1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 */ 16 17 #include <sys/param.h> 18 #include <sys/cpuset.h> 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/priority.h> 22 #include <sys/proc.h> 23 #include <sys/resource.h> 24 #include <sys/sbuf.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <libgen.h> 32 #include <kvm.h> 33 #include <math.h> 34 #include <paths.h> 35 #include <stdio.h> 36 #include <stdbool.h> 37 #include <stdint.h> 38 #include <stdlib.h> 39 #include <string.h> 40 #include <time.h> 41 #include <unistd.h> 42 #include <vis.h> 43 44 #include "top.h" 45 #include "display.h" 46 #include "machine.h" 47 #include "loadavg.h" 48 #include "screen.h" 49 #include "utils.h" 50 #include "layout.h" 51 52 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 53 54 extern struct timeval timeout; 55 static int smpmode; 56 enum displaymodes displaymode; 57 static const int namelength = 10; 58 /* TOP_JID_LEN based on max of 999999 */ 59 #define TOP_JID_LEN 6 60 #define TOP_SWAP_LEN 5 61 62 /* get_process_info passes back a handle. This is what it looks like: */ 63 64 struct handle { 65 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 66 int remaining; /* number of pointers remaining */ 67 }; 68 69 70 /* define what weighted cpu is. */ 71 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 72 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 73 74 /* what we consider to be process size: */ 75 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 76 77 #define RU(pp) (&(pp)->ki_rusage) 78 79 #define PCTCPU(pp) (pcpu[pp - pbase]) 80 81 /* process state names for the "STATE" column of the display */ 82 /* the extra nulls in the string "run" are for adding a slash and 83 the processor number when needed */ 84 85 static const char *state_abbrev[] = { 86 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 87 }; 88 89 90 static kvm_t *kd; 91 92 /* values that we stash away in _init and use in later routines */ 93 94 static double logcpu; 95 96 /* these are retrieved from the kernel in _init */ 97 98 static load_avg ccpu; 99 100 /* these are used in the get_ functions */ 101 102 static int lastpid; 103 104 /* these are for calculating cpu state percentages */ 105 106 static long cp_time[CPUSTATES]; 107 static long cp_old[CPUSTATES]; 108 static long cp_diff[CPUSTATES]; 109 110 /* these are for detailing the process states */ 111 112 static const char *procstatenames[] = { 113 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 114 " zombie, ", " waiting, ", " lock, ", 115 NULL 116 }; 117 static int process_states[nitems(procstatenames)]; 118 119 /* these are for detailing the cpu states */ 120 121 static int cpu_states[CPUSTATES]; 122 static const char *cpustatenames[] = { 123 "user", "nice", "system", "interrupt", "idle", NULL 124 }; 125 126 /* these are for detailing the memory statistics */ 127 128 static const char *memorynames[] = { 129 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 130 "K Free", NULL 131 }; 132 static int memory_stats[nitems(memorynames)]; 133 134 static const char *arcnames[] = { 135 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 136 NULL 137 }; 138 static int arc_stats[nitems(arcnames)]; 139 140 static const char *carcnames[] = { 141 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 142 NULL 143 }; 144 static int carc_stats[nitems(carcnames)]; 145 146 static const char *swapnames[] = { 147 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 148 NULL 149 }; 150 static int swap_stats[nitems(swapnames)]; 151 152 static int has_swap; 153 154 /* these are for keeping track of the proc array */ 155 156 static int nproc; 157 static int onproc = -1; 158 static int pref_len; 159 static struct kinfo_proc *pbase; 160 static struct kinfo_proc **pref; 161 static struct kinfo_proc *previous_procs; 162 static struct kinfo_proc **previous_pref; 163 static int previous_proc_count = 0; 164 static int previous_proc_count_max = 0; 165 static int previous_thread; 166 167 /* data used for recalculating pctcpu */ 168 static double *pcpu; 169 static struct timespec proc_uptime; 170 static struct timeval proc_wall_time; 171 static struct timeval previous_wall_time; 172 static uint64_t previous_interval = 0; 173 174 /* total number of io operations */ 175 static long total_inblock; 176 static long total_oublock; 177 static long total_majflt; 178 179 /* these are for getting the memory statistics */ 180 181 static int arc_enabled; 182 static int carc_enabled; 183 static int pageshift; /* log base 2 of the pagesize */ 184 185 /* define pagetok in terms of pageshift */ 186 187 #define pagetok(size) ((size) << pageshift) 188 189 /* swap usage */ 190 #define ki_swap(kip) \ 191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 192 193 /* 194 * Sorting orders. The first element is the default. 195 */ 196 static const char *ordernames[] = { 197 "cpu", "size", "res", "time", "pri", "threads", 198 "total", "read", "write", "fault", "vcsw", "ivcsw", 199 "jid", "swap", "pid", NULL 200 }; 201 202 /* Per-cpu time states */ 203 static int maxcpu; 204 static int maxid; 205 static int ncpus; 206 static cpuset_t cpumask; 207 static long *times; 208 static long *pcpu_cp_time; 209 static long *pcpu_cp_old; 210 static long *pcpu_cp_diff; 211 static int *pcpu_cpu_states; 212 213 /* Battery units and states */ 214 static int battery_units; 215 static int battery_life; 216 217 static int compare_swap(const void *a, const void *b); 218 static int compare_jid(const void *a, const void *b); 219 static int compare_pid(const void *a, const void *b); 220 static int compare_tid(const void *a, const void *b); 221 static const char *format_nice(const struct kinfo_proc *pp); 222 static void getsysctl(const char *name, void *ptr, size_t len); 223 static int swapmode(int *retavail, int *retfree); 224 static void update_layout(void); 225 static int find_uid(uid_t needle, int *haystack); 226 static int cmd_matches(struct kinfo_proc *, const char *); 227 228 static int 229 find_uid(uid_t needle, int *haystack) 230 { 231 size_t i = 0; 232 233 for (; i < TOP_MAX_UIDS; ++i) 234 if ((uid_t)haystack[i] == needle) 235 return 1; 236 return (0); 237 } 238 239 void 240 toggle_pcpustats(void) 241 { 242 243 if (ncpus == 1) 244 return; 245 update_layout(); 246 } 247 248 /* Adjust display based on ncpus and the ARC state. */ 249 static void 250 update_layout(void) 251 { 252 253 y_mem = 3; 254 y_arc = 4; 255 y_carc = 5; 256 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 257 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 258 y_message = 4 + arc_enabled + carc_enabled + has_swap; 259 y_header = 5 + arc_enabled + carc_enabled + has_swap; 260 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 261 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 262 263 if (pcpu_stats) { 264 y_mem += ncpus - 1; 265 y_arc += ncpus - 1; 266 y_carc += ncpus - 1; 267 y_swap += ncpus - 1; 268 y_idlecursor += ncpus - 1; 269 y_message += ncpus - 1; 270 y_header += ncpus - 1; 271 y_procs += ncpus - 1; 272 Header_lines += ncpus - 1; 273 } 274 } 275 276 int 277 machine_init(struct statics *statics) 278 { 279 int i, j, empty, pagesize; 280 uint64_t arc_size; 281 int carc_en, nswapdev; 282 size_t size; 283 284 size = sizeof(smpmode); 285 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 286 size != sizeof(smpmode)) 287 smpmode = 0; 288 289 size = sizeof(arc_size); 290 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 291 NULL, 0) == 0 && arc_size != 0) 292 arc_enabled = 1; 293 size = sizeof(carc_en); 294 if (arc_enabled && 295 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 296 NULL, 0) == 0 && carc_en == 1) { 297 uint64_t uncomp_sz; 298 299 /* 300 * Don't report compression stats if no data is in the ARC. 301 * Otherwise, we end up printing a blank line. 302 */ 303 size = sizeof(uncomp_sz); 304 if (sysctlbyname("kstat.zfs.misc.arcstats.uncompressed_size", 305 &uncomp_sz, &size, NULL, 0) == 0 && uncomp_sz != 0) 306 carc_enabled = 1; 307 } 308 309 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 310 if (kd == NULL) 311 return (-1); 312 313 size = sizeof(nswapdev); 314 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 0) == 0 && 315 nswapdev != 0) 316 has_swap = 1; 317 318 GETSYSCTL("kern.ccpu", ccpu); 319 320 /* this is used in calculating WCPU -- calculate it ahead of time */ 321 logcpu = log(loaddouble(ccpu)); 322 323 pbase = NULL; 324 pref = NULL; 325 pcpu = NULL; 326 nproc = 0; 327 onproc = -1; 328 329 /* get the page size and calculate pageshift from it */ 330 pagesize = getpagesize(); 331 pageshift = 0; 332 while (pagesize > 1) { 333 pageshift++; 334 pagesize >>= 1; 335 } 336 337 /* we only need the amount of log(2)1024 for our conversion */ 338 pageshift -= LOG1024; 339 340 /* fill in the statics information */ 341 statics->procstate_names = procstatenames; 342 statics->cpustate_names = cpustatenames; 343 statics->memory_names = memorynames; 344 if (arc_enabled) 345 statics->arc_names = arcnames; 346 else 347 statics->arc_names = NULL; 348 if (carc_enabled) 349 statics->carc_names = carcnames; 350 else 351 statics->carc_names = NULL; 352 if (has_swap) 353 statics->swap_names = swapnames; 354 else 355 statics->swap_names = NULL; 356 statics->order_names = ordernames; 357 358 /* Allocate state for per-CPU stats. */ 359 GETSYSCTL("kern.smp.maxcpus", maxcpu); 360 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 361 if (times == NULL) 362 err(1, "calloc for kern.smp.maxcpus"); 363 size = sizeof(long) * maxcpu * CPUSTATES; 364 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 365 err(1, "sysctlbyname kern.cp_times"); 366 pcpu_cp_time = calloc(1, size); 367 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1); 368 CPU_ZERO(&cpumask); 369 for (i = 0; i <= maxid; i++) { 370 empty = 1; 371 for (j = 0; empty && j < CPUSTATES; j++) { 372 if (times[i * CPUSTATES + j] != 0) 373 empty = 0; 374 } 375 if (!empty) 376 CPU_SET(i, &cpumask); 377 } 378 ncpus = CPU_COUNT(&cpumask); 379 assert(ncpus > 0); 380 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 381 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 382 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 383 statics->ncpus = ncpus; 384 385 /* Allocate state of battery units reported via ACPI. */ 386 battery_units = 0; 387 size = sizeof(int); 388 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 389 statics->nbatteries = battery_units; 390 391 update_layout(); 392 393 /* all done! */ 394 return (0); 395 } 396 397 char * 398 format_header(const char *uname_field) 399 { 400 static struct sbuf* header = NULL; 401 402 /* clean up from last time. */ 403 if (header != NULL) { 404 sbuf_clear(header); 405 } else { 406 header = sbuf_new_auto(); 407 } 408 409 switch (displaymode) { 410 case DISP_CPU: { 411 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 412 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 413 ps.jail ? " JID" : ""); 414 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 415 if (!ps.thread) { 416 sbuf_cat(header, "THR "); 417 } 418 sbuf_cat(header, "PRI NICE SIZE RES "); 419 if (ps.swap) { 420 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 421 } 422 sbuf_cat(header, "STATE "); 423 if (smpmode) { 424 sbuf_cat(header, "C "); 425 } 426 sbuf_cat(header, "TIME "); 427 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 428 sbuf_cat(header, "COMMAND"); 429 sbuf_finish(header); 430 break; 431 } 432 case DISP_IO: { 433 sbuf_printf(header, " %s%*s %-*.*s", 434 ps.thread_id ? " THR" : "PID", 435 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 436 namelength, namelength, uname_field); 437 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 438 sbuf_finish(header); 439 break; 440 } 441 case DISP_MAX: 442 assert("displaymode must not be set to DISP_MAX"); 443 } 444 445 return sbuf_data(header); 446 } 447 448 static int swappgsin = -1; 449 static int swappgsout = -1; 450 451 452 void 453 get_system_info(struct system_info *si) 454 { 455 struct loadavg sysload; 456 int mib[2]; 457 struct timeval boottime; 458 uint64_t arc_stat, arc_stat2; 459 int i, j; 460 size_t size; 461 462 /* get the CPU stats */ 463 size = (maxid + 1) * CPUSTATES * sizeof(long); 464 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 465 err(1, "sysctlbyname kern.cp_times"); 466 GETSYSCTL("kern.cp_time", cp_time); 467 GETSYSCTL("vm.loadavg", sysload); 468 GETSYSCTL("kern.lastpid", lastpid); 469 470 /* convert load averages to doubles */ 471 for (i = 0; i < 3; i++) 472 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 473 474 /* convert cp_time counts to percentages */ 475 for (i = j = 0; i <= maxid; i++) { 476 if (!CPU_ISSET(i, &cpumask)) 477 continue; 478 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 479 &pcpu_cp_time[j * CPUSTATES], 480 &pcpu_cp_old[j * CPUSTATES], 481 &pcpu_cp_diff[j * CPUSTATES]); 482 j++; 483 } 484 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 485 486 /* sum memory & swap statistics */ 487 { 488 static unsigned int swap_delay = 0; 489 static int swapavail = 0; 490 static int swapfree = 0; 491 static long bufspace = 0; 492 static uint64_t nspgsin, nspgsout; 493 494 GETSYSCTL("vfs.bufspace", bufspace); 495 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 496 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 497 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 498 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 499 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 500 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 501 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 502 /* convert memory stats to Kbytes */ 503 memory_stats[0] = pagetok(memory_stats[0]); 504 memory_stats[1] = pagetok(memory_stats[1]); 505 memory_stats[2] = pagetok(memory_stats[2]); 506 memory_stats[3] = pagetok(memory_stats[3]); 507 memory_stats[4] = bufspace / 1024; 508 memory_stats[5] = pagetok(memory_stats[5]); 509 memory_stats[6] = -1; 510 511 /* first interval */ 512 if (swappgsin < 0) { 513 swap_stats[4] = 0; 514 swap_stats[5] = 0; 515 } 516 517 /* compute differences between old and new swap statistic */ 518 else { 519 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 520 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 521 } 522 523 swappgsin = nspgsin; 524 swappgsout = nspgsout; 525 526 /* call CPU heavy swapmode() only for changes */ 527 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 528 swap_stats[3] = swapmode(&swapavail, &swapfree); 529 swap_stats[0] = swapavail; 530 swap_stats[1] = swapavail - swapfree; 531 swap_stats[2] = swapfree; 532 } 533 swap_delay = 1; 534 swap_stats[6] = -1; 535 } 536 537 if (arc_enabled) { 538 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 539 arc_stats[0] = arc_stat >> 10; 540 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 541 arc_stats[1] = arc_stat >> 10; 542 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 543 arc_stats[2] = arc_stat >> 10; 544 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 545 arc_stats[3] = arc_stat >> 10; 546 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 547 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 548 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 549 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 550 arc_stats[5] = arc_stat >> 10; 551 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 552 arc_stats[5] += arc_stat >> 10; 553 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 554 arc_stats[5] += arc_stat >> 10; 555 si->arc = arc_stats; 556 } 557 if (carc_enabled) { 558 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 559 carc_stats[0] = arc_stat >> 10; 560 carc_stats[2] = arc_stat >> 10; /* For ratio */ 561 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 562 carc_stats[1] = arc_stat >> 10; 563 si->carc = carc_stats; 564 } 565 566 /* set arrays and strings */ 567 if (pcpu_stats) { 568 si->cpustates = pcpu_cpu_states; 569 si->ncpus = ncpus; 570 } else { 571 si->cpustates = cpu_states; 572 si->ncpus = 1; 573 } 574 si->memory = memory_stats; 575 si->swap = swap_stats; 576 577 578 if (lastpid > 0) { 579 si->last_pid = lastpid; 580 } else { 581 si->last_pid = -1; 582 } 583 584 /* 585 * Print how long system has been up. 586 * (Found by looking getting "boottime" from the kernel) 587 */ 588 mib[0] = CTL_KERN; 589 mib[1] = KERN_BOOTTIME; 590 size = sizeof(boottime); 591 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 592 boottime.tv_sec != 0) { 593 si->boottime = boottime; 594 } else { 595 si->boottime.tv_sec = -1; 596 } 597 598 battery_life = 0; 599 if (battery_units > 0) { 600 GETSYSCTL("hw.acpi.battery.life", battery_life); 601 } 602 si->battery = battery_life; 603 } 604 605 #define NOPROC ((void *)-1) 606 607 /* 608 * We need to compare data from the old process entry with the new 609 * process entry. 610 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 611 * structure to cache the mapping. We also use a negative cache pointer 612 * of NOPROC to avoid duplicate lookups. 613 * XXX: this could be done when the actual processes are fetched, we do 614 * it here out of laziness. 615 */ 616 static const struct kinfo_proc * 617 get_old_proc(struct kinfo_proc *pp) 618 { 619 const struct kinfo_proc * const *oldpp, *oldp; 620 621 /* 622 * If this is the first fetch of the kinfo_procs then we don't have 623 * any previous entries. 624 */ 625 if (previous_proc_count == 0) 626 return (NULL); 627 /* negative cache? */ 628 if (pp->ki_udata == NOPROC) 629 return (NULL); 630 /* cached? */ 631 if (pp->ki_udata != NULL) 632 return (pp->ki_udata); 633 /* 634 * Not cached, 635 * 1) look up based on pid. 636 * 2) compare process start. 637 * If we fail here, then setup a negative cache entry, otherwise 638 * cache it. 639 */ 640 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 641 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 642 if (oldpp == NULL) { 643 pp->ki_udata = NOPROC; 644 return (NULL); 645 } 646 oldp = *oldpp; 647 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 648 pp->ki_udata = NOPROC; 649 return (NULL); 650 } 651 pp->ki_udata = __DECONST(void *, oldp); 652 return (oldp); 653 } 654 655 /* 656 * Return the total amount of IO done in blocks in/out and faults. 657 * store the values individually in the pointers passed in. 658 */ 659 static long 660 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 661 long *vcsw, long *ivcsw) 662 { 663 const struct kinfo_proc *oldp; 664 static struct kinfo_proc dummy; 665 long ret; 666 667 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 668 if (oldp == NULL) { 669 memset(&dummy, 0, sizeof(dummy)); 670 oldp = &dummy; 671 } 672 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 673 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 674 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 675 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 676 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 677 ret = 678 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 679 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 680 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 681 return (ret); 682 } 683 684 /* 685 * If there was a previous update, use the delta in ki_runtime over 686 * the previous interval to calculate pctcpu. Otherwise, fall back 687 * to using the kernel's ki_pctcpu. 688 */ 689 static double 690 proc_calc_pctcpu(struct kinfo_proc *pp) 691 { 692 const struct kinfo_proc *oldp; 693 694 if (previous_interval != 0) { 695 oldp = get_old_proc(pp); 696 if (oldp != NULL) 697 return ((double)(pp->ki_runtime - oldp->ki_runtime) 698 / previous_interval); 699 700 /* 701 * If this process/thread was created during the previous 702 * interval, charge it's total runtime to the previous 703 * interval. 704 */ 705 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 706 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 707 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 708 return ((double)pp->ki_runtime / previous_interval); 709 } 710 return (pctdouble(pp->ki_pctcpu)); 711 } 712 713 /* 714 * Return true if this process has used any CPU time since the 715 * previous update. 716 */ 717 static int 718 proc_used_cpu(struct kinfo_proc *pp) 719 { 720 const struct kinfo_proc *oldp; 721 722 oldp = get_old_proc(pp); 723 if (oldp == NULL) 724 return (PCTCPU(pp) != 0); 725 return (pp->ki_runtime != oldp->ki_runtime || 726 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 727 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 728 } 729 730 /* 731 * Return the total number of block in/out and faults by a process. 732 */ 733 static long 734 get_io_total(const struct kinfo_proc *pp) 735 { 736 long dummy; 737 738 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 739 } 740 741 static struct handle handle; 742 743 void * 744 get_process_info(struct system_info *si, struct process_select *sel, 745 int (*compare)(const void *, const void *)) 746 { 747 int i; 748 int total_procs; 749 long p_io; 750 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 751 long nsec; 752 int active_procs; 753 struct kinfo_proc **prefp; 754 struct kinfo_proc *pp; 755 struct timespec previous_proc_uptime; 756 757 /* 758 * If thread state was toggled, don't cache the previous processes. 759 */ 760 if (previous_thread != sel->thread) 761 nproc = 0; 762 previous_thread = sel->thread; 763 764 /* 765 * Save the previous process info. 766 */ 767 if (previous_proc_count_max < nproc) { 768 free(previous_procs); 769 previous_procs = calloc(nproc, sizeof(*previous_procs)); 770 free(previous_pref); 771 previous_pref = calloc(nproc, sizeof(*previous_pref)); 772 if (previous_procs == NULL || previous_pref == NULL) { 773 fprintf(stderr, "top: Out of memory.\n"); 774 quit(TOP_EX_SYS_ERROR); 775 } 776 previous_proc_count_max = nproc; 777 } 778 if (nproc) { 779 for (i = 0; i < nproc; i++) 780 previous_pref[i] = &previous_procs[i]; 781 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 782 qsort(previous_pref, nproc, sizeof(*previous_pref), 783 ps.thread ? compare_tid : compare_pid); 784 } 785 previous_proc_count = nproc; 786 previous_proc_uptime = proc_uptime; 787 previous_wall_time = proc_wall_time; 788 previous_interval = 0; 789 790 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 791 0, &nproc); 792 gettimeofday(&proc_wall_time, NULL); 793 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 794 memset(&proc_uptime, 0, sizeof(proc_uptime)); 795 else if (previous_proc_uptime.tv_sec != 0 && 796 previous_proc_uptime.tv_nsec != 0) { 797 previous_interval = (proc_uptime.tv_sec - 798 previous_proc_uptime.tv_sec) * 1000000; 799 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 800 if (nsec < 0) { 801 previous_interval -= 1000000; 802 nsec += 1000000000; 803 } 804 previous_interval += nsec / 1000; 805 } 806 if (nproc > onproc) { 807 pref = realloc(pref, sizeof(*pref) * nproc); 808 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 809 onproc = nproc; 810 } 811 if (pref == NULL || pbase == NULL || pcpu == NULL) { 812 fprintf(stderr, "top: Out of memory.\n"); 813 quit(TOP_EX_SYS_ERROR); 814 } 815 /* get a pointer to the states summary array */ 816 si->procstates = process_states; 817 818 /* count up process states and get pointers to interesting procs */ 819 total_procs = 0; 820 active_procs = 0; 821 total_inblock = 0; 822 total_oublock = 0; 823 total_majflt = 0; 824 memset(process_states, 0, sizeof(process_states)); 825 prefp = pref; 826 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 827 828 if (pp->ki_stat == 0) 829 /* not in use */ 830 continue; 831 832 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 833 /* skip self */ 834 continue; 835 836 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 837 /* skip system process */ 838 continue; 839 840 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 841 &p_vcsw, &p_ivcsw); 842 total_inblock += p_inblock; 843 total_oublock += p_oublock; 844 total_majflt += p_majflt; 845 total_procs++; 846 process_states[(unsigned char)pp->ki_stat]++; 847 848 if (pp->ki_stat == SZOMB) 849 /* skip zombies */ 850 continue; 851 852 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 853 /* skip kernel idle process */ 854 continue; 855 856 PCTCPU(pp) = proc_calc_pctcpu(pp); 857 if (sel->thread && PCTCPU(pp) > 1.0) 858 PCTCPU(pp) = 1.0; 859 if (displaymode == DISP_CPU && !sel->idle && 860 (!proc_used_cpu(pp) || 861 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 862 /* skip idle or non-running processes */ 863 continue; 864 865 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 866 /* skip processes that aren't doing I/O */ 867 continue; 868 869 if (sel->jid != -1 && pp->ki_jid != sel->jid) 870 /* skip proc. that don't belong to the selected JID */ 871 continue; 872 873 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 874 /* skip proc. that don't belong to the selected UID */ 875 continue; 876 877 if (sel->pid != -1 && pp->ki_pid != sel->pid) 878 continue; 879 880 if (!cmd_matches(pp, sel->command)) 881 /* skip proc. that doesn't match grep string */ 882 continue; 883 884 *prefp++ = pp; 885 active_procs++; 886 } 887 888 /* if requested, sort the "interesting" processes */ 889 if (compare != NULL) 890 qsort(pref, active_procs, sizeof(*pref), compare); 891 892 /* remember active and total counts */ 893 si->p_total = total_procs; 894 si->p_pactive = pref_len = active_procs; 895 896 /* pass back a handle */ 897 handle.next_proc = pref; 898 handle.remaining = active_procs; 899 return (&handle); 900 } 901 902 static int 903 cmd_matches(struct kinfo_proc *proc, const char *term) 904 { 905 char **args = NULL; 906 907 if (!term) { 908 /* No command filter set */ 909 return 1; 910 } else { 911 /* Filter set, does process name contain term? */ 912 if (strstr(proc->ki_comm, term)) 913 return 1; 914 /* Search arguments only if arguments are displayed */ 915 if (show_args) { 916 args = kvm_getargv(kd, proc, 1024); 917 if (args == NULL) { 918 /* Failed to get arguments so can't search them */ 919 return 0; 920 } 921 while (*args != NULL) { 922 if (strstr(*args, term)) 923 return 1; 924 args++; 925 } 926 } 927 } 928 return 0; 929 } 930 931 char * 932 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 933 { 934 struct kinfo_proc *pp; 935 const struct kinfo_proc *oldp; 936 long cputime; 937 char status[22]; 938 size_t state; 939 struct rusage ru, *rup; 940 long p_tot, s_tot; 941 char *cmdbuf = NULL; 942 char **args; 943 static struct sbuf* procbuf = NULL; 944 945 /* clean up from last time. */ 946 if (procbuf != NULL) { 947 sbuf_clear(procbuf); 948 } else { 949 procbuf = sbuf_new_auto(); 950 } 951 952 953 /* find and remember the next proc structure */ 954 pp = *(xhandle->next_proc++); 955 xhandle->remaining--; 956 957 /* get the process's command name */ 958 if ((pp->ki_flag & P_INMEM) == 0) { 959 /* 960 * Print swapped processes as <pname> 961 */ 962 size_t len; 963 964 len = strlen(pp->ki_comm); 965 if (len > sizeof(pp->ki_comm) - 3) 966 len = sizeof(pp->ki_comm) - 3; 967 memmove(pp->ki_comm + 1, pp->ki_comm, len); 968 pp->ki_comm[0] = '<'; 969 pp->ki_comm[len + 1] = '>'; 970 pp->ki_comm[len + 2] = '\0'; 971 } 972 973 /* 974 * Convert the process's runtime from microseconds to seconds. This 975 * time includes the interrupt time although that is not wanted here. 976 * ps(1) is similarly sloppy. 977 */ 978 cputime = (pp->ki_runtime + 500000) / 1000000; 979 980 /* generate "STATE" field */ 981 switch (state = pp->ki_stat) { 982 case SRUN: 983 if (smpmode && pp->ki_oncpu != NOCPU) 984 sprintf(status, "CPU%d", pp->ki_oncpu); 985 else 986 strcpy(status, "RUN"); 987 break; 988 case SLOCK: 989 if (pp->ki_kiflag & KI_LOCKBLOCK) { 990 sprintf(status, "*%.6s", pp->ki_lockname); 991 break; 992 } 993 /* fall through */ 994 case SSLEEP: 995 sprintf(status, "%.6s", pp->ki_wmesg); 996 break; 997 default: 998 999 if (state < nitems(state_abbrev)) { 1000 sprintf(status, "%.6s", state_abbrev[state]); 1001 } else { 1002 sprintf(status, "?%5zu", state); 1003 } 1004 break; 1005 } 1006 1007 cmdbuf = calloc(screen_width + 1, 1); 1008 if (cmdbuf == NULL) { 1009 warn("calloc(%d)", screen_width + 1); 1010 return NULL; 1011 } 1012 1013 if (!(flags & FMT_SHOWARGS)) { 1014 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1015 pp->ki_tdname[0]) { 1016 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 1017 pp->ki_tdname, pp->ki_moretdname); 1018 } else { 1019 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 1020 } 1021 } else { 1022 if (pp->ki_flag & P_SYSTEM || 1023 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 1024 !(*args)) { 1025 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1026 pp->ki_tdname[0]) { 1027 snprintf(cmdbuf, screen_width, 1028 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1029 pp->ki_moretdname); 1030 } else { 1031 snprintf(cmdbuf, screen_width, 1032 "[%s]", pp->ki_comm); 1033 } 1034 } else { 1035 const char *src; 1036 char *dst, *argbuf; 1037 const char *cmd; 1038 size_t argbuflen; 1039 size_t len; 1040 1041 argbuflen = screen_width * 4; 1042 argbuf = calloc(argbuflen + 1, 1); 1043 if (argbuf == NULL) { 1044 warn("calloc(%zu)", argbuflen + 1); 1045 free(cmdbuf); 1046 return NULL; 1047 } 1048 1049 dst = argbuf; 1050 1051 /* Extract cmd name from argv */ 1052 cmd = basename(*args); 1053 1054 for (; (src = *args++) != NULL; ) { 1055 if (*src == '\0') 1056 continue; 1057 len = (argbuflen - (dst - argbuf) - 1) / 4; 1058 strvisx(dst, src, 1059 MIN(strlen(src), len), 1060 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); 1061 while (*dst != '\0') 1062 dst++; 1063 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1064 *dst++ = ' '; /* add delimiting space */ 1065 } 1066 if (dst != argbuf && dst[-1] == ' ') 1067 dst--; 1068 *dst = '\0'; 1069 1070 if (strcmp(cmd, pp->ki_comm) != 0) { 1071 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1072 pp->ki_tdname[0]) 1073 snprintf(cmdbuf, screen_width, 1074 "%s (%s){%s%s}", argbuf, 1075 pp->ki_comm, pp->ki_tdname, 1076 pp->ki_moretdname); 1077 else 1078 snprintf(cmdbuf, screen_width, 1079 "%s (%s)", argbuf, pp->ki_comm); 1080 } else { 1081 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1082 pp->ki_tdname[0]) 1083 snprintf(cmdbuf, screen_width, 1084 "%s{%s%s}", argbuf, pp->ki_tdname, 1085 pp->ki_moretdname); 1086 else 1087 strlcpy(cmdbuf, argbuf, screen_width); 1088 } 1089 free(argbuf); 1090 } 1091 } 1092 1093 if (displaymode == DISP_IO) { 1094 oldp = get_old_proc(pp); 1095 if (oldp != NULL) { 1096 ru.ru_inblock = RU(pp)->ru_inblock - 1097 RU(oldp)->ru_inblock; 1098 ru.ru_oublock = RU(pp)->ru_oublock - 1099 RU(oldp)->ru_oublock; 1100 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1101 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1102 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1103 rup = &ru; 1104 } else { 1105 rup = RU(pp); 1106 } 1107 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1108 s_tot = total_inblock + total_oublock + total_majflt; 1109 1110 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1111 1112 if (ps.jail) { 1113 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1114 } 1115 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1116 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1117 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1118 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1119 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1120 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1121 sbuf_printf(procbuf, "%6ld ", p_tot); 1122 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1123 1124 } else { 1125 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1126 if (ps.jail) { 1127 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1128 } 1129 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1130 1131 if (!ps.thread) { 1132 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1133 } else { 1134 sbuf_printf(procbuf, " "); 1135 } 1136 1137 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1138 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1139 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1140 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1141 if (ps.swap) { 1142 sbuf_printf(procbuf, "%*s ", 1143 TOP_SWAP_LEN - 1, 1144 format_k(pagetok(ki_swap(pp)))); 1145 } 1146 sbuf_printf(procbuf, "%-6.6s ", status); 1147 if (smpmode) { 1148 int cpu; 1149 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1150 cpu = pp->ki_oncpu; 1151 } else { 1152 cpu = pp->ki_lastcpu; 1153 } 1154 sbuf_printf(procbuf, "%3d ", cpu); 1155 } 1156 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1157 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1158 } 1159 sbuf_printf(procbuf, "%s", cmdbuf); 1160 free(cmdbuf); 1161 return (sbuf_data(procbuf)); 1162 } 1163 1164 static void 1165 getsysctl(const char *name, void *ptr, size_t len) 1166 { 1167 size_t nlen = len; 1168 1169 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1170 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1171 strerror(errno)); 1172 quit(TOP_EX_SYS_ERROR); 1173 } 1174 if (nlen != len) { 1175 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1176 name, (unsigned long)len, (unsigned long)nlen); 1177 quit(TOP_EX_SYS_ERROR); 1178 } 1179 } 1180 1181 static const char * 1182 format_nice(const struct kinfo_proc *pp) 1183 { 1184 const char *fifo, *kproc; 1185 int rtpri; 1186 static char nicebuf[4 + 1]; 1187 1188 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1189 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1190 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1191 case PRI_ITHD: 1192 return ("-"); 1193 case PRI_REALTIME: 1194 /* 1195 * XXX: the kernel doesn't tell us the original rtprio and 1196 * doesn't really know what it was, so to recover it we 1197 * must be more chummy with the implementation than the 1198 * implementation is with itself. pri_user gives a 1199 * constant "base" priority, but is only initialized 1200 * properly for user threads. pri_native gives what the 1201 * kernel calls the "base" priority, but it isn't constant 1202 * since it is changed by priority propagation. pri_native 1203 * also isn't properly initialized for all threads, but it 1204 * is properly initialized for kernel realtime and idletime 1205 * threads. Thus we use pri_user for the base priority of 1206 * user threads (it is always correct) and pri_native for 1207 * the base priority of kernel realtime and idletime threads 1208 * (there is nothing better, and it is usually correct). 1209 * 1210 * The field width and thus the buffer are too small for 1211 * values like "kr31F", but such values shouldn't occur, 1212 * and if they do then the tailing "F" is not displayed. 1213 */ 1214 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1215 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1216 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1217 kproc, rtpri, fifo); 1218 break; 1219 case PRI_TIMESHARE: 1220 if (pp->ki_flag & P_KPROC) 1221 return ("-"); 1222 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1223 break; 1224 case PRI_IDLE: 1225 /* XXX: as above. */ 1226 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1227 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1228 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1229 kproc, rtpri, fifo); 1230 break; 1231 default: 1232 return ("?"); 1233 } 1234 return (nicebuf); 1235 } 1236 1237 /* comparison routines for qsort */ 1238 1239 static int 1240 compare_pid(const void *p1, const void *p2) 1241 { 1242 const struct kinfo_proc * const *pp1 = p1; 1243 const struct kinfo_proc * const *pp2 = p2; 1244 1245 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1246 1247 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1248 } 1249 1250 static int 1251 compare_tid(const void *p1, const void *p2) 1252 { 1253 const struct kinfo_proc * const *pp1 = p1; 1254 const struct kinfo_proc * const *pp2 = p2; 1255 1256 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1257 1258 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1259 } 1260 1261 /* 1262 * proc_compare - comparison function for "qsort" 1263 * Compares the resource consumption of two processes using five 1264 * distinct keys. The keys (in descending order of importance) are: 1265 * percent cpu, cpu ticks, state, resident set size, total virtual 1266 * memory usage. The process states are ordered as follows (from least 1267 * to most important): run, zombie, idle, interrupt wait, stop, sleep. 1268 * The array declaration below maps a process state index into a 1269 * number that reflects this ordering. 1270 */ 1271 1272 static const int sorted_state[] = { 1273 [SIDL] = 3, /* being created */ 1274 [SRUN] = 1, /* running/runnable */ 1275 [SSLEEP] = 6, /* sleeping */ 1276 [SSTOP] = 5, /* stopped/suspended */ 1277 [SZOMB] = 2, /* zombie */ 1278 [SWAIT] = 4, /* intr */ 1279 [SLOCK] = 7, /* blocked on lock */ 1280 }; 1281 1282 1283 #define ORDERKEY_PCTCPU(a, b) do { \ 1284 double diff; \ 1285 if (ps.wcpu) \ 1286 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1287 weighted_cpu(PCTCPU((a)), (a)); \ 1288 else \ 1289 diff = PCTCPU((b)) - PCTCPU((a)); \ 1290 if (diff != 0) \ 1291 return (diff > 0 ? 1 : -1); \ 1292 } while (0) 1293 1294 #define ORDERKEY_CPTICKS(a, b) do { \ 1295 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1296 if (diff != 0) \ 1297 return (diff > 0 ? 1 : -1); \ 1298 } while (0) 1299 1300 #define ORDERKEY_STATE(a, b) do { \ 1301 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1302 if (diff != 0) \ 1303 return (diff > 0 ? 1 : -1); \ 1304 } while (0) 1305 1306 #define ORDERKEY_PRIO(a, b) do { \ 1307 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1308 if (diff != 0) \ 1309 return (diff > 0 ? 1 : -1); \ 1310 } while (0) 1311 1312 #define ORDERKEY_THREADS(a, b) do { \ 1313 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1314 if (diff != 0) \ 1315 return (diff > 0 ? 1 : -1); \ 1316 } while (0) 1317 1318 #define ORDERKEY_RSSIZE(a, b) do { \ 1319 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1320 if (diff != 0) \ 1321 return (diff > 0 ? 1 : -1); \ 1322 } while (0) 1323 1324 #define ORDERKEY_MEM(a, b) do { \ 1325 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1326 if (diff != 0) \ 1327 return (diff > 0 ? 1 : -1); \ 1328 } while (0) 1329 1330 #define ORDERKEY_JID(a, b) do { \ 1331 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1332 if (diff != 0) \ 1333 return (diff > 0 ? 1 : -1); \ 1334 } while (0) 1335 1336 #define ORDERKEY_SWAP(a, b) do { \ 1337 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1338 if (diff != 0) \ 1339 return (diff > 0 ? 1 : -1); \ 1340 } while (0) 1341 1342 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1343 1344 static int 1345 compare_cpu(const void *arg1, const void *arg2) 1346 { 1347 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1348 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1349 1350 ORDERKEY_PCTCPU(p1, p2); 1351 ORDERKEY_CPTICKS(p1, p2); 1352 ORDERKEY_STATE(p1, p2); 1353 ORDERKEY_PRIO(p1, p2); 1354 ORDERKEY_RSSIZE(p1, p2); 1355 ORDERKEY_MEM(p1, p2); 1356 1357 return (0); 1358 } 1359 1360 /* compare_size - the comparison function for sorting by total memory usage */ 1361 1362 static int 1363 compare_size(const void *arg1, const void *arg2) 1364 { 1365 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1366 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1367 1368 ORDERKEY_MEM(p1, p2); 1369 ORDERKEY_RSSIZE(p1, p2); 1370 ORDERKEY_PCTCPU(p1, p2); 1371 ORDERKEY_CPTICKS(p1, p2); 1372 ORDERKEY_STATE(p1, p2); 1373 ORDERKEY_PRIO(p1, p2); 1374 1375 return (0); 1376 } 1377 1378 /* compare_res - the comparison function for sorting by resident set size */ 1379 1380 static int 1381 compare_res(const void *arg1, const void *arg2) 1382 { 1383 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1384 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1385 1386 ORDERKEY_RSSIZE(p1, p2); 1387 ORDERKEY_MEM(p1, p2); 1388 ORDERKEY_PCTCPU(p1, p2); 1389 ORDERKEY_CPTICKS(p1, p2); 1390 ORDERKEY_STATE(p1, p2); 1391 ORDERKEY_PRIO(p1, p2); 1392 1393 return (0); 1394 } 1395 1396 /* compare_time - the comparison function for sorting by total cpu time */ 1397 1398 static int 1399 compare_time(const void *arg1, const void *arg2) 1400 { 1401 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1402 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1403 1404 ORDERKEY_CPTICKS(p1, p2); 1405 ORDERKEY_PCTCPU(p1, p2); 1406 ORDERKEY_STATE(p1, p2); 1407 ORDERKEY_PRIO(p1, p2); 1408 ORDERKEY_RSSIZE(p1, p2); 1409 ORDERKEY_MEM(p1, p2); 1410 1411 return (0); 1412 } 1413 1414 /* compare_prio - the comparison function for sorting by priority */ 1415 1416 static int 1417 compare_prio(const void *arg1, const void *arg2) 1418 { 1419 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1420 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1421 1422 ORDERKEY_PRIO(p1, p2); 1423 ORDERKEY_CPTICKS(p1, p2); 1424 ORDERKEY_PCTCPU(p1, p2); 1425 ORDERKEY_STATE(p1, p2); 1426 ORDERKEY_RSSIZE(p1, p2); 1427 ORDERKEY_MEM(p1, p2); 1428 1429 return (0); 1430 } 1431 1432 /* compare_threads - the comparison function for sorting by threads */ 1433 static int 1434 compare_threads(const void *arg1, const void *arg2) 1435 { 1436 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1437 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1438 1439 ORDERKEY_THREADS(p1, p2); 1440 ORDERKEY_PCTCPU(p1, p2); 1441 ORDERKEY_CPTICKS(p1, p2); 1442 ORDERKEY_STATE(p1, p2); 1443 ORDERKEY_PRIO(p1, p2); 1444 ORDERKEY_RSSIZE(p1, p2); 1445 ORDERKEY_MEM(p1, p2); 1446 1447 return (0); 1448 } 1449 1450 /* compare_jid - the comparison function for sorting by jid */ 1451 static int 1452 compare_jid(const void *arg1, const void *arg2) 1453 { 1454 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1455 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1456 1457 ORDERKEY_JID(p1, p2); 1458 ORDERKEY_PCTCPU(p1, p2); 1459 ORDERKEY_CPTICKS(p1, p2); 1460 ORDERKEY_STATE(p1, p2); 1461 ORDERKEY_PRIO(p1, p2); 1462 ORDERKEY_RSSIZE(p1, p2); 1463 ORDERKEY_MEM(p1, p2); 1464 1465 return (0); 1466 } 1467 1468 /* compare_swap - the comparison function for sorting by swap */ 1469 static int 1470 compare_swap(const void *arg1, const void *arg2) 1471 { 1472 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1473 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1474 1475 ORDERKEY_SWAP(p1, p2); 1476 ORDERKEY_PCTCPU(p1, p2); 1477 ORDERKEY_CPTICKS(p1, p2); 1478 ORDERKEY_STATE(p1, p2); 1479 ORDERKEY_PRIO(p1, p2); 1480 ORDERKEY_RSSIZE(p1, p2); 1481 ORDERKEY_MEM(p1, p2); 1482 1483 return (0); 1484 } 1485 1486 /* assorted comparison functions for sorting by i/o */ 1487 1488 static int 1489 compare_iototal(const void *arg1, const void *arg2) 1490 { 1491 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1492 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1493 1494 return (get_io_total(p2) - get_io_total(p1)); 1495 } 1496 1497 static int 1498 compare_ioread(const void *arg1, const void *arg2) 1499 { 1500 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1501 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1502 long dummy, inp1, inp2; 1503 1504 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1505 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1506 1507 return (inp2 - inp1); 1508 } 1509 1510 static int 1511 compare_iowrite(const void *arg1, const void *arg2) 1512 { 1513 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1514 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1515 long dummy, oup1, oup2; 1516 1517 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1518 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1519 1520 return (oup2 - oup1); 1521 } 1522 1523 static int 1524 compare_iofault(const void *arg1, const void *arg2) 1525 { 1526 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1527 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1528 long dummy, flp1, flp2; 1529 1530 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1531 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1532 1533 return (flp2 - flp1); 1534 } 1535 1536 static int 1537 compare_vcsw(const void *arg1, const void *arg2) 1538 { 1539 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1540 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1541 long dummy, flp1, flp2; 1542 1543 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1544 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1545 1546 return (flp2 - flp1); 1547 } 1548 1549 static int 1550 compare_ivcsw(const void *arg1, const void *arg2) 1551 { 1552 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1553 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1554 long dummy, flp1, flp2; 1555 1556 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1557 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1558 1559 return (flp2 - flp1); 1560 } 1561 1562 int (*compares[])(const void *arg1, const void *arg2) = { 1563 compare_cpu, 1564 compare_size, 1565 compare_res, 1566 compare_time, 1567 compare_prio, 1568 compare_threads, 1569 compare_iototal, 1570 compare_ioread, 1571 compare_iowrite, 1572 compare_iofault, 1573 compare_vcsw, 1574 compare_ivcsw, 1575 compare_jid, 1576 compare_swap, 1577 compare_pid, 1578 NULL 1579 }; 1580 1581 1582 static int 1583 swapmode(int *retavail, int *retfree) 1584 { 1585 int n; 1586 struct kvm_swap swapary[1]; 1587 static int pagesize = 0; 1588 static unsigned long swap_maxpages = 0; 1589 1590 *retavail = 0; 1591 *retfree = 0; 1592 1593 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1594 1595 n = kvm_getswapinfo(kd, swapary, 1, 0); 1596 if (n < 0 || swapary[0].ksw_total == 0) 1597 return (0); 1598 1599 if (pagesize == 0) 1600 pagesize = getpagesize(); 1601 if (swap_maxpages == 0) 1602 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1603 1604 /* ksw_total contains the total size of swap all devices which may 1605 exceed the maximum swap size allocatable in the system */ 1606 if ( swapary[0].ksw_total > swap_maxpages ) 1607 swapary[0].ksw_total = swap_maxpages; 1608 1609 *retavail = CONVERT(swapary[0].ksw_total); 1610 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1611 1612 #undef CONVERT 1613 1614 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1615 return (n); 1616 } 1617