_vcsw, &p_ivcsw); 691 total_inblock += p_inblock; 692 total_oublock += p_oublock; 693 total_majflt += p_majflt; 694 total_procs++; 695 process_states[pp->ki_stat]++; 696 697 if (pp->ki_stat == SZOMB) 698 /* skip zombies */ 699 continue; 700 701 if (displaymode == DISP_CPU && !show_idle && 702 (pp->ki_pctcpu == 0 || 703 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 704 /* skip idle or non-running processes */ 705 continue; 706 707 if (displaymode == DISP_IO && !show_idle && p_io == 0) 708 /* skip processes that aren't doing I/O */ 709 continue; 710 711 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 712 /* skip proc. that don't belong to the selected UID */ 713 continue; 714 715 /* 716 * When not showing threads, take the first thread 717 * for output and add the fields that we can from 718 * the rest of the process's threads rather than 719 * using the system's mostly-broken KERN_PROC_PROC. 720 */ 721 if (sel->thread || prev_pp == NULL || 722 prev_pp->ki_pid != pp->ki_pid) { 723 *prefp++ = pp; 724 active_procs++; 725 prev_pp = pp; 726 } else { 727 prev_pp->ki_pctcpu += pp->ki_pctcpu; 728 } 729 } 730 731 /* if requested, sort the "interesting" processes */ 732 if (compare != NULL) 733 qsort(pref, active_procs, sizeof(*pref), compare); 734 735 /* remember active and total counts */ 736 si->p_total = total_procs; 737 si->p_active = pref_len = active_procs; 738 739 /* pass back a handle */ 740 handle.next_proc = pref; 741 handle.remaining = active_procs; 742 return ((caddr_t)&handle); 743 } 744 745 static char fmt[128]; /* static area where result is built */ 746 747 char * 748 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 749 { 750 struct kinfo_proc *pp; 751 const struct kinfo_proc *oldp; 752 long cputime; 753 double pct; 754 struct handle *hp; 755 char status[16]; 756 int state; 757 struct rusage ru, *rup; 758 long p_tot, s_tot; 759 char *proc_fmt, thr_buf[6], jid_buf[6]; 760 char *cmdbuf = NULL; 761 char **args; 762 763 /* find and remember the next proc structure */ 764 hp = (struct handle *)handle; 765 pp = *(hp->next_proc++); 766 hp->remaining--; 767 768 /* get the process's command name */ 769 if ((pp->ki_flag & P_INMEM) == 0) { 770 /* 771 * Print swapped processes as <pname> 772 */ 773 size_t len; 774 775 len = strlen(pp->ki_comm); 776 if (len > sizeof(pp->ki_comm) - 3) 777 len = sizeof(pp->ki_comm) - 3; 778 memmove(pp->ki_comm + 1, pp->ki_comm, len); 779 pp->ki_comm[0] = '<'; 780 pp->ki_comm[len + 1] = '>'; 781 pp->ki_comm[len + 2] = '\0'; 782 } 783 784 /* 785 * Convert the process's runtime from microseconds to seconds. This 786 * time includes the interrupt time although that is not wanted here. 787 * ps(1) is similarly sloppy. 788 */ 789 cputime = (pp->ki_runtime + 500000) / 1000000; 790 791 /* calculate the base for cpu percentages */ 792 pct = pctdouble(pp->ki_pctcpu); 793 794 /* generate "STATE" field */ 795 switch (state = pp->ki_stat) { 796 case SRUN: 797 if (smpmode && pp->ki_oncpu != 0xff) 798 sprintf(status, "CPU%d", pp->ki_oncpu); 799 else 800 strcpy(status, "RUN"); 801 break; 802 case SLOCK: 803 if (pp->ki_kiflag & KI_LOCKBLOCK) { 804 sprintf(status, "*%.6s", pp->ki_lockname); 805 break; 806 } 807 /* fall through */ 808 case SSLEEP: 809 if (pp->ki_wmesg != NULL) { 810 sprintf(status, "%.6s", pp->ki_wmesg); 811 break; 812 } 813 /* FALLTHROUGH */ 814 default: 815 816 if (state >= 0 && 817 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 818 sprintf(status, "%.6s", state_abbrev[state]); 819 else 820 sprintf(status, "?%5d", state); 821 break; 822 } 823 824 cmdbuf = (char *)malloc(cmdlengthdelta + 1); 825 if (cmdbuf == NULL) { 826 warn("malloc(%d)", cmdlengthdelta + 1); 827 return NULL; 828 } 829 830 if (!(flags & FMT_SHOWARGS)) { 831 if (ps.thread && pp->ki_flag & P_HADTHREADS && 832 pp->ki_ocomm[0]) { 833 snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm); 834 } else { 835 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); 836 } 837 } else { 838 if (pp->ki_flag & P_SYSTEM || 839 pp->ki_args == NULL || 840 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || 841 !(*args)) { 842 if (ps.thread && pp->ki_flag & P_HADTHREADS && 843 pp->ki_ocomm[0]) { 844 snprintf(cmdbuf, cmdlengthdelta, 845 "{%s}", pp->ki_ocomm); 846 } else { 847 snprintf(cmdbuf, cmdlengthdelta, 848 "[%s]", pp->ki_comm); 849 } 850 } else { 851 char *src, *dst, *argbuf; 852 char *cmd; 853 size_t argbuflen; 854 size_t len; 855 856 argbuflen = cmdlengthdelta * 4; 857 argbuf = (char *)malloc(argbuflen + 1); 858 if (argbuf == NULL) { 859 warn("malloc(%d)", argbuflen + 1); 860 free(cmdbuf); 861 return NULL; 862 } 863 864 dst = argbuf; 865 866 /* Extract cmd name from argv */ 867 cmd = strrchr(*args, '/'); 868 if (cmd == NULL) 869 cmd = *args; 870 else 871 cmd++; 872 873 for (; (src = *args++) != NULL; ) { 874 if (*src == '\0') 875 continue; 876 len = (argbuflen - (dst - argbuf) - 1) / 4; 877 strvisx(dst, src, 878 strlen(src) < len ? strlen(src) : len, 879 VIS_NL | VIS_CSTYLE); 880 while (*dst != '\0') 881 dst++; 882 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 883 *dst++ = ' '; /* add delimiting space */ 884 } 885 if (dst != argbuf && dst[-1] == ' ') 886 dst--; 887 *dst = '\0'; 888 889 if (strcmp(cmd, pp->ki_comm) != 0 ) 890 snprintf(cmdbuf, cmdlengthdelta, 891 "%s (%s)",argbuf, pp->ki_comm); 892 else 893 strlcpy(cmdbuf, argbuf, cmdlengthdelta); 894 895 free(argbuf); 896 } 897 } 898 899 if (ps.jail == 0) 900 jid_buf[0] = '\0'; 901 else 902 snprintf(jid_buf, sizeof(jid_buf), " %*d", 903 sizeof(jid_buf) - 3, pp->ki_jid); 904 905 if (displaymode == DISP_IO) { 906 oldp = get_old_proc(pp); 907 if (oldp != NULL) { 908 ru.ru_inblock = RU(pp)->ru_inblock - 909 RU(oldp)->ru_inblock; 910 ru.ru_oublock = RU(pp)->ru_oublock - 911 RU(oldp)->ru_oublock; 912 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 913 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 914 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 915 rup = &ru; 916 } else { 917 rup = RU(pp); 918 } 919 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 920 s_tot = total_inblock + total_oublock + total_majflt; 921 922 sprintf(fmt, io_Proc_format, 923 pp->ki_pid, 924 jid_buf, 925 namelength, namelength, (*get_userid)(pp->ki_ruid), 926 rup->ru_nvcsw, 927 rup->ru_nivcsw, 928 rup->ru_inblock, 929 rup->ru_oublock, 930 rup->ru_majflt, 931 p_tot, 932 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 933 screen_width > cmdlengthdelta ? 934 screen_width - cmdlengthdelta : 0, 935 printable(cmdbuf)); 936 937 free(cmdbuf); 938 939 return (fmt); 940 } 941 942 /* format this entry */ 943 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 944 if (ps.thread != 0) 945 thr_buf[0] = '\0'; 946 else 947 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 948 sizeof(thr_buf) - 2, pp->ki_numthreads); 949 950 sprintf(fmt, proc_fmt, 951 pp->ki_pid, 952 jid_buf, 953 namelength, namelength, (*get_userid)(pp->ki_ruid), 954 thr_buf, 955 pp->ki_pri.pri_level - PZERO, 956 format_nice(pp), 957 format_k2(PROCSIZE(pp)), 958 format_k2(pagetok(pp->ki_rssize)), 959 status, 960 smpmode ? pp->ki_lastcpu : 0, 961 format_time(cputime), 962 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 963 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 964 printable(cmdbuf)); 965 966 free(cmdbuf); 967 968 /* return the result */ 969 return (fmt); 970 } 971 972 static void 973 getsysctl(const char *name, void *ptr, size_t len) 974 { 975 size_t nlen = len; 976 977 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 978 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 979 strerror(errno)); 980 quit(23); 981 } 982 if (nlen != len) { 983 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 984 name, (unsigned long)len, (unsigned long)nlen); 985 quit(23); 986 } 987 } 988 989 static const char * 990 format_nice(const struct kinfo_proc *pp) 991 { 992 const char *fifo, *kthread; 993 int rtpri; 994 static char nicebuf[4 + 1]; 995 996 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 997 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 998 switch (PRI_BASE(pp->ki_pri.pri_class)) { 999 case PRI_ITHD: 1000 return ("-"); 1001 case PRI_REALTIME: 1002 /* 1003 * XXX: the kernel doesn't tell us the original rtprio and 1004 * doesn't really know what it was, so to recover it we 1005 * must be more chummy with the implementation than the 1006 * implementation is with itself. pri_user gives a 1007 * constant "base" priority, but is only initialized 1008 * properly for user threads. pri_native gives what the 1009 * kernel calls the "base" priority, but it isn't constant 1010 * since it is changed by priority propagation. pri_native 1011 * also isn't properly initialized for all threads, but it 1012 * is properly initialized for kernel realtime and idletime 1013 * threads. Thus we use pri_user for the base priority of 1014 * user threads (it is always correct) and pri_native for 1015 * the base priority of kernel realtime and idletime threads 1016 * (there is nothing better, and it is usually correct). 1017 * 1018 * The field width and thus the buffer are too small for 1019 * values like "kr31F", but such values shouldn't occur, 1020 * and if they do then the tailing "F" is not displayed. 1021 */ 1022 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1023 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1024 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1025 kthread, rtpri, fifo); 1026 break; 1027 case PRI_TIMESHARE: 1028 if (pp->ki_flag & P_KTHREAD) 1029 return ("-"); 1030 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1031 break; 1032 case PRI_IDLE: 1033 /* XXX: as above. */ 1034 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1035 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1036 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1037 kthread, rtpri, fifo); 1038 break; 1039 default: 1040 return ("?"); 1041 } 1042 return (nicebuf); 1043 } 1044 1045 /* comparison routines for qsort */ 1046 1047 static int 1048 compare_pid(const void *p1, const void *p2) 1049 { 1050 const struct kinfo_proc * const *pp1 = p1; 1051 const struct kinfo_proc * const *pp2 = p2; 1052 1053 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1054 abort(); 1055 1056 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1057 } 1058 1059 /* 1060 * proc_compare - comparison function for "qsort" 1061 * Compares the resource consumption of two processes using five 1062 * distinct keys. The keys (in descending order of importance) are: 1063 * percent cpu, cpu ticks, state, resident set size, total virtual 1064 * memory usage. The process states are ordered as follows (from least 1065 * to most important): WAIT, zombie, sleep, stop, start, run. The 1066 * array declaration below maps a process state index into a number 1067 * that reflects this ordering. 1068 */ 1069 1070 static int sorted_state[] = { 1071 0, /* not used */ 1072 3, /* sleep */ 1073 1, /* ABANDONED (WAIT) */ 1074 6, /* run */ 1075 5, /* start */ 1076 2, /* zombie */ 1077 4 /* stop */ 1078 }; 1079 1080 1081 #define ORDERKEY_PCTCPU(a, b) do { \ 1082 long diff; \ 1083 if (ps.wcpu) \ 1084 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 1085 (b))) - \ 1086 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 1087 (a))); \ 1088 else \ 1089 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 1090 if (diff != 0) \ 1091 return (diff > 0 ? 1 : -1); \ 1092 } while (0) 1093 1094 #define ORDERKEY_CPTICKS(a, b) do { \ 1095 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1096 if (diff != 0) \ 1097 return (diff > 0 ? 1 : -1); \ 1098 } while (0) 1099 1100 #define ORDERKEY_STATE(a, b) do { \ 1101 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1102 if (diff != 0) \ 1103 return (diff > 0 ? 1 : -1); \ 1104 } while (0) 1105 1106 #define ORDERKEY_PRIO(a, b) do { \ 1107 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1108 if (diff != 0) \ 1109 return (diff > 0 ? 1 : -1); \ 1110 } while (0) 1111 1112 #define ORDERKEY_THREADS(a, b) do { \ 1113 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1114 if (diff != 0) \ 1115 return (diff > 0 ? 1 : -1); \ 1116 } while (0) 1117 1118 #define ORDERKEY_RSSIZE(a, b) do { \ 1119 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1120 if (diff != 0) \ 1121 return (diff > 0 ? 1 : -1); \ 1122 } while (0) 1123 1124 #define ORDERKEY_MEM(a, b) do { \ 1125 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1126 if (diff != 0) \ 1127 return (diff > 0 ? 1 : -1); \ 1128 } while (0) 1129 1130 #define ORDERKEY_JID(a, b) do { \ 1131 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1132 if (diff != 0) \ 1133 return (diff > 0 ? 1 : -1); \ 1134 } while (0) 1135 1136 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1137 1138 int 1139 #ifdef ORDER 1140 compare_cpu(void *arg1, void *arg2) 1141 #else 1142 proc_compare(void *arg1, void *arg2) 1143 #endif 1144 { 1145 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1146 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1147 1148 ORDERKEY_PCTCPU(p1, p2); 1149 ORDERKEY_CPTICKS(p1, p2); 1150 ORDERKEY_STATE(p1, p2); 1151 ORDERKEY_PRIO(p1, p2); 1152 ORDERKEY_RSSIZE(p1, p2); 1153 ORDERKEY_MEM(p1, p2); 1154 1155 return (0); 1156 } 1157 1158 #ifdef ORDER 1159 /* "cpu" compare routines */ 1160 int compare_size(), compare_res(), compare_time(), compare_prio(), 1161 compare_threads(); 1162 1163 /* 1164 * "io" compare routines. Context switches aren't i/o, but are displayed 1165 * on the "io" display. 1166 */ 1167 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1168 compare_vcsw(), compare_ivcsw(); 1169 1170 int (*compares[])() = { 1171 compare_cpu, 1172 compare_size, 1173 compare_res, 1174 compare_time, 1175 compare_prio, 1176 compare_threads, 1177 compare_iototal, 1178 compare_ioread, 1179 compare_iowrite, 1180 compare_iofault, 1181 compare_vcsw, 1182 compare_ivcsw, 1183 compare_jid, 1184 NULL 1185 }; 1186 1187 /* compare_size - the comparison function for sorting by total memory usage */ 1188 1189 int 1190 compare_size(void *arg1, void *arg2) 1191 { 1192 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1193 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1194 1195 ORDERKEY_MEM(p1, p2); 1196 ORDERKEY_RSSIZE(p1, p2); 1197 ORDERKEY_PCTCPU(p1, p2); 1198 ORDERKEY_CPTICKS(p1, p2); 1199 ORDERKEY_STATE(p1, p2); 1200 ORDERKEY_PRIO(p1, p2); 1201 1202 return (0); 1203 } 1204 1205 /* compare_res - the comparison function for sorting by resident set size */ 1206 1207 int 1208 compare_res(void *arg1, void *arg2) 1209 { 1210 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1211 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1212 1213 ORDERKEY_RSSIZE(p1, p2); 1214 ORDERKEY_MEM(p1, p2); 1215 ORDERKEY_PCTCPU(p1, p2); 1216 ORDERKEY_CPTICKS(p1, p2); 1217 ORDERKEY_STATE(p1, p2); 1218 ORDERKEY_PRIO(p1, p2); 1219 1220 return (0); 1221 } 1222 1223 /* compare_time - the comparison function for sorting by total cpu time */ 1224 1225 int 1226 compare_time(void *arg1, void *arg2) 1227 { 1228 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1229 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1230 1231 ORDERKEY_CPTICKS(p1, p2); 1232 ORDERKEY_PCTCPU(p1, p2); 1233 ORDERKEY_STATE(p1, p2); 1234 ORDERKEY_PRIO(p1, p2); 1235 ORDERKEY_RSSIZE(p1, p2); 1236 ORDERKEY_MEM(p1, p2); 1237 1238 return (0); 1239 } 1240 1241 /* compare_prio - the comparison function for sorting by priority */ 1242 1243 int 1244 compare_prio(void *arg1, void *arg2) 1245 { 1246 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1247 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1248 1249 ORDERKEY_PRIO(p1, p2); 1250 ORDERKEY_CPTICKS(p1, p2); 1251 ORDERKEY_PCTCPU(p1, p2); 1252 ORDERKEY_STATE(p1, p2); 1253 ORDERKEY_RSSIZE(p1, p2); 1254 ORDERKEY_MEM(p1, p2); 1255 1256 return (0); 1257 } 1258 1259 /* compare_threads - the comparison function for sorting by threads */ 1260 int 1261 compare_threads(void *arg1, void *arg2) 1262 { 1263 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1264 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1265 1266 ORDERKEY_THREADS(p1, p2); 1267 ORDERKEY_PCTCPU(p1, p2); 1268 ORDERKEY_CPTICKS(p1, p2); 1269 ORDERKEY_STATE(p1, p2); 1270 ORDERKEY_PRIO(p1, p2); 1271 ORDERKEY_RSSIZE(p1, p2); 1272 ORDERKEY_MEM(p1, p2); 1273 1274 return (0); 1275 } 1276 1277 /* compare_jid - the comparison function for sorting by jid */ 1278 static int 1279 compare_jid(const void *arg1, const void *arg2) 1280 { 1281 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1282 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1283 1284 ORDERKEY_JID(p1, p2); 1285 ORDERKEY_PCTCPU(p1, p2); 1286 ORDERKEY_CPTICKS(p1, p2); 1287 ORDERKEY_STATE(p1, p2); 1288 ORDERKEY_PRIO(p1, p2); 1289 ORDERKEY_RSSIZE(p1, p2); 1290 ORDERKEY_MEM(p1, p2); 1291 1292 return (0); 1293 } 1294 #endif /* ORDER */ 1295 1296 /* assorted comparison functions for sorting by i/o */ 1297 1298 int 1299 #ifdef ORDER 1300 compare_iototal(void *arg1, void *arg2) 1301 #else 1302 io_compare(void *arg1, void *arg2) 1303 #endif 1304 { 1305 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1306 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1307 1308 return (get_io_total(p2) - get_io_total(p1)); 1309 } 1310 1311 #ifdef ORDER 1312 int 1313 compare_ioread(void *arg1, void *arg2) 1314 { 1315 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1316 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1317 long dummy, inp1, inp2; 1318 1319 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1320 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1321 1322 return (inp2 - inp1); 1323 } 1324 1325 int 1326 compare_iowrite(void *arg1, void *arg2) 1327 { 1328 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1329 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1330 long dummy, oup1, oup2; 1331 1332 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1333 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1334 1335 return (oup2 - oup1); 1336 } 1337 1338 int 1339 compare_iofault(void *arg1, void *arg2) 1340 { 1341 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1342 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1343 long dummy, flp1, flp2; 1344 1345 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1346 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1347 1348 return (flp2 - flp1); 1349 } 1350 1351 int 1352 compare_vcsw(void *arg1, void *arg2) 1353 { 1354 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1355 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1356 long dummy, flp1, flp2; 1357 1358 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1359 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1360 1361 return (flp2 - flp1); 1362 } 1363 1364 int 1365 compare_ivcsw(void *arg1, void *arg2) 1366 { 1367 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1368 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1369 long dummy, flp1, flp2; 1370 1371 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1372 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1373 1374 return (flp2 - flp1); 1375 } 1376 #endif /* ORDER */ 1377 1378 /* 1379 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1380 * the process does not exist. 1381 * It is EXTREMLY IMPORTANT that this function work correctly. 1382 * If top runs setuid root (as in SVR4), then this function 1383 * is the only thing that stands in the way of a serious 1384 * security problem. It validates requests for the "kill" 1385 * and "renice" commands. 1386 */ 1387 1388 int 1389 proc_owner(int pid) 1390 { 1391 int cnt; 1392 struct kinfo_proc **prefp; 1393 struct kinfo_proc *pp; 1394 1395 prefp = pref; 1396 cnt = pref_len; 1397 while (--cnt >= 0) { 1398 pp = *prefp++; 1399 if (pp->ki_pid == (pid_t)pid) 1400 return ((int)pp->ki_ruid); 1401 } 1402 return (-1); 1403 } 1404 1405 static int 1406 swapmode(int *retavail, int *retfree) 1407 { 1408 int n; 1409 int pagesize = getpagesize(); 1410 struct kvm_swap swapary[1]; 1411 1412 *retavail = 0; 1413 *retfree = 0; 1414 1415 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1416 1417 n = kvm_getswapinfo(kd, swapary, 1, 0); 1418 if (n < 0 || swapary[0].ksw_total == 0) 1419 return (0); 1420 1421 *retavail = CONVERT(swapary[0].ksw_total); 1422 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1423 1424 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1425 return (n); 1426 } 1427