1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 static int has_swap; 154 155 /* these are for keeping track of the proc array */ 156 157 static int nproc; 158 static int onproc = -1; 159 static int pref_len; 160 static struct kinfo_proc *pbase; 161 static struct kinfo_proc **pref; 162 static struct kinfo_proc *previous_procs; 163 static struct kinfo_proc **previous_pref; 164 static int previous_proc_count = 0; 165 static int previous_proc_count_max = 0; 166 static int previous_thread; 167 168 /* data used for recalculating pctcpu */ 169 static double *pcpu; 170 static struct timespec proc_uptime; 171 static struct timeval proc_wall_time; 172 static struct timeval previous_wall_time; 173 static uint64_t previous_interval = 0; 174 175 /* total number of io operations */ 176 static long total_inblock; 177 static long total_oublock; 178 static long total_majflt; 179 180 /* these are for getting the memory statistics */ 181 182 static int arc_enabled; 183 static int carc_enabled; 184 static int pageshift; /* log base 2 of the pagesize */ 185 186 /* define pagetok in terms of pageshift */ 187 188 #define pagetok(size) ((size) << pageshift) 189 190 /* swap usage */ 191 #define ki_swap(kip) \ 192 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 193 194 /* 195 * Sorting orders. The first element is the default. 196 */ 197 static const char *ordernames[] = { 198 "cpu", "size", "res", "time", "pri", "threads", 199 "total", "read", "write", "fault", "vcsw", "ivcsw", 200 "jid", "swap", "pid", NULL 201 }; 202 203 /* Per-cpu time states */ 204 static int maxcpu; 205 static int maxid; 206 static int ncpus; 207 static unsigned long cpumask; 208 static long *times; 209 static long *pcpu_cp_time; 210 static long *pcpu_cp_old; 211 static long *pcpu_cp_diff; 212 static int *pcpu_cpu_states; 213 214 /* Battery units and states */ 215 static int battery_units; 216 static int battery_life; 217 218 static int compare_swap(const void *a, const void *b); 219 static int compare_jid(const void *a, const void *b); 220 static int compare_pid(const void *a, const void *b); 221 static int compare_tid(const void *a, const void *b); 222 static const char *format_nice(const struct kinfo_proc *pp); 223 static void getsysctl(const char *name, void *ptr, size_t len); 224 static int swapmode(int *retavail, int *retfree); 225 static void update_layout(void); 226 static int find_uid(uid_t needle, int *haystack); 227 static int cmd_matches(struct kinfo_proc *, const char *); 228 229 static int 230 find_uid(uid_t needle, int *haystack) 231 { 232 size_t i = 0; 233 234 for (; i < TOP_MAX_UIDS; ++i) 235 if ((uid_t)haystack[i] == needle) 236 return 1; 237 return (0); 238 } 239 240 void 241 toggle_pcpustats(void) 242 { 243 244 if (ncpus == 1) 245 return; 246 update_layout(); 247 } 248 249 /* Adjust display based on ncpus and the ARC state. */ 250 static void 251 update_layout(void) 252 { 253 254 y_mem = 3; 255 y_arc = 4; 256 y_carc = 5; 257 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 258 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 259 y_message = 4 + arc_enabled + carc_enabled + has_swap; 260 y_header = 5 + arc_enabled + carc_enabled + has_swap; 261 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 262 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 263 264 if (pcpu_stats) { 265 y_mem += ncpus - 1; 266 y_arc += ncpus - 1; 267 y_carc += ncpus - 1; 268 y_swap += ncpus - 1; 269 y_idlecursor += ncpus - 1; 270 y_message += ncpus - 1; 271 y_header += ncpus - 1; 272 y_procs += ncpus - 1; 273 Header_lines += ncpus - 1; 274 } 275 } 276 277 int 278 machine_init(struct statics *statics) 279 { 280 int i, j, empty, pagesize; 281 uint64_t arc_size; 282 int carc_en, nswapdev; 283 size_t size; 284 285 size = sizeof(smpmode); 286 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 287 size != sizeof(smpmode)) 288 smpmode = 0; 289 290 size = sizeof(arc_size); 291 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 292 NULL, 0) == 0 && arc_size != 0) 293 arc_enabled = 1; 294 size = sizeof(carc_en); 295 if (arc_enabled && 296 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 297 NULL, 0) == 0 && carc_en == 1) 298 carc_enabled = 1; 299 300 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 301 if (kd == NULL) 302 return (-1); 303 304 size = sizeof(nswapdev); 305 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 306 0) == 0 && nswapdev != 0) 307 has_swap = 1; 308 309 GETSYSCTL("kern.ccpu", ccpu); 310 311 /* this is used in calculating WCPU -- calculate it ahead of time */ 312 logcpu = log(loaddouble(ccpu)); 313 314 pbase = NULL; 315 pref = NULL; 316 pcpu = NULL; 317 nproc = 0; 318 onproc = -1; 319 320 /* get the page size and calculate pageshift from it */ 321 pagesize = getpagesize(); 322 pageshift = 0; 323 while (pagesize > 1) { 324 pageshift++; 325 pagesize >>= 1; 326 } 327 328 /* we only need the amount of log(2)1024 for our conversion */ 329 pageshift -= LOG1024; 330 331 /* fill in the statics information */ 332 statics->procstate_names = procstatenames; 333 statics->cpustate_names = cpustatenames; 334 statics->memory_names = memorynames; 335 if (arc_enabled) 336 statics->arc_names = arcnames; 337 else 338 statics->arc_names = NULL; 339 if (carc_enabled) 340 statics->carc_names = carcnames; 341 else 342 statics->carc_names = NULL; 343 if (has_swap) 344 statics->swap_names = swapnames; 345 else 346 statics->swap_names = NULL; 347 statics->order_names = ordernames; 348 349 /* Allocate state for per-CPU stats. */ 350 cpumask = 0; 351 ncpus = 0; 352 GETSYSCTL("kern.smp.maxcpus", maxcpu); 353 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 354 if (times == NULL) 355 err(1, "calloc for kern.smp.maxcpus"); 356 size = sizeof(long) * maxcpu * CPUSTATES; 357 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 358 err(1, "sysctlbyname kern.cp_times"); 359 pcpu_cp_time = calloc(1, size); 360 maxid = (size / CPUSTATES / sizeof(long)) - 1; 361 for (i = 0; i <= maxid; i++) { 362 empty = 1; 363 for (j = 0; empty && j < CPUSTATES; j++) { 364 if (times[i * CPUSTATES + j] != 0) 365 empty = 0; 366 } 367 if (!empty) { 368 cpumask |= (1ul << i); 369 ncpus++; 370 } 371 } 372 assert(ncpus > 0); 373 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 374 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 375 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 376 statics->ncpus = ncpus; 377 378 /* Allocate state of battery units reported via ACPI. */ 379 battery_units = 0; 380 size = sizeof(int); 381 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 382 statics->nbatteries = battery_units; 383 384 update_layout(); 385 386 /* all done! */ 387 return (0); 388 } 389 390 char * 391 format_header(const char *uname_field) 392 { 393 static struct sbuf* header = NULL; 394 395 /* clean up from last time. */ 396 if (header != NULL) { 397 sbuf_clear(header); 398 } else { 399 header = sbuf_new_auto(); 400 } 401 402 switch (displaymode) { 403 case DISP_CPU: { 404 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 405 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 406 ps.jail ? " JID" : ""); 407 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 408 if (!ps.thread) { 409 sbuf_cat(header, "THR "); 410 } 411 sbuf_cat(header, "PRI NICE SIZE RES "); 412 if (ps.swap) { 413 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 414 } 415 sbuf_cat(header, "STATE "); 416 if (smpmode) { 417 sbuf_cat(header, "C "); 418 } 419 sbuf_cat(header, "TIME "); 420 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 421 sbuf_cat(header, "COMMAND"); 422 sbuf_finish(header); 423 break; 424 } 425 case DISP_IO: { 426 sbuf_printf(header, " %s%*s %-*.*s", 427 ps.thread_id ? " THR" : "PID", 428 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 429 namelength, namelength, uname_field); 430 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 431 sbuf_finish(header); 432 break; 433 } 434 case DISP_MAX: 435 assert("displaymode must not be set to DISP_MAX"); 436 } 437 438 return sbuf_data(header); 439 } 440 441 static int swappgsin = -1; 442 static int swappgsout = -1; 443 444 445 void 446 get_system_info(struct system_info *si) 447 { 448 struct loadavg sysload; 449 int mib[2]; 450 struct timeval boottime; 451 uint64_t arc_stat, arc_stat2; 452 int i, j; 453 size_t size; 454 455 /* get the CPU stats */ 456 size = (maxid + 1) * CPUSTATES * sizeof(long); 457 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 458 err(1, "sysctlbyname kern.cp_times"); 459 GETSYSCTL("kern.cp_time", cp_time); 460 GETSYSCTL("vm.loadavg", sysload); 461 GETSYSCTL("kern.lastpid", lastpid); 462 463 /* convert load averages to doubles */ 464 for (i = 0; i < 3; i++) 465 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 466 467 /* convert cp_time counts to percentages */ 468 for (i = j = 0; i <= maxid; i++) { 469 if ((cpumask & (1ul << i)) == 0) 470 continue; 471 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 472 &pcpu_cp_time[j * CPUSTATES], 473 &pcpu_cp_old[j * CPUSTATES], 474 &pcpu_cp_diff[j * CPUSTATES]); 475 j++; 476 } 477 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 478 479 /* sum memory & swap statistics */ 480 { 481 static unsigned int swap_delay = 0; 482 static int swapavail = 0; 483 static int swapfree = 0; 484 static long bufspace = 0; 485 static uint64_t nspgsin, nspgsout; 486 487 GETSYSCTL("vfs.bufspace", bufspace); 488 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 489 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 490 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 491 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 492 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 493 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 494 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 495 /* convert memory stats to Kbytes */ 496 memory_stats[0] = pagetok(memory_stats[0]); 497 memory_stats[1] = pagetok(memory_stats[1]); 498 memory_stats[2] = pagetok(memory_stats[2]); 499 memory_stats[3] = pagetok(memory_stats[3]); 500 memory_stats[4] = bufspace / 1024; 501 memory_stats[5] = pagetok(memory_stats[5]); 502 memory_stats[6] = -1; 503 504 /* first interval */ 505 if (swappgsin < 0) { 506 swap_stats[4] = 0; 507 swap_stats[5] = 0; 508 } 509 510 /* compute differences between old and new swap statistic */ 511 else { 512 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 513 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 514 } 515 516 swappgsin = nspgsin; 517 swappgsout = nspgsout; 518 519 /* call CPU heavy swapmode() only for changes */ 520 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 521 swap_stats[3] = swapmode(&swapavail, &swapfree); 522 swap_stats[0] = swapavail; 523 swap_stats[1] = swapavail - swapfree; 524 swap_stats[2] = swapfree; 525 } 526 swap_delay = 1; 527 swap_stats[6] = -1; 528 } 529 530 if (arc_enabled) { 531 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 532 arc_stats[0] = arc_stat >> 10; 533 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 534 arc_stats[1] = arc_stat >> 10; 535 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 536 arc_stats[2] = arc_stat >> 10; 537 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 538 arc_stats[3] = arc_stat >> 10; 539 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 540 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 541 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 542 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 543 arc_stats[5] = arc_stat >> 10; 544 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 545 arc_stats[5] += arc_stat >> 10; 546 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 547 arc_stats[5] += arc_stat >> 10; 548 si->arc = arc_stats; 549 } 550 if (carc_enabled) { 551 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 552 carc_stats[0] = arc_stat >> 10; 553 carc_stats[2] = arc_stat >> 10; /* For ratio */ 554 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 555 carc_stats[1] = arc_stat >> 10; 556 si->carc = carc_stats; 557 } 558 559 /* set arrays and strings */ 560 if (pcpu_stats) { 561 si->cpustates = pcpu_cpu_states; 562 si->ncpus = ncpus; 563 } else { 564 si->cpustates = cpu_states; 565 si->ncpus = 1; 566 } 567 si->memory = memory_stats; 568 si->swap = swap_stats; 569 570 571 if (lastpid > 0) { 572 si->last_pid = lastpid; 573 } else { 574 si->last_pid = -1; 575 } 576 577 /* 578 * Print how long system has been up. 579 * (Found by looking getting "boottime" from the kernel) 580 */ 581 mib[0] = CTL_KERN; 582 mib[1] = KERN_BOOTTIME; 583 size = sizeof(boottime); 584 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 585 boottime.tv_sec != 0) { 586 si->boottime = boottime; 587 } else { 588 si->boottime.tv_sec = -1; 589 } 590 591 battery_life = 0; 592 if (battery_units > 0) { 593 GETSYSCTL("hw.acpi.battery.life", battery_life); 594 } 595 si->battery = battery_life; 596 } 597 598 #define NOPROC ((void *)-1) 599 600 /* 601 * We need to compare data from the old process entry with the new 602 * process entry. 603 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 604 * structure to cache the mapping. We also use a negative cache pointer 605 * of NOPROC to avoid duplicate lookups. 606 * XXX: this could be done when the actual processes are fetched, we do 607 * it here out of laziness. 608 */ 609 static const struct kinfo_proc * 610 get_old_proc(struct kinfo_proc *pp) 611 { 612 const struct kinfo_proc * const *oldpp, *oldp; 613 614 /* 615 * If this is the first fetch of the kinfo_procs then we don't have 616 * any previous entries. 617 */ 618 if (previous_proc_count == 0) 619 return (NULL); 620 /* negative cache? */ 621 if (pp->ki_udata == NOPROC) 622 return (NULL); 623 /* cached? */ 624 if (pp->ki_udata != NULL) 625 return (pp->ki_udata); 626 /* 627 * Not cached, 628 * 1) look up based on pid. 629 * 2) compare process start. 630 * If we fail here, then setup a negative cache entry, otherwise 631 * cache it. 632 */ 633 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 634 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 635 if (oldpp == NULL) { 636 pp->ki_udata = NOPROC; 637 return (NULL); 638 } 639 oldp = *oldpp; 640 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 641 pp->ki_udata = NOPROC; 642 return (NULL); 643 } 644 pp->ki_udata = __DECONST(void *, oldp); 645 return (oldp); 646 } 647 648 /* 649 * Return the total amount of IO done in blocks in/out and faults. 650 * store the values individually in the pointers passed in. 651 */ 652 static long 653 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 654 long *vcsw, long *ivcsw) 655 { 656 const struct kinfo_proc *oldp; 657 static struct kinfo_proc dummy; 658 long ret; 659 660 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 661 if (oldp == NULL) { 662 memset(&dummy, 0, sizeof(dummy)); 663 oldp = &dummy; 664 } 665 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 666 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 667 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 668 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 669 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 670 ret = 671 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 672 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 673 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 674 return (ret); 675 } 676 677 /* 678 * If there was a previous update, use the delta in ki_runtime over 679 * the previous interval to calculate pctcpu. Otherwise, fall back 680 * to using the kernel's ki_pctcpu. 681 */ 682 static double 683 proc_calc_pctcpu(struct kinfo_proc *pp) 684 { 685 const struct kinfo_proc *oldp; 686 687 if (previous_interval != 0) { 688 oldp = get_old_proc(pp); 689 if (oldp != NULL) 690 return ((double)(pp->ki_runtime - oldp->ki_runtime) 691 / previous_interval); 692 693 /* 694 * If this process/thread was created during the previous 695 * interval, charge it's total runtime to the previous 696 * interval. 697 */ 698 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 699 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 700 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 701 return ((double)pp->ki_runtime / previous_interval); 702 } 703 return (pctdouble(pp->ki_pctcpu)); 704 } 705 706 /* 707 * Return true if this process has used any CPU time since the 708 * previous update. 709 */ 710 static int 711 proc_used_cpu(struct kinfo_proc *pp) 712 { 713 const struct kinfo_proc *oldp; 714 715 oldp = get_old_proc(pp); 716 if (oldp == NULL) 717 return (PCTCPU(pp) != 0); 718 return (pp->ki_runtime != oldp->ki_runtime || 719 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 720 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 721 } 722 723 /* 724 * Return the total number of block in/out and faults by a process. 725 */ 726 static long 727 get_io_total(const struct kinfo_proc *pp) 728 { 729 long dummy; 730 731 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 732 } 733 734 static struct handle handle; 735 736 void * 737 get_process_info(struct system_info *si, struct process_select *sel, 738 int (*compare)(const void *, const void *)) 739 { 740 int i; 741 int total_procs; 742 long p_io; 743 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 744 long nsec; 745 int active_procs; 746 struct kinfo_proc **prefp; 747 struct kinfo_proc *pp; 748 struct timespec previous_proc_uptime; 749 750 /* 751 * If thread state was toggled, don't cache the previous processes. 752 */ 753 if (previous_thread != sel->thread) 754 nproc = 0; 755 previous_thread = sel->thread; 756 757 /* 758 * Save the previous process info. 759 */ 760 if (previous_proc_count_max < nproc) { 761 free(previous_procs); 762 previous_procs = calloc(nproc, sizeof(*previous_procs)); 763 free(previous_pref); 764 previous_pref = calloc(nproc, sizeof(*previous_pref)); 765 if (previous_procs == NULL || previous_pref == NULL) { 766 fprintf(stderr, "top: Out of memory.\n"); 767 quit(TOP_EX_SYS_ERROR); 768 } 769 previous_proc_count_max = nproc; 770 } 771 if (nproc) { 772 for (i = 0; i < nproc; i++) 773 previous_pref[i] = &previous_procs[i]; 774 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 775 qsort(previous_pref, nproc, sizeof(*previous_pref), 776 ps.thread ? compare_tid : compare_pid); 777 } 778 previous_proc_count = nproc; 779 previous_proc_uptime = proc_uptime; 780 previous_wall_time = proc_wall_time; 781 previous_interval = 0; 782 783 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 784 0, &nproc); 785 gettimeofday(&proc_wall_time, NULL); 786 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 787 memset(&proc_uptime, 0, sizeof(proc_uptime)); 788 else if (previous_proc_uptime.tv_sec != 0 && 789 previous_proc_uptime.tv_nsec != 0) { 790 previous_interval = (proc_uptime.tv_sec - 791 previous_proc_uptime.tv_sec) * 1000000; 792 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 793 if (nsec < 0) { 794 previous_interval -= 1000000; 795 nsec += 1000000000; 796 } 797 previous_interval += nsec / 1000; 798 } 799 if (nproc > onproc) { 800 pref = realloc(pref, sizeof(*pref) * nproc); 801 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 802 onproc = nproc; 803 } 804 if (pref == NULL || pbase == NULL || pcpu == NULL) { 805 fprintf(stderr, "top: Out of memory.\n"); 806 quit(TOP_EX_SYS_ERROR); 807 } 808 /* get a pointer to the states summary array */ 809 si->procstates = process_states; 810 811 /* count up process states and get pointers to interesting procs */ 812 total_procs = 0; 813 active_procs = 0; 814 total_inblock = 0; 815 total_oublock = 0; 816 total_majflt = 0; 817 memset(process_states, 0, sizeof(process_states)); 818 prefp = pref; 819 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 820 821 if (pp->ki_stat == 0) 822 /* not in use */ 823 continue; 824 825 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 826 /* skip self */ 827 continue; 828 829 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 830 /* skip system process */ 831 continue; 832 833 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 834 &p_vcsw, &p_ivcsw); 835 total_inblock += p_inblock; 836 total_oublock += p_oublock; 837 total_majflt += p_majflt; 838 total_procs++; 839 process_states[(unsigned char)pp->ki_stat]++; 840 841 if (pp->ki_stat == SZOMB) 842 /* skip zombies */ 843 continue; 844 845 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 846 /* skip kernel idle process */ 847 continue; 848 849 PCTCPU(pp) = proc_calc_pctcpu(pp); 850 if (sel->thread && PCTCPU(pp) > 1.0) 851 PCTCPU(pp) = 1.0; 852 if (displaymode == DISP_CPU && !sel->idle && 853 (!proc_used_cpu(pp) || 854 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 855 /* skip idle or non-running processes */ 856 continue; 857 858 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 859 /* skip processes that aren't doing I/O */ 860 continue; 861 862 if (sel->jid != -1 && pp->ki_jid != sel->jid) 863 /* skip proc. that don't belong to the selected JID */ 864 continue; 865 866 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 867 /* skip proc. that don't belong to the selected UID */ 868 continue; 869 870 if (sel->pid != -1 && pp->ki_pid != sel->pid) 871 continue; 872 873 if (!cmd_matches(pp, sel->command)) 874 /* skip proc. that doesn't match grep string */ 875 continue; 876 877 *prefp++ = pp; 878 active_procs++; 879 } 880 881 /* if requested, sort the "interesting" processes */ 882 if (compare != NULL) 883 qsort(pref, active_procs, sizeof(*pref), compare); 884 885 /* remember active and total counts */ 886 si->p_total = total_procs; 887 si->p_pactive = pref_len = active_procs; 888 889 /* pass back a handle */ 890 handle.next_proc = pref; 891 handle.remaining = active_procs; 892 return (&handle); 893 } 894 895 static int 896 cmd_matches(struct kinfo_proc *proc, const char *term) 897 { 898 char **args = NULL; 899 900 if (!term) { 901 /* No command filter set */ 902 return 1; 903 } else { 904 /* Filter set, does process name contain term? */ 905 if (strstr(proc->ki_comm, term)) 906 return 1; 907 /* Search arguments only if arguments are displayed */ 908 if (show_args) { 909 args = kvm_getargv(kd, proc, 1024); 910 if (args == NULL) { 911 /* Failed to get arguments so can't search them */ 912 return 0; 913 } 914 while (*args != NULL) { 915 if (strstr(*args, term)) 916 return 1; 917 args++; 918 } 919 } 920 } 921 return 0; 922 } 923 924 char * 925 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 926 { 927 struct kinfo_proc *pp; 928 const struct kinfo_proc *oldp; 929 long cputime; 930 char status[22]; 931 size_t state; 932 struct rusage ru, *rup; 933 long p_tot, s_tot; 934 char *cmdbuf = NULL; 935 char **args; 936 static struct sbuf* procbuf = NULL; 937 938 /* clean up from last time. */ 939 if (procbuf != NULL) { 940 sbuf_clear(procbuf); 941 } else { 942 procbuf = sbuf_new_auto(); 943 } 944 945 946 /* find and remember the next proc structure */ 947 pp = *(xhandle->next_proc++); 948 xhandle->remaining--; 949 950 /* get the process's command name */ 951 if ((pp->ki_flag & P_INMEM) == 0) { 952 /* 953 * Print swapped processes as <pname> 954 */ 955 size_t len; 956 957 len = strlen(pp->ki_comm); 958 if (len > sizeof(pp->ki_comm) - 3) 959 len = sizeof(pp->ki_comm) - 3; 960 memmove(pp->ki_comm + 1, pp->ki_comm, len); 961 pp->ki_comm[0] = '<'; 962 pp->ki_comm[len + 1] = '>'; 963 pp->ki_comm[len + 2] = '\0'; 964 } 965 966 /* 967 * Convert the process's runtime from microseconds to seconds. This 968 * time includes the interrupt time although that is not wanted here. 969 * ps(1) is similarly sloppy. 970 */ 971 cputime = (pp->ki_runtime + 500000) / 1000000; 972 973 /* generate "STATE" field */ 974 switch (state = pp->ki_stat) { 975 case SRUN: 976 if (smpmode && pp->ki_oncpu != NOCPU) 977 sprintf(status, "CPU%d", pp->ki_oncpu); 978 else 979 strcpy(status, "RUN"); 980 break; 981 case SLOCK: 982 if (pp->ki_kiflag & KI_LOCKBLOCK) { 983 sprintf(status, "*%.6s", pp->ki_lockname); 984 break; 985 } 986 /* fall through */ 987 case SSLEEP: 988 sprintf(status, "%.6s", pp->ki_wmesg); 989 break; 990 default: 991 992 if (state < nitems(state_abbrev)) { 993 sprintf(status, "%.6s", state_abbrev[state]); 994 } else { 995 sprintf(status, "?%5zu", state); 996 } 997 break; 998 } 999 1000 cmdbuf = calloc(screen_width + 1, 1); 1001 if (cmdbuf == NULL) { 1002 warn("calloc(%d)", screen_width + 1); 1003 return NULL; 1004 } 1005 1006 if (!(flags & FMT_SHOWARGS)) { 1007 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1008 pp->ki_tdname[0]) { 1009 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 1010 pp->ki_tdname, pp->ki_moretdname); 1011 } else { 1012 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 1013 } 1014 } else { 1015 if (pp->ki_flag & P_SYSTEM || 1016 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 1017 !(*args)) { 1018 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1019 pp->ki_tdname[0]) { 1020 snprintf(cmdbuf, screen_width, 1021 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1022 pp->ki_moretdname); 1023 } else { 1024 snprintf(cmdbuf, screen_width, 1025 "[%s]", pp->ki_comm); 1026 } 1027 } else { 1028 const char *src; 1029 char *dst, *argbuf; 1030 const char *cmd; 1031 size_t argbuflen; 1032 size_t len; 1033 1034 argbuflen = screen_width * 4; 1035 argbuf = calloc(argbuflen + 1, 1); 1036 if (argbuf == NULL) { 1037 warn("calloc(%zu)", argbuflen + 1); 1038 free(cmdbuf); 1039 return NULL; 1040 } 1041 1042 dst = argbuf; 1043 1044 /* Extract cmd name from argv */ 1045 cmd = basename(*args); 1046 1047 for (; (src = *args++) != NULL; ) { 1048 if (*src == '\0') 1049 continue; 1050 len = (argbuflen - (dst - argbuf) - 1) / 4; 1051 strvisx(dst, src, 1052 MIN(strlen(src), len), 1053 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); 1054 while (*dst != '\0') 1055 dst++; 1056 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1057 *dst++ = ' '; /* add delimiting space */ 1058 } 1059 if (dst != argbuf && dst[-1] == ' ') 1060 dst--; 1061 *dst = '\0'; 1062 1063 if (strcmp(cmd, pp->ki_comm) != 0) { 1064 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1065 pp->ki_tdname[0]) 1066 snprintf(cmdbuf, screen_width, 1067 "%s (%s){%s%s}", argbuf, 1068 pp->ki_comm, pp->ki_tdname, 1069 pp->ki_moretdname); 1070 else 1071 snprintf(cmdbuf, screen_width, 1072 "%s (%s)", argbuf, pp->ki_comm); 1073 } else { 1074 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1075 pp->ki_tdname[0]) 1076 snprintf(cmdbuf, screen_width, 1077 "%s{%s%s}", argbuf, pp->ki_tdname, 1078 pp->ki_moretdname); 1079 else 1080 strlcpy(cmdbuf, argbuf, screen_width); 1081 } 1082 free(argbuf); 1083 } 1084 } 1085 1086 if (displaymode == DISP_IO) { 1087 oldp = get_old_proc(pp); 1088 if (oldp != NULL) { 1089 ru.ru_inblock = RU(pp)->ru_inblock - 1090 RU(oldp)->ru_inblock; 1091 ru.ru_oublock = RU(pp)->ru_oublock - 1092 RU(oldp)->ru_oublock; 1093 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1094 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1095 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1096 rup = &ru; 1097 } else { 1098 rup = RU(pp); 1099 } 1100 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1101 s_tot = total_inblock + total_oublock + total_majflt; 1102 1103 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1104 1105 if (ps.jail) { 1106 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1107 } 1108 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1109 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1110 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1111 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1112 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1113 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1114 sbuf_printf(procbuf, "%6ld ", p_tot); 1115 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1116 1117 } else { 1118 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1119 if (ps.jail) { 1120 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1121 } 1122 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1123 1124 if (!ps.thread) { 1125 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1126 } else { 1127 sbuf_printf(procbuf, " "); 1128 } 1129 1130 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1131 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1132 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1133 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1134 if (ps.swap) { 1135 sbuf_printf(procbuf, "%*s ", 1136 TOP_SWAP_LEN - 1, 1137 format_k(pagetok(ki_swap(pp)))); 1138 } 1139 sbuf_printf(procbuf, "%-6.6s ", status); 1140 if (smpmode) { 1141 int cpu; 1142 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1143 cpu = pp->ki_oncpu; 1144 } else { 1145 cpu = pp->ki_lastcpu; 1146 } 1147 sbuf_printf(procbuf, "%3d ", cpu); 1148 } 1149 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1150 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1151 } 1152 sbuf_printf(procbuf, "%s", cmdbuf); 1153 free(cmdbuf); 1154 return (sbuf_data(procbuf)); 1155 } 1156 1157 static void 1158 getsysctl(const char *name, void *ptr, size_t len) 1159 { 1160 size_t nlen = len; 1161 1162 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1163 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1164 strerror(errno)); 1165 quit(TOP_EX_SYS_ERROR); 1166 } 1167 if (nlen != len) { 1168 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1169 name, (unsigned long)len, (unsigned long)nlen); 1170 quit(TOP_EX_SYS_ERROR); 1171 } 1172 } 1173 1174 static const char * 1175 format_nice(const struct kinfo_proc *pp) 1176 { 1177 const char *fifo, *kproc; 1178 int rtpri; 1179 static char nicebuf[4 + 1]; 1180 1181 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1182 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1183 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1184 case PRI_ITHD: 1185 return ("-"); 1186 case PRI_REALTIME: 1187 /* 1188 * XXX: the kernel doesn't tell us the original rtprio and 1189 * doesn't really know what it was, so to recover it we 1190 * must be more chummy with the implementation than the 1191 * implementation is with itself. pri_user gives a 1192 * constant "base" priority, but is only initialized 1193 * properly for user threads. pri_native gives what the 1194 * kernel calls the "base" priority, but it isn't constant 1195 * since it is changed by priority propagation. pri_native 1196 * also isn't properly initialized for all threads, but it 1197 * is properly initialized for kernel realtime and idletime 1198 * threads. Thus we use pri_user for the base priority of 1199 * user threads (it is always correct) and pri_native for 1200 * the base priority of kernel realtime and idletime threads 1201 * (there is nothing better, and it is usually correct). 1202 * 1203 * The field width and thus the buffer are too small for 1204 * values like "kr31F", but such values shouldn't occur, 1205 * and if they do then the tailing "F" is not displayed. 1206 */ 1207 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1208 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1209 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1210 kproc, rtpri, fifo); 1211 break; 1212 case PRI_TIMESHARE: 1213 if (pp->ki_flag & P_KPROC) 1214 return ("-"); 1215 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1216 break; 1217 case PRI_IDLE: 1218 /* XXX: as above. */ 1219 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1220 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1221 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1222 kproc, rtpri, fifo); 1223 break; 1224 default: 1225 return ("?"); 1226 } 1227 return (nicebuf); 1228 } 1229 1230 /* comparison routines for qsort */ 1231 1232 static int 1233 compare_pid(const void *p1, const void *p2) 1234 { 1235 const struct kinfo_proc * const *pp1 = p1; 1236 const struct kinfo_proc * const *pp2 = p2; 1237 1238 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1239 1240 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1241 } 1242 1243 static int 1244 compare_tid(const void *p1, const void *p2) 1245 { 1246 const struct kinfo_proc * const *pp1 = p1; 1247 const struct kinfo_proc * const *pp2 = p2; 1248 1249 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1250 1251 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1252 } 1253 1254 /* 1255 * proc_compare - comparison function for "qsort" 1256 * Compares the resource consumption of two processes using five 1257 * distinct keys. The keys (in descending order of importance) are: 1258 * percent cpu, cpu ticks, state, resident set size, total virtual 1259 * memory usage. The process states are ordered as follows (from least 1260 * to most important): WAIT, zombie, sleep, stop, start, run. The 1261 * array declaration below maps a process state index into a number 1262 * that reflects this ordering. 1263 */ 1264 1265 static int sorted_state[] = { 1266 0, /* not used */ 1267 3, /* sleep */ 1268 1, /* ABANDONED (WAIT) */ 1269 6, /* run */ 1270 5, /* start */ 1271 2, /* zombie */ 1272 4 /* stop */ 1273 }; 1274 1275 1276 #define ORDERKEY_PCTCPU(a, b) do { \ 1277 double diff; \ 1278 if (ps.wcpu) \ 1279 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1280 weighted_cpu(PCTCPU((a)), (a)); \ 1281 else \ 1282 diff = PCTCPU((b)) - PCTCPU((a)); \ 1283 if (diff != 0) \ 1284 return (diff > 0 ? 1 : -1); \ 1285 } while (0) 1286 1287 #define ORDERKEY_CPTICKS(a, b) do { \ 1288 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1289 if (diff != 0) \ 1290 return (diff > 0 ? 1 : -1); \ 1291 } while (0) 1292 1293 #define ORDERKEY_STATE(a, b) do { \ 1294 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1295 if (diff != 0) \ 1296 return (diff > 0 ? 1 : -1); \ 1297 } while (0) 1298 1299 #define ORDERKEY_PRIO(a, b) do { \ 1300 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1301 if (diff != 0) \ 1302 return (diff > 0 ? 1 : -1); \ 1303 } while (0) 1304 1305 #define ORDERKEY_THREADS(a, b) do { \ 1306 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1307 if (diff != 0) \ 1308 return (diff > 0 ? 1 : -1); \ 1309 } while (0) 1310 1311 #define ORDERKEY_RSSIZE(a, b) do { \ 1312 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1313 if (diff != 0) \ 1314 return (diff > 0 ? 1 : -1); \ 1315 } while (0) 1316 1317 #define ORDERKEY_MEM(a, b) do { \ 1318 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1319 if (diff != 0) \ 1320 return (diff > 0 ? 1 : -1); \ 1321 } while (0) 1322 1323 #define ORDERKEY_JID(a, b) do { \ 1324 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1325 if (diff != 0) \ 1326 return (diff > 0 ? 1 : -1); \ 1327 } while (0) 1328 1329 #define ORDERKEY_SWAP(a, b) do { \ 1330 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1331 if (diff != 0) \ 1332 return (diff > 0 ? 1 : -1); \ 1333 } while (0) 1334 1335 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1336 1337 static int 1338 compare_cpu(const void *arg1, const void *arg2) 1339 { 1340 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1341 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1342 1343 ORDERKEY_PCTCPU(p1, p2); 1344 ORDERKEY_CPTICKS(p1, p2); 1345 ORDERKEY_STATE(p1, p2); 1346 ORDERKEY_PRIO(p1, p2); 1347 ORDERKEY_RSSIZE(p1, p2); 1348 ORDERKEY_MEM(p1, p2); 1349 1350 return (0); 1351 } 1352 1353 /* compare_size - the comparison function for sorting by total memory usage */ 1354 1355 static int 1356 compare_size(const void *arg1, const void *arg2) 1357 { 1358 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1359 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1360 1361 ORDERKEY_MEM(p1, p2); 1362 ORDERKEY_RSSIZE(p1, p2); 1363 ORDERKEY_PCTCPU(p1, p2); 1364 ORDERKEY_CPTICKS(p1, p2); 1365 ORDERKEY_STATE(p1, p2); 1366 ORDERKEY_PRIO(p1, p2); 1367 1368 return (0); 1369 } 1370 1371 /* compare_res - the comparison function for sorting by resident set size */ 1372 1373 static int 1374 compare_res(const void *arg1, const void *arg2) 1375 { 1376 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1377 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1378 1379 ORDERKEY_RSSIZE(p1, p2); 1380 ORDERKEY_MEM(p1, p2); 1381 ORDERKEY_PCTCPU(p1, p2); 1382 ORDERKEY_CPTICKS(p1, p2); 1383 ORDERKEY_STATE(p1, p2); 1384 ORDERKEY_PRIO(p1, p2); 1385 1386 return (0); 1387 } 1388 1389 /* compare_time - the comparison function for sorting by total cpu time */ 1390 1391 static int 1392 compare_time(const void *arg1, const void *arg2) 1393 { 1394 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1395 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1396 1397 ORDERKEY_CPTICKS(p1, p2); 1398 ORDERKEY_PCTCPU(p1, p2); 1399 ORDERKEY_STATE(p1, p2); 1400 ORDERKEY_PRIO(p1, p2); 1401 ORDERKEY_RSSIZE(p1, p2); 1402 ORDERKEY_MEM(p1, p2); 1403 1404 return (0); 1405 } 1406 1407 /* compare_prio - the comparison function for sorting by priority */ 1408 1409 static int 1410 compare_prio(const void *arg1, const void *arg2) 1411 { 1412 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1413 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1414 1415 ORDERKEY_PRIO(p1, p2); 1416 ORDERKEY_CPTICKS(p1, p2); 1417 ORDERKEY_PCTCPU(p1, p2); 1418 ORDERKEY_STATE(p1, p2); 1419 ORDERKEY_RSSIZE(p1, p2); 1420 ORDERKEY_MEM(p1, p2); 1421 1422 return (0); 1423 } 1424 1425 /* compare_threads - the comparison function for sorting by threads */ 1426 static int 1427 compare_threads(const void *arg1, const void *arg2) 1428 { 1429 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1430 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1431 1432 ORDERKEY_THREADS(p1, p2); 1433 ORDERKEY_PCTCPU(p1, p2); 1434 ORDERKEY_CPTICKS(p1, p2); 1435 ORDERKEY_STATE(p1, p2); 1436 ORDERKEY_PRIO(p1, p2); 1437 ORDERKEY_RSSIZE(p1, p2); 1438 ORDERKEY_MEM(p1, p2); 1439 1440 return (0); 1441 } 1442 1443 /* compare_jid - the comparison function for sorting by jid */ 1444 static int 1445 compare_jid(const void *arg1, const void *arg2) 1446 { 1447 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1448 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1449 1450 ORDERKEY_JID(p1, p2); 1451 ORDERKEY_PCTCPU(p1, p2); 1452 ORDERKEY_CPTICKS(p1, p2); 1453 ORDERKEY_STATE(p1, p2); 1454 ORDERKEY_PRIO(p1, p2); 1455 ORDERKEY_RSSIZE(p1, p2); 1456 ORDERKEY_MEM(p1, p2); 1457 1458 return (0); 1459 } 1460 1461 /* compare_swap - the comparison function for sorting by swap */ 1462 static int 1463 compare_swap(const void *arg1, const void *arg2) 1464 { 1465 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1466 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1467 1468 ORDERKEY_SWAP(p1, p2); 1469 ORDERKEY_PCTCPU(p1, p2); 1470 ORDERKEY_CPTICKS(p1, p2); 1471 ORDERKEY_STATE(p1, p2); 1472 ORDERKEY_PRIO(p1, p2); 1473 ORDERKEY_RSSIZE(p1, p2); 1474 ORDERKEY_MEM(p1, p2); 1475 1476 return (0); 1477 } 1478 1479 /* assorted comparison functions for sorting by i/o */ 1480 1481 static int 1482 compare_iototal(const void *arg1, const void *arg2) 1483 { 1484 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1485 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1486 1487 return (get_io_total(p2) - get_io_total(p1)); 1488 } 1489 1490 static int 1491 compare_ioread(const void *arg1, const void *arg2) 1492 { 1493 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1494 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1495 long dummy, inp1, inp2; 1496 1497 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1498 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1499 1500 return (inp2 - inp1); 1501 } 1502 1503 static int 1504 compare_iowrite(const void *arg1, const void *arg2) 1505 { 1506 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1507 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1508 long dummy, oup1, oup2; 1509 1510 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1511 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1512 1513 return (oup2 - oup1); 1514 } 1515 1516 static int 1517 compare_iofault(const void *arg1, const void *arg2) 1518 { 1519 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1520 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1521 long dummy, flp1, flp2; 1522 1523 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1524 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1525 1526 return (flp2 - flp1); 1527 } 1528 1529 static int 1530 compare_vcsw(const void *arg1, const void *arg2) 1531 { 1532 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1533 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1534 long dummy, flp1, flp2; 1535 1536 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1537 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1538 1539 return (flp2 - flp1); 1540 } 1541 1542 static int 1543 compare_ivcsw(const void *arg1, const void *arg2) 1544 { 1545 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1546 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1547 long dummy, flp1, flp2; 1548 1549 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1550 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1551 1552 return (flp2 - flp1); 1553 } 1554 1555 int (*compares[])(const void *arg1, const void *arg2) = { 1556 compare_cpu, 1557 compare_size, 1558 compare_res, 1559 compare_time, 1560 compare_prio, 1561 compare_threads, 1562 compare_iototal, 1563 compare_ioread, 1564 compare_iowrite, 1565 compare_iofault, 1566 compare_vcsw, 1567 compare_ivcsw, 1568 compare_jid, 1569 compare_swap, 1570 compare_pid, 1571 NULL 1572 }; 1573 1574 1575 static int 1576 swapmode(int *retavail, int *retfree) 1577 { 1578 int n; 1579 struct kvm_swap swapary[1]; 1580 static int pagesize = 0; 1581 static unsigned long swap_maxpages = 0; 1582 1583 *retavail = 0; 1584 *retfree = 0; 1585 1586 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1587 1588 n = kvm_getswapinfo(kd, swapary, 1, 0); 1589 if (n < 0 || swapary[0].ksw_total == 0) 1590 return (0); 1591 1592 if (pagesize == 0) 1593 pagesize = getpagesize(); 1594 if (swap_maxpages == 0) 1595 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1596 1597 /* ksw_total contains the total size of swap all devices which may 1598 exceed the maximum swap size allocatable in the system */ 1599 if ( swapary[0].ksw_total > swap_maxpages ) 1600 swapary[0].ksw_total = swap_maxpages; 1601 1602 *retavail = CONVERT(swapary[0].ksw_total); 1603 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1604 1605 #undef CONVERT 1606 1607 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1608 return (n); 1609 } 1610