1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@freebsd.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * 15 * $FreeBSD$ 16 */ 17 18 #include <sys/param.h> 19 #include <sys/errno.h> 20 #include <sys/file.h> 21 #include <sys/proc.h> 22 #include <sys/resource.h> 23 #include <sys/rtprio.h> 24 #include <sys/signal.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 #include <sys/vmmeter.h> 29 30 #include <err.h> 31 #include <kvm.h> 32 #include <math.h> 33 #include <nlist.h> 34 #include <paths.h> 35 #include <pwd.h> 36 #include <stdio.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <strings.h> 40 #include <unistd.h> 41 #include <vis.h> 42 43 #include "top.h" 44 #include "machine.h" 45 #include "screen.h" 46 #include "utils.h" 47 #include "layout.h" 48 49 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 50 #define SMPUNAMELEN 13 51 #define UPUNAMELEN 15 52 53 extern struct process_select ps; 54 extern char* printable(char *); 55 static int smpmode; 56 enum displaymodes displaymode; 57 #ifdef TOP_USERNAME_LEN 58 static int namelength = TOP_USERNAME_LEN; 59 #else 60 static int namelength = 8; 61 #endif 62 /* TOP_JID_LEN based on max of 999999 */ 63 #define TOP_JID_LEN 7 64 #define TOP_SWAP_LEN 6 65 static int jidlength; 66 static int swaplength; 67 static int cmdlengthdelta; 68 69 /* Prototypes for top internals */ 70 void quit(int); 71 72 /* get_process_info passes back a handle. This is what it looks like: */ 73 74 struct handle { 75 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 76 int remaining; /* number of pointers remaining */ 77 }; 78 79 /* declarations for load_avg */ 80 #include "loadavg.h" 81 82 /* define what weighted cpu is. */ 83 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 84 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 85 86 /* what we consider to be process size: */ 87 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 88 89 #define RU(pp) (&(pp)->ki_rusage) 90 #define RUTOT(pp) \ 91 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 92 93 #define PCTCPU(pp) (pcpu[pp - pbase]) 94 95 /* definitions for indices in the nlist array */ 96 97 /* 98 * These definitions control the format of the per-process area 99 */ 100 101 static char io_header[] = 102 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 103 104 #define io_Proc_format \ 105 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 106 107 static char smp_header_thr[] = 108 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 109 static char smp_header[] = 110 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 111 112 #define smp_Proc_format \ 113 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s" 114 115 static char up_header_thr[] = 116 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 117 static char up_header[] = 118 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 119 120 #define up_Proc_format \ 121 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s" 122 123 124 /* process state names for the "STATE" column of the display */ 125 /* the extra nulls in the string "run" are for adding a slash and 126 the processor number when needed */ 127 128 char *state_abbrev[] = { 129 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 130 }; 131 132 133 static kvm_t *kd; 134 135 /* values that we stash away in _init and use in later routines */ 136 137 static double logcpu; 138 139 /* these are retrieved from the kernel in _init */ 140 141 static load_avg ccpu; 142 143 /* these are used in the get_ functions */ 144 145 static int lastpid; 146 147 /* these are for calculating cpu state percentages */ 148 149 static long cp_time[CPUSTATES]; 150 static long cp_old[CPUSTATES]; 151 static long cp_diff[CPUSTATES]; 152 153 /* these are for detailing the process states */ 154 155 int process_states[8]; 156 char *procstatenames[] = { 157 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 158 " zombie, ", " waiting, ", " lock, ", 159 NULL 160 }; 161 162 /* these are for detailing the cpu states */ 163 164 int cpu_states[CPUSTATES]; 165 char *cpustatenames[] = { 166 "user", "nice", "system", "interrupt", "idle", NULL 167 }; 168 169 /* these are for detailing the memory statistics */ 170 171 int memory_stats[7]; 172 char *memorynames[] = { 173 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 174 "K Free", NULL 175 }; 176 177 int arc_stats[7]; 178 char *arcnames[] = { 179 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 180 NULL 181 }; 182 183 int carc_stats[4]; 184 char *carcnames[] = { 185 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 186 NULL 187 }; 188 189 int swap_stats[7]; 190 char *swapnames[] = { 191 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 192 NULL 193 }; 194 195 196 /* these are for keeping track of the proc array */ 197 198 static int nproc; 199 static int onproc = -1; 200 static int pref_len; 201 static struct kinfo_proc *pbase; 202 static struct kinfo_proc **pref; 203 static struct kinfo_proc *previous_procs; 204 static struct kinfo_proc **previous_pref; 205 static int previous_proc_count = 0; 206 static int previous_proc_count_max = 0; 207 static int previous_thread; 208 209 /* data used for recalculating pctcpu */ 210 static double *pcpu; 211 static struct timespec proc_uptime; 212 static struct timeval proc_wall_time; 213 static struct timeval previous_wall_time; 214 static uint64_t previous_interval = 0; 215 216 /* total number of io operations */ 217 static long total_inblock; 218 static long total_oublock; 219 static long total_majflt; 220 221 /* these are for getting the memory statistics */ 222 223 static int arc_enabled; 224 static int carc_enabled; 225 static int pageshift; /* log base 2 of the pagesize */ 226 227 /* define pagetok in terms of pageshift */ 228 229 #define pagetok(size) ((size) << pageshift) 230 231 /* swap usage */ 232 #define ki_swap(kip) \ 233 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 234 235 /* useful externals */ 236 long percentages(int cnt, int *out, long *new, long *old, long *diffs); 237 238 /* 239 * Sorting orders. The first element is the default. 240 */ 241 char *ordernames[] = { 242 "cpu", "size", "res", "time", "pri", "threads", 243 "total", "read", "write", "fault", "vcsw", "ivcsw", 244 "jid", "swap", "pid", NULL 245 }; 246 247 /* Per-cpu time states */ 248 static int maxcpu; 249 static int maxid; 250 static int ncpus; 251 static u_long cpumask; 252 static long *times; 253 static long *pcpu_cp_time; 254 static long *pcpu_cp_old; 255 static long *pcpu_cp_diff; 256 static int *pcpu_cpu_states; 257 258 static int compare_swap(const void *a, const void *b); 259 static int compare_jid(const void *a, const void *b); 260 static int compare_pid(const void *a, const void *b); 261 static int compare_tid(const void *a, const void *b); 262 static const char *format_nice(const struct kinfo_proc *pp); 263 static void getsysctl(const char *name, void *ptr, size_t len); 264 static int swapmode(int *retavail, int *retfree); 265 static void update_layout(void); 266 static int find_uid(uid_t needle, int *haystack); 267 268 static int 269 find_uid(uid_t needle, int *haystack) 270 { 271 size_t i = 0; 272 273 for (; i < TOP_MAX_UIDS; ++i) 274 if ((uid_t)haystack[i] == needle) 275 return 1; 276 return 0; 277 } 278 279 void 280 toggle_pcpustats(void) 281 { 282 283 if (ncpus == 1) 284 return; 285 update_layout(); 286 } 287 288 /* Adjust display based on ncpus and the ARC state. */ 289 static void 290 update_layout(void) 291 { 292 293 y_mem = 3; 294 y_arc = 4; 295 y_carc = 5; 296 y_swap = 4 + arc_enabled + carc_enabled; 297 y_idlecursor = 5 + arc_enabled + carc_enabled; 298 y_message = 5 + arc_enabled + carc_enabled; 299 y_header = 6 + arc_enabled + carc_enabled; 300 y_procs = 7 + arc_enabled + carc_enabled; 301 Header_lines = 7 + arc_enabled + carc_enabled; 302 303 if (pcpu_stats) { 304 y_mem += ncpus - 1; 305 y_arc += ncpus - 1; 306 y_carc += ncpus - 1; 307 y_swap += ncpus - 1; 308 y_idlecursor += ncpus - 1; 309 y_message += ncpus - 1; 310 y_header += ncpus - 1; 311 y_procs += ncpus - 1; 312 Header_lines += ncpus - 1; 313 } 314 } 315 316 int 317 machine_init(struct statics *statics, char do_unames) 318 { 319 int i, j, empty, pagesize; 320 uint64_t arc_size; 321 boolean_t carc_en; 322 size_t size; 323 struct passwd *pw; 324 325 size = sizeof(smpmode); 326 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 327 NULL, 0) != 0 && 328 sysctlbyname("kern.smp.active", &smpmode, &size, 329 NULL, 0) != 0) || 330 size != sizeof(smpmode)) 331 smpmode = 0; 332 333 size = sizeof(arc_size); 334 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 335 NULL, 0) == 0 && arc_size != 0) 336 arc_enabled = 1; 337 size = sizeof(carc_en); 338 if (arc_enabled && 339 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 340 NULL, 0) == 0 && carc_en == 1) 341 carc_enabled = 1; 342 343 if (do_unames) { 344 while ((pw = getpwent()) != NULL) { 345 if (strlen(pw->pw_name) > namelength) 346 namelength = strlen(pw->pw_name); 347 } 348 } 349 if (smpmode && namelength > SMPUNAMELEN) 350 namelength = SMPUNAMELEN; 351 else if (namelength > UPUNAMELEN) 352 namelength = UPUNAMELEN; 353 354 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 355 if (kd == NULL) 356 return (-1); 357 358 GETSYSCTL("kern.ccpu", ccpu); 359 360 /* this is used in calculating WCPU -- calculate it ahead of time */ 361 logcpu = log(loaddouble(ccpu)); 362 363 pbase = NULL; 364 pref = NULL; 365 pcpu = NULL; 366 nproc = 0; 367 onproc = -1; 368 369 /* get the page size and calculate pageshift from it */ 370 pagesize = getpagesize(); 371 pageshift = 0; 372 while (pagesize > 1) { 373 pageshift++; 374 pagesize >>= 1; 375 } 376 377 /* we only need the amount of log(2)1024 for our conversion */ 378 pageshift -= LOG1024; 379 380 /* fill in the statics information */ 381 statics->procstate_names = procstatenames; 382 statics->cpustate_names = cpustatenames; 383 statics->memory_names = memorynames; 384 if (arc_enabled) 385 statics->arc_names = arcnames; 386 else 387 statics->arc_names = NULL; 388 if (carc_enabled) 389 statics->carc_names = carcnames; 390 else 391 statics->carc_names = NULL; 392 statics->swap_names = swapnames; 393 statics->order_names = ordernames; 394 395 /* Allocate state for per-CPU stats. */ 396 cpumask = 0; 397 ncpus = 0; 398 GETSYSCTL("kern.smp.maxcpus", maxcpu); 399 size = sizeof(long) * maxcpu * CPUSTATES; 400 times = malloc(size); 401 if (times == NULL) 402 err(1, "malloc %zu bytes", size); 403 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 404 err(1, "sysctlbyname kern.cp_times"); 405 pcpu_cp_time = calloc(1, size); 406 maxid = (size / CPUSTATES / sizeof(long)) - 1; 407 for (i = 0; i <= maxid; i++) { 408 empty = 1; 409 for (j = 0; empty && j < CPUSTATES; j++) { 410 if (times[i * CPUSTATES + j] != 0) 411 empty = 0; 412 } 413 if (!empty) { 414 cpumask |= (1ul << i); 415 ncpus++; 416 } 417 } 418 size = sizeof(long) * ncpus * CPUSTATES; 419 pcpu_cp_old = calloc(1, size); 420 pcpu_cp_diff = calloc(1, size); 421 pcpu_cpu_states = calloc(1, size); 422 statics->ncpus = ncpus; 423 424 update_layout(); 425 426 /* all done! */ 427 return (0); 428 } 429 430 char * 431 format_header(char *uname_field) 432 { 433 static char Header[128]; 434 const char *prehead; 435 436 if (ps.jail) 437 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 438 else 439 jidlength = 0; 440 441 if (ps.swap) 442 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 443 else 444 swaplength = 0; 445 446 switch (displaymode) { 447 case DISP_CPU: 448 /* 449 * The logic of picking the right header format seems reverse 450 * here because we only want to display a THR column when 451 * "thread mode" is off (and threads are not listed as 452 * separate lines). 453 */ 454 prehead = smpmode ? 455 (ps.thread ? smp_header : smp_header_thr) : 456 (ps.thread ? up_header : up_header_thr); 457 snprintf(Header, sizeof(Header), prehead, 458 jidlength, ps.jail ? " JID" : "", 459 namelength, namelength, uname_field, 460 swaplength, ps.swap ? " SWAP" : "", 461 ps.wcpu ? "WCPU" : "CPU"); 462 break; 463 case DISP_IO: 464 prehead = io_header; 465 snprintf(Header, sizeof(Header), prehead, 466 jidlength, ps.jail ? " JID" : "", 467 namelength, namelength, uname_field); 468 break; 469 } 470 cmdlengthdelta = strlen(Header) - 7; 471 return (Header); 472 } 473 474 static int swappgsin = -1; 475 static int swappgsout = -1; 476 extern struct timeval timeout; 477 478 479 void 480 get_system_info(struct system_info *si) 481 { 482 struct loadavg sysload; 483 int mib[2]; 484 struct timeval boottime; 485 uint64_t arc_stat, arc_stat2; 486 int i, j; 487 size_t size; 488 489 /* get the CPU stats */ 490 size = (maxid + 1) * CPUSTATES * sizeof(long); 491 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 492 err(1, "sysctlbyname kern.cp_times"); 493 GETSYSCTL("kern.cp_time", cp_time); 494 GETSYSCTL("vm.loadavg", sysload); 495 GETSYSCTL("kern.lastpid", lastpid); 496 497 /* convert load averages to doubles */ 498 for (i = 0; i < 3; i++) 499 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 500 501 /* convert cp_time counts to percentages */ 502 for (i = j = 0; i <= maxid; i++) { 503 if ((cpumask & (1ul << i)) == 0) 504 continue; 505 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 506 &pcpu_cp_time[j * CPUSTATES], 507 &pcpu_cp_old[j * CPUSTATES], 508 &pcpu_cp_diff[j * CPUSTATES]); 509 j++; 510 } 511 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 512 513 /* sum memory & swap statistics */ 514 { 515 static unsigned int swap_delay = 0; 516 static int swapavail = 0; 517 static int swapfree = 0; 518 static long bufspace = 0; 519 static uint64_t nspgsin, nspgsout; 520 521 GETSYSCTL("vfs.bufspace", bufspace); 522 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 523 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 524 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 525 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 526 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 527 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 528 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 529 /* convert memory stats to Kbytes */ 530 memory_stats[0] = pagetok(memory_stats[0]); 531 memory_stats[1] = pagetok(memory_stats[1]); 532 memory_stats[2] = pagetok(memory_stats[2]); 533 memory_stats[3] = pagetok(memory_stats[3]); 534 memory_stats[4] = bufspace / 1024; 535 memory_stats[5] = pagetok(memory_stats[5]); 536 memory_stats[6] = -1; 537 538 /* first interval */ 539 if (swappgsin < 0) { 540 swap_stats[4] = 0; 541 swap_stats[5] = 0; 542 } 543 544 /* compute differences between old and new swap statistic */ 545 else { 546 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 547 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 548 } 549 550 swappgsin = nspgsin; 551 swappgsout = nspgsout; 552 553 /* call CPU heavy swapmode() only for changes */ 554 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 555 swap_stats[3] = swapmode(&swapavail, &swapfree); 556 swap_stats[0] = swapavail; 557 swap_stats[1] = swapavail - swapfree; 558 swap_stats[2] = swapfree; 559 } 560 swap_delay = 1; 561 swap_stats[6] = -1; 562 } 563 564 if (arc_enabled) { 565 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 566 arc_stats[0] = arc_stat >> 10; 567 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 568 arc_stats[1] = arc_stat >> 10; 569 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 570 arc_stats[2] = arc_stat >> 10; 571 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 572 arc_stats[3] = arc_stat >> 10; 573 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 574 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 575 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 576 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 577 arc_stats[5] = arc_stat >> 10; 578 si->arc = arc_stats; 579 } 580 if (carc_enabled) { 581 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 582 carc_stats[0] = arc_stat >> 10; 583 carc_stats[2] = arc_stat >> 10; /* For ratio */ 584 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 585 carc_stats[1] = arc_stat >> 10; 586 si->carc = carc_stats; 587 } 588 589 /* set arrays and strings */ 590 if (pcpu_stats) { 591 si->cpustates = pcpu_cpu_states; 592 si->ncpus = ncpus; 593 } else { 594 si->cpustates = cpu_states; 595 si->ncpus = 1; 596 } 597 si->memory = memory_stats; 598 si->swap = swap_stats; 599 600 601 if (lastpid > 0) { 602 si->last_pid = lastpid; 603 } else { 604 si->last_pid = -1; 605 } 606 607 /* 608 * Print how long system has been up. 609 * (Found by looking getting "boottime" from the kernel) 610 */ 611 mib[0] = CTL_KERN; 612 mib[1] = KERN_BOOTTIME; 613 size = sizeof(boottime); 614 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 615 boottime.tv_sec != 0) { 616 si->boottime = boottime; 617 } else { 618 si->boottime.tv_sec = -1; 619 } 620 } 621 622 #define NOPROC ((void *)-1) 623 624 /* 625 * We need to compare data from the old process entry with the new 626 * process entry. 627 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 628 * structure to cache the mapping. We also use a negative cache pointer 629 * of NOPROC to avoid duplicate lookups. 630 * XXX: this could be done when the actual processes are fetched, we do 631 * it here out of laziness. 632 */ 633 const struct kinfo_proc * 634 get_old_proc(struct kinfo_proc *pp) 635 { 636 struct kinfo_proc **oldpp, *oldp; 637 638 /* 639 * If this is the first fetch of the kinfo_procs then we don't have 640 * any previous entries. 641 */ 642 if (previous_proc_count == 0) 643 return (NULL); 644 /* negative cache? */ 645 if (pp->ki_udata == NOPROC) 646 return (NULL); 647 /* cached? */ 648 if (pp->ki_udata != NULL) 649 return (pp->ki_udata); 650 /* 651 * Not cached, 652 * 1) look up based on pid. 653 * 2) compare process start. 654 * If we fail here, then setup a negative cache entry, otherwise 655 * cache it. 656 */ 657 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 658 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 659 if (oldpp == NULL) { 660 pp->ki_udata = NOPROC; 661 return (NULL); 662 } 663 oldp = *oldpp; 664 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 665 pp->ki_udata = NOPROC; 666 return (NULL); 667 } 668 pp->ki_udata = oldp; 669 return (oldp); 670 } 671 672 /* 673 * Return the total amount of IO done in blocks in/out and faults. 674 * store the values individually in the pointers passed in. 675 */ 676 long 677 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 678 long *vcsw, long *ivcsw) 679 { 680 const struct kinfo_proc *oldp; 681 static struct kinfo_proc dummy; 682 long ret; 683 684 oldp = get_old_proc(pp); 685 if (oldp == NULL) { 686 bzero(&dummy, sizeof(dummy)); 687 oldp = &dummy; 688 } 689 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 690 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 691 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 692 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 693 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 694 ret = 695 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 696 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 697 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 698 return (ret); 699 } 700 701 /* 702 * If there was a previous update, use the delta in ki_runtime over 703 * the previous interval to calculate pctcpu. Otherwise, fall back 704 * to using the kernel's ki_pctcpu. 705 */ 706 static double 707 proc_calc_pctcpu(struct kinfo_proc *pp) 708 { 709 const struct kinfo_proc *oldp; 710 711 if (previous_interval != 0) { 712 oldp = get_old_proc(pp); 713 if (oldp != NULL) 714 return ((double)(pp->ki_runtime - oldp->ki_runtime) 715 / previous_interval); 716 717 /* 718 * If this process/thread was created during the previous 719 * interval, charge it's total runtime to the previous 720 * interval. 721 */ 722 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 723 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 724 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 725 return ((double)pp->ki_runtime / previous_interval); 726 } 727 return (pctdouble(pp->ki_pctcpu)); 728 } 729 730 /* 731 * Return true if this process has used any CPU time since the 732 * previous update. 733 */ 734 static int 735 proc_used_cpu(struct kinfo_proc *pp) 736 { 737 const struct kinfo_proc *oldp; 738 739 oldp = get_old_proc(pp); 740 if (oldp == NULL) 741 return (PCTCPU(pp) != 0); 742 return (pp->ki_runtime != oldp->ki_runtime || 743 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 744 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 745 } 746 747 /* 748 * Return the total number of block in/out and faults by a process. 749 */ 750 long 751 get_io_total(struct kinfo_proc *pp) 752 { 753 long dummy; 754 755 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 756 } 757 758 static struct handle handle; 759 760 caddr_t 761 get_process_info(struct system_info *si, struct process_select *sel, 762 int (*compare)(const void *, const void *)) 763 { 764 int i; 765 int total_procs; 766 long p_io; 767 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 768 long nsec; 769 int active_procs; 770 struct kinfo_proc **prefp; 771 struct kinfo_proc *pp; 772 struct timespec previous_proc_uptime; 773 774 /* these are copied out of sel for speed */ 775 int show_idle; 776 int show_jid; 777 int show_self; 778 int show_system; 779 int show_uid; 780 int show_command; 781 int show_kidle; 782 783 /* 784 * If thread state was toggled, don't cache the previous processes. 785 */ 786 if (previous_thread != sel->thread) 787 nproc = 0; 788 previous_thread = sel->thread; 789 790 /* 791 * Save the previous process info. 792 */ 793 if (previous_proc_count_max < nproc) { 794 free(previous_procs); 795 previous_procs = malloc(nproc * sizeof(*previous_procs)); 796 free(previous_pref); 797 previous_pref = malloc(nproc * sizeof(*previous_pref)); 798 if (previous_procs == NULL || previous_pref == NULL) { 799 (void) fprintf(stderr, "top: Out of memory.\n"); 800 quit(23); 801 } 802 previous_proc_count_max = nproc; 803 } 804 if (nproc) { 805 for (i = 0; i < nproc; i++) 806 previous_pref[i] = &previous_procs[i]; 807 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 808 qsort(previous_pref, nproc, sizeof(*previous_pref), 809 ps.thread ? compare_tid : compare_pid); 810 } 811 previous_proc_count = nproc; 812 previous_proc_uptime = proc_uptime; 813 previous_wall_time = proc_wall_time; 814 previous_interval = 0; 815 816 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 817 0, &nproc); 818 (void)gettimeofday(&proc_wall_time, NULL); 819 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 820 memset(&proc_uptime, 0, sizeof(proc_uptime)); 821 else if (previous_proc_uptime.tv_sec != 0 && 822 previous_proc_uptime.tv_nsec != 0) { 823 previous_interval = (proc_uptime.tv_sec - 824 previous_proc_uptime.tv_sec) * 1000000; 825 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 826 if (nsec < 0) { 827 previous_interval -= 1000000; 828 nsec += 1000000000; 829 } 830 previous_interval += nsec / 1000; 831 } 832 if (nproc > onproc) { 833 pref = realloc(pref, sizeof(*pref) * nproc); 834 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 835 onproc = nproc; 836 } 837 if (pref == NULL || pbase == NULL || pcpu == NULL) { 838 (void) fprintf(stderr, "top: Out of memory.\n"); 839 quit(23); 840 } 841 /* get a pointer to the states summary array */ 842 si->procstates = process_states; 843 844 /* set up flags which define what we are going to select */ 845 show_idle = sel->idle; 846 show_jid = sel->jid != -1; 847 show_self = sel->self == -1; 848 show_system = sel->system; 849 show_uid = sel->uid[0] != -1; 850 show_command = sel->command != NULL; 851 show_kidle = sel->kidle; 852 853 /* count up process states and get pointers to interesting procs */ 854 total_procs = 0; 855 active_procs = 0; 856 total_inblock = 0; 857 total_oublock = 0; 858 total_majflt = 0; 859 memset((char *)process_states, 0, sizeof(process_states)); 860 prefp = pref; 861 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 862 863 if (pp->ki_stat == 0) 864 /* not in use */ 865 continue; 866 867 if (!show_self && pp->ki_pid == sel->self) 868 /* skip self */ 869 continue; 870 871 if (!show_system && (pp->ki_flag & P_SYSTEM)) 872 /* skip system process */ 873 continue; 874 875 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 876 &p_vcsw, &p_ivcsw); 877 total_inblock += p_inblock; 878 total_oublock += p_oublock; 879 total_majflt += p_majflt; 880 total_procs++; 881 process_states[pp->ki_stat]++; 882 883 if (pp->ki_stat == SZOMB) 884 /* skip zombies */ 885 continue; 886 887 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 888 /* skip kernel idle process */ 889 continue; 890 891 PCTCPU(pp) = proc_calc_pctcpu(pp); 892 if (sel->thread && PCTCPU(pp) > 1.0) 893 PCTCPU(pp) = 1.0; 894 if (displaymode == DISP_CPU && !show_idle && 895 (!proc_used_cpu(pp) || 896 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 897 /* skip idle or non-running processes */ 898 continue; 899 900 if (displaymode == DISP_IO && !show_idle && p_io == 0) 901 /* skip processes that aren't doing I/O */ 902 continue; 903 904 if (show_jid && pp->ki_jid != sel->jid) 905 /* skip proc. that don't belong to the selected JID */ 906 continue; 907 908 if (show_uid && !find_uid(pp->ki_ruid, sel->uid)) 909 /* skip proc. that don't belong to the selected UID */ 910 continue; 911 912 *prefp++ = pp; 913 active_procs++; 914 } 915 916 /* if requested, sort the "interesting" processes */ 917 if (compare != NULL) 918 qsort(pref, active_procs, sizeof(*pref), compare); 919 920 /* remember active and total counts */ 921 si->p_total = total_procs; 922 si->p_active = pref_len = active_procs; 923 924 /* pass back a handle */ 925 handle.next_proc = pref; 926 handle.remaining = active_procs; 927 return ((caddr_t)&handle); 928 } 929 930 static char fmt[512]; /* static area where result is built */ 931 932 char * 933 format_next_process(caddr_t xhandle, char *(*get_userid)(int), int flags) 934 { 935 struct kinfo_proc *pp; 936 const struct kinfo_proc *oldp; 937 long cputime; 938 double pct; 939 struct handle *hp; 940 char status[16]; 941 int cpu, state; 942 struct rusage ru, *rup; 943 long p_tot, s_tot; 944 char *proc_fmt, thr_buf[6]; 945 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 946 char *cmdbuf = NULL; 947 char **args; 948 const int cmdlen = 128; 949 950 /* find and remember the next proc structure */ 951 hp = (struct handle *)xhandle; 952 pp = *(hp->next_proc++); 953 hp->remaining--; 954 955 /* get the process's command name */ 956 if ((pp->ki_flag & P_INMEM) == 0) { 957 /* 958 * Print swapped processes as <pname> 959 */ 960 size_t len; 961 962 len = strlen(pp->ki_comm); 963 if (len > sizeof(pp->ki_comm) - 3) 964 len = sizeof(pp->ki_comm) - 3; 965 memmove(pp->ki_comm + 1, pp->ki_comm, len); 966 pp->ki_comm[0] = '<'; 967 pp->ki_comm[len + 1] = '>'; 968 pp->ki_comm[len + 2] = '\0'; 969 } 970 971 /* 972 * Convert the process's runtime from microseconds to seconds. This 973 * time includes the interrupt time although that is not wanted here. 974 * ps(1) is similarly sloppy. 975 */ 976 cputime = (pp->ki_runtime + 500000) / 1000000; 977 978 /* calculate the base for cpu percentages */ 979 pct = PCTCPU(pp); 980 981 /* generate "STATE" field */ 982 switch (state = pp->ki_stat) { 983 case SRUN: 984 if (smpmode && pp->ki_oncpu != NOCPU) 985 sprintf(status, "CPU%d", pp->ki_oncpu); 986 else 987 strcpy(status, "RUN"); 988 break; 989 case SLOCK: 990 if (pp->ki_kiflag & KI_LOCKBLOCK) { 991 sprintf(status, "*%.6s", pp->ki_lockname); 992 break; 993 } 994 /* fall through */ 995 case SSLEEP: 996 sprintf(status, "%.6s", pp->ki_wmesg); 997 break; 998 default: 999 1000 if (state >= 0 && 1001 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 1002 sprintf(status, "%.6s", state_abbrev[state]); 1003 else 1004 sprintf(status, "?%5d", state); 1005 break; 1006 } 1007 1008 cmdbuf = (char *)malloc(cmdlen + 1); 1009 if (cmdbuf == NULL) { 1010 warn("malloc(%d)", cmdlen + 1); 1011 return NULL; 1012 } 1013 1014 if (!(flags & FMT_SHOWARGS)) { 1015 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1016 pp->ki_tdname[0]) { 1017 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1018 pp->ki_tdname, pp->ki_moretdname); 1019 } else { 1020 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1021 } 1022 } else { 1023 if (pp->ki_flag & P_SYSTEM || 1024 pp->ki_args == NULL || 1025 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1026 !(*args)) { 1027 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1028 pp->ki_tdname[0]) { 1029 snprintf(cmdbuf, cmdlen, 1030 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1031 pp->ki_moretdname); 1032 } else { 1033 snprintf(cmdbuf, cmdlen, 1034 "[%s]", pp->ki_comm); 1035 } 1036 } else { 1037 char *src, *dst, *argbuf; 1038 char *cmd; 1039 size_t argbuflen; 1040 size_t len; 1041 1042 argbuflen = cmdlen * 4; 1043 argbuf = (char *)malloc(argbuflen + 1); 1044 if (argbuf == NULL) { 1045 warn("malloc(%zu)", argbuflen + 1); 1046 free(cmdbuf); 1047 return NULL; 1048 } 1049 1050 dst = argbuf; 1051 1052 /* Extract cmd name from argv */ 1053 cmd = strrchr(*args, '/'); 1054 if (cmd == NULL) 1055 cmd = *args; 1056 else 1057 cmd++; 1058 1059 for (; (src = *args++) != NULL; ) { 1060 if (*src == '\0') 1061 continue; 1062 len = (argbuflen - (dst - argbuf) - 1) / 4; 1063 strvisx(dst, src, 1064 MIN(strlen(src), len), 1065 VIS_NL | VIS_CSTYLE); 1066 while (*dst != '\0') 1067 dst++; 1068 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1069 *dst++ = ' '; /* add delimiting space */ 1070 } 1071 if (dst != argbuf && dst[-1] == ' ') 1072 dst--; 1073 *dst = '\0'; 1074 1075 if (strcmp(cmd, pp->ki_comm) != 0) { 1076 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1077 pp->ki_tdname[0]) 1078 snprintf(cmdbuf, cmdlen, 1079 "%s (%s){%s%s}", argbuf, 1080 pp->ki_comm, pp->ki_tdname, 1081 pp->ki_moretdname); 1082 else 1083 snprintf(cmdbuf, cmdlen, 1084 "%s (%s)", argbuf, pp->ki_comm); 1085 } else { 1086 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1087 pp->ki_tdname[0]) 1088 snprintf(cmdbuf, cmdlen, 1089 "%s{%s%s}", argbuf, pp->ki_tdname, 1090 pp->ki_moretdname); 1091 else 1092 strlcpy(cmdbuf, argbuf, cmdlen); 1093 } 1094 free(argbuf); 1095 } 1096 } 1097 1098 if (ps.jail == 0) 1099 jid_buf[0] = '\0'; 1100 else 1101 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1102 jidlength - 1, pp->ki_jid); 1103 1104 if (ps.swap == 0) 1105 swap_buf[0] = '\0'; 1106 else 1107 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1108 swaplength - 1, 1109 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1110 1111 if (displaymode == DISP_IO) { 1112 oldp = get_old_proc(pp); 1113 if (oldp != NULL) { 1114 ru.ru_inblock = RU(pp)->ru_inblock - 1115 RU(oldp)->ru_inblock; 1116 ru.ru_oublock = RU(pp)->ru_oublock - 1117 RU(oldp)->ru_oublock; 1118 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1119 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1120 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1121 rup = &ru; 1122 } else { 1123 rup = RU(pp); 1124 } 1125 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1126 s_tot = total_inblock + total_oublock + total_majflt; 1127 1128 snprintf(fmt, sizeof(fmt), io_Proc_format, 1129 pp->ki_pid, 1130 jidlength, jid_buf, 1131 namelength, namelength, (*get_userid)(pp->ki_ruid), 1132 rup->ru_nvcsw, 1133 rup->ru_nivcsw, 1134 rup->ru_inblock, 1135 rup->ru_oublock, 1136 rup->ru_majflt, 1137 p_tot, 1138 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1139 screen_width > cmdlengthdelta ? 1140 screen_width - cmdlengthdelta : 0, 1141 printable(cmdbuf)); 1142 1143 free(cmdbuf); 1144 1145 return (fmt); 1146 } 1147 1148 /* format this entry */ 1149 if (smpmode) { 1150 if (state == SRUN && pp->ki_oncpu != NOCPU) 1151 cpu = pp->ki_oncpu; 1152 else 1153 cpu = pp->ki_lastcpu; 1154 } else 1155 cpu = 0; 1156 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1157 if (ps.thread != 0) 1158 thr_buf[0] = '\0'; 1159 else 1160 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1161 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1162 1163 snprintf(fmt, sizeof(fmt), proc_fmt, 1164 pp->ki_pid, 1165 jidlength, jid_buf, 1166 namelength, namelength, (*get_userid)(pp->ki_ruid), 1167 thr_buf, 1168 pp->ki_pri.pri_level - PZERO, 1169 format_nice(pp), 1170 format_k2(PROCSIZE(pp)), 1171 format_k2(pagetok(pp->ki_rssize)), 1172 swaplength, swaplength, swap_buf, 1173 status, 1174 cpu, 1175 format_time(cputime), 1176 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1177 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1178 printable(cmdbuf)); 1179 1180 free(cmdbuf); 1181 1182 /* return the result */ 1183 return (fmt); 1184 } 1185 1186 static void 1187 getsysctl(const char *name, void *ptr, size_t len) 1188 { 1189 size_t nlen = len; 1190 1191 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1192 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1193 strerror(errno)); 1194 quit(23); 1195 } 1196 if (nlen != len) { 1197 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1198 name, (unsigned long)len, (unsigned long)nlen); 1199 quit(23); 1200 } 1201 } 1202 1203 static const char * 1204 format_nice(const struct kinfo_proc *pp) 1205 { 1206 const char *fifo, *kproc; 1207 int rtpri; 1208 static char nicebuf[4 + 1]; 1209 1210 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1211 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1212 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1213 case PRI_ITHD: 1214 return ("-"); 1215 case PRI_REALTIME: 1216 /* 1217 * XXX: the kernel doesn't tell us the original rtprio and 1218 * doesn't really know what it was, so to recover it we 1219 * must be more chummy with the implementation than the 1220 * implementation is with itself. pri_user gives a 1221 * constant "base" priority, but is only initialized 1222 * properly for user threads. pri_native gives what the 1223 * kernel calls the "base" priority, but it isn't constant 1224 * since it is changed by priority propagation. pri_native 1225 * also isn't properly initialized for all threads, but it 1226 * is properly initialized for kernel realtime and idletime 1227 * threads. Thus we use pri_user for the base priority of 1228 * user threads (it is always correct) and pri_native for 1229 * the base priority of kernel realtime and idletime threads 1230 * (there is nothing better, and it is usually correct). 1231 * 1232 * The field width and thus the buffer are too small for 1233 * values like "kr31F", but such values shouldn't occur, 1234 * and if they do then the tailing "F" is not displayed. 1235 */ 1236 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1237 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1238 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1239 kproc, rtpri, fifo); 1240 break; 1241 case PRI_TIMESHARE: 1242 if (pp->ki_flag & P_KPROC) 1243 return ("-"); 1244 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1245 break; 1246 case PRI_IDLE: 1247 /* XXX: as above. */ 1248 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1249 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1250 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1251 kproc, rtpri, fifo); 1252 break; 1253 default: 1254 return ("?"); 1255 } 1256 return (nicebuf); 1257 } 1258 1259 /* comparison routines for qsort */ 1260 1261 static int 1262 compare_pid(const void *p1, const void *p2) 1263 { 1264 const struct kinfo_proc * const *pp1 = p1; 1265 const struct kinfo_proc * const *pp2 = p2; 1266 1267 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1268 abort(); 1269 1270 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1271 } 1272 1273 static int 1274 compare_tid(const void *p1, const void *p2) 1275 { 1276 const struct kinfo_proc * const *pp1 = p1; 1277 const struct kinfo_proc * const *pp2 = p2; 1278 1279 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1280 abort(); 1281 1282 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1283 } 1284 1285 /* 1286 * proc_compare - comparison function for "qsort" 1287 * Compares the resource consumption of two processes using five 1288 * distinct keys. The keys (in descending order of importance) are: 1289 * percent cpu, cpu ticks, state, resident set size, total virtual 1290 * memory usage. The process states are ordered as follows (from least 1291 * to most important): WAIT, zombie, sleep, stop, start, run. The 1292 * array declaration below maps a process state index into a number 1293 * that reflects this ordering. 1294 */ 1295 1296 static int sorted_state[] = { 1297 0, /* not used */ 1298 3, /* sleep */ 1299 1, /* ABANDONED (WAIT) */ 1300 6, /* run */ 1301 5, /* start */ 1302 2, /* zombie */ 1303 4 /* stop */ 1304 }; 1305 1306 1307 #define ORDERKEY_PCTCPU(a, b) do { \ 1308 double diff; \ 1309 if (ps.wcpu) \ 1310 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1311 weighted_cpu(PCTCPU((a)), (a)); \ 1312 else \ 1313 diff = PCTCPU((b)) - PCTCPU((a)); \ 1314 if (diff != 0) \ 1315 return (diff > 0 ? 1 : -1); \ 1316 } while (0) 1317 1318 #define ORDERKEY_CPTICKS(a, b) do { \ 1319 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1320 if (diff != 0) \ 1321 return (diff > 0 ? 1 : -1); \ 1322 } while (0) 1323 1324 #define ORDERKEY_STATE(a, b) do { \ 1325 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1326 if (diff != 0) \ 1327 return (diff > 0 ? 1 : -1); \ 1328 } while (0) 1329 1330 #define ORDERKEY_PRIO(a, b) do { \ 1331 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1332 if (diff != 0) \ 1333 return (diff > 0 ? 1 : -1); \ 1334 } while (0) 1335 1336 #define ORDERKEY_THREADS(a, b) do { \ 1337 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1338 if (diff != 0) \ 1339 return (diff > 0 ? 1 : -1); \ 1340 } while (0) 1341 1342 #define ORDERKEY_RSSIZE(a, b) do { \ 1343 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1344 if (diff != 0) \ 1345 return (diff > 0 ? 1 : -1); \ 1346 } while (0) 1347 1348 #define ORDERKEY_MEM(a, b) do { \ 1349 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1350 if (diff != 0) \ 1351 return (diff > 0 ? 1 : -1); \ 1352 } while (0) 1353 1354 #define ORDERKEY_JID(a, b) do { \ 1355 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1356 if (diff != 0) \ 1357 return (diff > 0 ? 1 : -1); \ 1358 } while (0) 1359 1360 #define ORDERKEY_SWAP(a, b) do { \ 1361 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1362 if (diff != 0) \ 1363 return (diff > 0 ? 1 : -1); \ 1364 } while (0) 1365 1366 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1367 1368 int 1369 compare_cpu(void *arg1, void *arg2) 1370 { 1371 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1372 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1373 1374 ORDERKEY_PCTCPU(p1, p2); 1375 ORDERKEY_CPTICKS(p1, p2); 1376 ORDERKEY_STATE(p1, p2); 1377 ORDERKEY_PRIO(p1, p2); 1378 ORDERKEY_RSSIZE(p1, p2); 1379 ORDERKEY_MEM(p1, p2); 1380 1381 return (0); 1382 } 1383 1384 /* "cpu" compare routines */ 1385 int compare_size(), compare_res(), compare_time(), compare_prio(), 1386 compare_threads(); 1387 1388 /* 1389 * "io" compare routines. Context switches aren't i/o, but are displayed 1390 * on the "io" display. 1391 */ 1392 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1393 compare_vcsw(), compare_ivcsw(); 1394 1395 int (*compares[])() = { 1396 compare_cpu, 1397 compare_size, 1398 compare_res, 1399 compare_time, 1400 compare_prio, 1401 compare_threads, 1402 compare_iototal, 1403 compare_ioread, 1404 compare_iowrite, 1405 compare_iofault, 1406 compare_vcsw, 1407 compare_ivcsw, 1408 compare_jid, 1409 compare_swap, 1410 NULL 1411 }; 1412 1413 /* compare_size - the comparison function for sorting by total memory usage */ 1414 1415 int 1416 compare_size(void *arg1, void *arg2) 1417 { 1418 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1419 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1420 1421 ORDERKEY_MEM(p1, p2); 1422 ORDERKEY_RSSIZE(p1, p2); 1423 ORDERKEY_PCTCPU(p1, p2); 1424 ORDERKEY_CPTICKS(p1, p2); 1425 ORDERKEY_STATE(p1, p2); 1426 ORDERKEY_PRIO(p1, p2); 1427 1428 return (0); 1429 } 1430 1431 /* compare_res - the comparison function for sorting by resident set size */ 1432 1433 int 1434 compare_res(void *arg1, void *arg2) 1435 { 1436 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1437 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1438 1439 ORDERKEY_RSSIZE(p1, p2); 1440 ORDERKEY_MEM(p1, p2); 1441 ORDERKEY_PCTCPU(p1, p2); 1442 ORDERKEY_CPTICKS(p1, p2); 1443 ORDERKEY_STATE(p1, p2); 1444 ORDERKEY_PRIO(p1, p2); 1445 1446 return (0); 1447 } 1448 1449 /* compare_time - the comparison function for sorting by total cpu time */ 1450 1451 int 1452 compare_time(void *arg1, void *arg2) 1453 { 1454 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1455 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1456 1457 ORDERKEY_CPTICKS(p1, p2); 1458 ORDERKEY_PCTCPU(p1, p2); 1459 ORDERKEY_STATE(p1, p2); 1460 ORDERKEY_PRIO(p1, p2); 1461 ORDERKEY_RSSIZE(p1, p2); 1462 ORDERKEY_MEM(p1, p2); 1463 1464 return (0); 1465 } 1466 1467 /* compare_prio - the comparison function for sorting by priority */ 1468 1469 int 1470 compare_prio(void *arg1, void *arg2) 1471 { 1472 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1473 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1474 1475 ORDERKEY_PRIO(p1, p2); 1476 ORDERKEY_CPTICKS(p1, p2); 1477 ORDERKEY_PCTCPU(p1, p2); 1478 ORDERKEY_STATE(p1, p2); 1479 ORDERKEY_RSSIZE(p1, p2); 1480 ORDERKEY_MEM(p1, p2); 1481 1482 return (0); 1483 } 1484 1485 /* compare_threads - the comparison function for sorting by threads */ 1486 int 1487 compare_threads(void *arg1, void *arg2) 1488 { 1489 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1490 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1491 1492 ORDERKEY_THREADS(p1, p2); 1493 ORDERKEY_PCTCPU(p1, p2); 1494 ORDERKEY_CPTICKS(p1, p2); 1495 ORDERKEY_STATE(p1, p2); 1496 ORDERKEY_PRIO(p1, p2); 1497 ORDERKEY_RSSIZE(p1, p2); 1498 ORDERKEY_MEM(p1, p2); 1499 1500 return (0); 1501 } 1502 1503 /* compare_jid - the comparison function for sorting by jid */ 1504 static int 1505 compare_jid(const void *arg1, const void *arg2) 1506 { 1507 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1508 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1509 1510 ORDERKEY_JID(p1, p2); 1511 ORDERKEY_PCTCPU(p1, p2); 1512 ORDERKEY_CPTICKS(p1, p2); 1513 ORDERKEY_STATE(p1, p2); 1514 ORDERKEY_PRIO(p1, p2); 1515 ORDERKEY_RSSIZE(p1, p2); 1516 ORDERKEY_MEM(p1, p2); 1517 1518 return (0); 1519 } 1520 1521 /* compare_swap - the comparison function for sorting by swap */ 1522 static int 1523 compare_swap(const void *arg1, const void *arg2) 1524 { 1525 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1526 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1527 1528 ORDERKEY_SWAP(p1, p2); 1529 ORDERKEY_PCTCPU(p1, p2); 1530 ORDERKEY_CPTICKS(p1, p2); 1531 ORDERKEY_STATE(p1, p2); 1532 ORDERKEY_PRIO(p1, p2); 1533 ORDERKEY_RSSIZE(p1, p2); 1534 ORDERKEY_MEM(p1, p2); 1535 1536 return (0); 1537 } 1538 1539 /* assorted comparison functions for sorting by i/o */ 1540 1541 int 1542 compare_iototal(void *arg1, void *arg2) 1543 { 1544 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1545 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1546 1547 return (get_io_total(p2) - get_io_total(p1)); 1548 } 1549 1550 int 1551 compare_ioread(void *arg1, void *arg2) 1552 { 1553 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1554 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1555 long dummy, inp1, inp2; 1556 1557 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1558 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1559 1560 return (inp2 - inp1); 1561 } 1562 1563 int 1564 compare_iowrite(void *arg1, void *arg2) 1565 { 1566 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1567 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1568 long dummy, oup1, oup2; 1569 1570 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1571 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1572 1573 return (oup2 - oup1); 1574 } 1575 1576 int 1577 compare_iofault(void *arg1, void *arg2) 1578 { 1579 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1580 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1581 long dummy, flp1, flp2; 1582 1583 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1584 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1585 1586 return (flp2 - flp1); 1587 } 1588 1589 int 1590 compare_vcsw(void *arg1, void *arg2) 1591 { 1592 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1593 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1594 long dummy, flp1, flp2; 1595 1596 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1597 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1598 1599 return (flp2 - flp1); 1600 } 1601 1602 int 1603 compare_ivcsw(void *arg1, void *arg2) 1604 { 1605 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1606 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1607 long dummy, flp1, flp2; 1608 1609 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1610 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1611 1612 return (flp2 - flp1); 1613 } 1614 1615 /* 1616 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1617 * the process does not exist. 1618 * It is EXTREMELY IMPORTANT that this function work correctly. 1619 * If top runs setuid root (as in SVR4), then this function 1620 * is the only thing that stands in the way of a serious 1621 * security problem. It validates requests for the "kill" 1622 * and "renice" commands. 1623 */ 1624 1625 int 1626 proc_owner(int pid) 1627 { 1628 int cnt; 1629 struct kinfo_proc **prefp; 1630 struct kinfo_proc *pp; 1631 1632 prefp = pref; 1633 cnt = pref_len; 1634 while (--cnt >= 0) { 1635 pp = *prefp++; 1636 if (pp->ki_pid == (pid_t)pid) 1637 return ((int)pp->ki_ruid); 1638 } 1639 return (-1); 1640 } 1641 1642 static int 1643 swapmode(int *retavail, int *retfree) 1644 { 1645 int n; 1646 struct kvm_swap swapary[1]; 1647 static int pagesize = 0; 1648 static u_long swap_maxpages = 0; 1649 1650 *retavail = 0; 1651 *retfree = 0; 1652 1653 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1654 1655 n = kvm_getswapinfo(kd, swapary, 1, 0); 1656 if (n < 0 || swapary[0].ksw_total == 0) 1657 return (0); 1658 1659 if (pagesize == 0) 1660 pagesize = getpagesize(); 1661 if (swap_maxpages == 0) 1662 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1663 1664 /* ksw_total contains the total size of swap all devices which may 1665 exceed the maximum swap size allocatable in the system */ 1666 if ( swapary[0].ksw_total > swap_maxpages ) 1667 swapary[0].ksw_total = swap_maxpages; 1668 1669 *retavail = CONVERT(swapary[0].ksw_total); 1670 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1671 1672 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1673 return (n); 1674 } 1675