xref: /freebsd/usr.bin/top/machine.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*
2  * top - a top users display for Unix
3  *
4  * DESCRIPTION:
5  * Originally written for BSD4.4 system by Christos Zoulas.
6  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
7  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
8  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
9  *
10  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
11  *          Steven Wallace  <swallace@freebsd.org>
12  *          Wolfram Schneider <wosch@FreeBSD.org>
13  *          Thomas Moestl <tmoestl@gmx.net>
14  *
15  * $FreeBSD$
16  */
17 
18 #include <sys/param.h>
19 #include <sys/errno.h>
20 #include <sys/file.h>
21 #include <sys/proc.h>
22 #include <sys/resource.h>
23 #include <sys/rtprio.h>
24 #include <sys/signal.h>
25 #include <sys/sysctl.h>
26 #include <sys/time.h>
27 #include <sys/user.h>
28 #include <sys/vmmeter.h>
29 
30 #include <err.h>
31 #include <kvm.h>
32 #include <math.h>
33 #include <nlist.h>
34 #include <paths.h>
35 #include <pwd.h>
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <strings.h>
40 #include <unistd.h>
41 #include <vis.h>
42 
43 #include "top.h"
44 #include "machine.h"
45 #include "screen.h"
46 #include "utils.h"
47 #include "layout.h"
48 
49 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
50 #define	SMPUNAMELEN	13
51 #define	UPUNAMELEN	15
52 
53 extern struct process_select ps;
54 extern char* printable(char *);
55 static int smpmode;
56 enum displaymodes displaymode;
57 #ifdef TOP_USERNAME_LEN
58 static int namelength = TOP_USERNAME_LEN;
59 #else
60 static int namelength = 8;
61 #endif
62 /* TOP_JID_LEN based on max of 999999 */
63 #define TOP_JID_LEN 7
64 #define TOP_SWAP_LEN 6
65 static int jidlength;
66 static int swaplength;
67 static int cmdlengthdelta;
68 
69 /* Prototypes for top internals */
70 void quit(int);
71 
72 /* get_process_info passes back a handle.  This is what it looks like: */
73 
74 struct handle {
75 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
76 	int remaining;			/* number of pointers remaining */
77 };
78 
79 /* declarations for load_avg */
80 #include "loadavg.h"
81 
82 /* define what weighted cpu is.  */
83 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
84 			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
85 
86 /* what we consider to be process size: */
87 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
88 
89 #define RU(pp)	(&(pp)->ki_rusage)
90 #define RUTOT(pp) \
91 	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
92 
93 #define	PCTCPU(pp) (pcpu[pp - pbase])
94 
95 /* definitions for indices in the nlist array */
96 
97 /*
98  *  These definitions control the format of the per-process area
99  */
100 
101 static char io_header[] =
102     "  PID%*s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
103 
104 #define io_Proc_format \
105     "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
106 
107 static char smp_header_thr[] =
108     "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";
109 static char smp_header[] =
110     "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";
111 
112 #define smp_Proc_format \
113     "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"
114 
115 static char up_header_thr[] =
116     "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";
117 static char up_header[] =
118     "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";
119 
120 #define up_Proc_format \
121     "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"
122 
123 
124 /* process state names for the "STATE" column of the display */
125 /* the extra nulls in the string "run" are for adding a slash and
126    the processor number when needed */
127 
128 char *state_abbrev[] = {
129 	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
130 };
131 
132 
133 static kvm_t *kd;
134 
135 /* values that we stash away in _init and use in later routines */
136 
137 static double logcpu;
138 
139 /* these are retrieved from the kernel in _init */
140 
141 static load_avg  ccpu;
142 
143 /* these are used in the get_ functions */
144 
145 static int lastpid;
146 
147 /* these are for calculating cpu state percentages */
148 
149 static long cp_time[CPUSTATES];
150 static long cp_old[CPUSTATES];
151 static long cp_diff[CPUSTATES];
152 
153 /* these are for detailing the process states */
154 
155 int process_states[8];
156 char *procstatenames[] = {
157 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
158 	" zombie, ", " waiting, ", " lock, ",
159 	NULL
160 };
161 
162 /* these are for detailing the cpu states */
163 
164 int cpu_states[CPUSTATES];
165 char *cpustatenames[] = {
166 	"user", "nice", "system", "interrupt", "idle", NULL
167 };
168 
169 /* these are for detailing the memory statistics */
170 
171 int memory_stats[7];
172 char *memorynames[] = {
173 	"K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
174 	"K Free", NULL
175 };
176 
177 int arc_stats[7];
178 char *arcnames[] = {
179 	"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
180 	NULL
181 };
182 
183 int carc_stats[4];
184 char *carcnames[] = {
185 	"K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
186 	NULL
187 };
188 
189 int swap_stats[7];
190 char *swapnames[] = {
191 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
192 	NULL
193 };
194 
195 
196 /* these are for keeping track of the proc array */
197 
198 static int nproc;
199 static int onproc = -1;
200 static int pref_len;
201 static struct kinfo_proc *pbase;
202 static struct kinfo_proc **pref;
203 static struct kinfo_proc *previous_procs;
204 static struct kinfo_proc **previous_pref;
205 static int previous_proc_count = 0;
206 static int previous_proc_count_max = 0;
207 static int previous_thread;
208 
209 /* data used for recalculating pctcpu */
210 static double *pcpu;
211 static struct timespec proc_uptime;
212 static struct timeval proc_wall_time;
213 static struct timeval previous_wall_time;
214 static uint64_t previous_interval = 0;
215 
216 /* total number of io operations */
217 static long total_inblock;
218 static long total_oublock;
219 static long total_majflt;
220 
221 /* these are for getting the memory statistics */
222 
223 static int arc_enabled;
224 static int carc_enabled;
225 static int pageshift;		/* log base 2 of the pagesize */
226 
227 /* define pagetok in terms of pageshift */
228 
229 #define pagetok(size) ((size) << pageshift)
230 
231 /* swap usage */
232 #define ki_swap(kip) \
233     ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
234 
235 /* useful externals */
236 long percentages(int cnt, int *out, long *new, long *old, long *diffs);
237 
238 /*
239  * Sorting orders.  The first element is the default.
240  */
241 char *ordernames[] = {
242 	"cpu", "size", "res", "time", "pri", "threads",
243 	"total", "read", "write", "fault", "vcsw", "ivcsw",
244 	"jid", "swap", "pid", NULL
245 };
246 
247 /* Per-cpu time states */
248 static int maxcpu;
249 static int maxid;
250 static int ncpus;
251 static u_long cpumask;
252 static long *times;
253 static long *pcpu_cp_time;
254 static long *pcpu_cp_old;
255 static long *pcpu_cp_diff;
256 static int *pcpu_cpu_states;
257 
258 static int compare_swap(const void *a, const void *b);
259 static int compare_jid(const void *a, const void *b);
260 static int compare_pid(const void *a, const void *b);
261 static int compare_tid(const void *a, const void *b);
262 static const char *format_nice(const struct kinfo_proc *pp);
263 static void getsysctl(const char *name, void *ptr, size_t len);
264 static int swapmode(int *retavail, int *retfree);
265 static void update_layout(void);
266 static int find_uid(uid_t needle, int *haystack);
267 
268 static int
269 find_uid(uid_t needle, int *haystack)
270 {
271 	size_t i = 0;
272 
273 	for (; i < TOP_MAX_UIDS; ++i)
274 		if ((uid_t)haystack[i] == needle)
275 			return 1;
276 	return 0;
277 }
278 
279 void
280 toggle_pcpustats(void)
281 {
282 
283 	if (ncpus == 1)
284 		return;
285 	update_layout();
286 }
287 
288 /* Adjust display based on ncpus and the ARC state. */
289 static void
290 update_layout(void)
291 {
292 
293 	y_mem = 3;
294 	y_arc = 4;
295 	y_carc = 5;
296 	y_swap = 4 + arc_enabled + carc_enabled;
297 	y_idlecursor = 5 + arc_enabled + carc_enabled;
298 	y_message = 5 + arc_enabled + carc_enabled;
299 	y_header = 6 + arc_enabled + carc_enabled;
300 	y_procs = 7 + arc_enabled + carc_enabled;
301 	Header_lines = 7 + arc_enabled + carc_enabled;
302 
303 	if (pcpu_stats) {
304 		y_mem += ncpus - 1;
305 		y_arc += ncpus - 1;
306 		y_carc += ncpus - 1;
307 		y_swap += ncpus - 1;
308 		y_idlecursor += ncpus - 1;
309 		y_message += ncpus - 1;
310 		y_header += ncpus - 1;
311 		y_procs += ncpus - 1;
312 		Header_lines += ncpus - 1;
313 	}
314 }
315 
316 int
317 machine_init(struct statics *statics, char do_unames)
318 {
319 	int i, j, empty, pagesize;
320 	uint64_t arc_size;
321 	boolean_t carc_en;
322 	size_t size;
323 	struct passwd *pw;
324 
325 	size = sizeof(smpmode);
326 	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
327 	    NULL, 0) != 0 &&
328 	    sysctlbyname("kern.smp.active", &smpmode, &size,
329 	    NULL, 0) != 0) ||
330 	    size != sizeof(smpmode))
331 		smpmode = 0;
332 
333 	size = sizeof(arc_size);
334 	if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
335 	    NULL, 0) == 0 && arc_size != 0)
336 		arc_enabled = 1;
337 	size = sizeof(carc_en);
338 	if (arc_enabled &&
339 	    sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
340 	    NULL, 0) == 0 && carc_en == 1)
341 		carc_enabled = 1;
342 
343 	if (do_unames) {
344 	    while ((pw = getpwent()) != NULL) {
345 		if (strlen(pw->pw_name) > namelength)
346 			namelength = strlen(pw->pw_name);
347 	    }
348 	}
349 	if (smpmode && namelength > SMPUNAMELEN)
350 		namelength = SMPUNAMELEN;
351 	else if (namelength > UPUNAMELEN)
352 		namelength = UPUNAMELEN;
353 
354 	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
355 	if (kd == NULL)
356 		return (-1);
357 
358 	GETSYSCTL("kern.ccpu", ccpu);
359 
360 	/* this is used in calculating WCPU -- calculate it ahead of time */
361 	logcpu = log(loaddouble(ccpu));
362 
363 	pbase = NULL;
364 	pref = NULL;
365 	pcpu = NULL;
366 	nproc = 0;
367 	onproc = -1;
368 
369 	/* get the page size and calculate pageshift from it */
370 	pagesize = getpagesize();
371 	pageshift = 0;
372 	while (pagesize > 1) {
373 		pageshift++;
374 		pagesize >>= 1;
375 	}
376 
377 	/* we only need the amount of log(2)1024 for our conversion */
378 	pageshift -= LOG1024;
379 
380 	/* fill in the statics information */
381 	statics->procstate_names = procstatenames;
382 	statics->cpustate_names = cpustatenames;
383 	statics->memory_names = memorynames;
384 	if (arc_enabled)
385 		statics->arc_names = arcnames;
386 	else
387 		statics->arc_names = NULL;
388 	if (carc_enabled)
389 		statics->carc_names = carcnames;
390 	else
391 		statics->carc_names = NULL;
392 	statics->swap_names = swapnames;
393 	statics->order_names = ordernames;
394 
395 	/* Allocate state for per-CPU stats. */
396 	cpumask = 0;
397 	ncpus = 0;
398 	GETSYSCTL("kern.smp.maxcpus", maxcpu);
399 	size = sizeof(long) * maxcpu * CPUSTATES;
400 	times = malloc(size);
401 	if (times == NULL)
402 		err(1, "malloc %zu bytes", size);
403 	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
404 		err(1, "sysctlbyname kern.cp_times");
405 	pcpu_cp_time = calloc(1, size);
406 	maxid = (size / CPUSTATES / sizeof(long)) - 1;
407 	for (i = 0; i <= maxid; i++) {
408 		empty = 1;
409 		for (j = 0; empty && j < CPUSTATES; j++) {
410 			if (times[i * CPUSTATES + j] != 0)
411 				empty = 0;
412 		}
413 		if (!empty) {
414 			cpumask |= (1ul << i);
415 			ncpus++;
416 		}
417 	}
418 	size = sizeof(long) * ncpus * CPUSTATES;
419 	pcpu_cp_old = calloc(1, size);
420 	pcpu_cp_diff = calloc(1, size);
421 	pcpu_cpu_states = calloc(1, size);
422 	statics->ncpus = ncpus;
423 
424 	update_layout();
425 
426 	/* all done! */
427 	return (0);
428 }
429 
430 char *
431 format_header(char *uname_field)
432 {
433 	static char Header[128];
434 	const char *prehead;
435 
436 	if (ps.jail)
437 		jidlength = TOP_JID_LEN + 1;	/* +1 for extra left space. */
438 	else
439 		jidlength = 0;
440 
441 	if (ps.swap)
442 		swaplength = TOP_SWAP_LEN + 1;  /* +1 for extra left space */
443 	else
444 		swaplength = 0;
445 
446 	switch (displaymode) {
447 	case DISP_CPU:
448 		/*
449 		 * The logic of picking the right header format seems reverse
450 		 * here because we only want to display a THR column when
451 		 * "thread mode" is off (and threads are not listed as
452 		 * separate lines).
453 		 */
454 		prehead = smpmode ?
455 		    (ps.thread ? smp_header : smp_header_thr) :
456 		    (ps.thread ? up_header : up_header_thr);
457 		snprintf(Header, sizeof(Header), prehead,
458 		    jidlength, ps.jail ? " JID" : "",
459 		    namelength, namelength, uname_field,
460 		    swaplength, ps.swap ? " SWAP" : "",
461 		    ps.wcpu ? "WCPU" : "CPU");
462 		break;
463 	case DISP_IO:
464 		prehead = io_header;
465 		snprintf(Header, sizeof(Header), prehead,
466 		    jidlength, ps.jail ? " JID" : "",
467 		    namelength, namelength, uname_field);
468 		break;
469 	}
470 	cmdlengthdelta = strlen(Header) - 7;
471 	return (Header);
472 }
473 
474 static int swappgsin = -1;
475 static int swappgsout = -1;
476 extern struct timeval timeout;
477 
478 
479 void
480 get_system_info(struct system_info *si)
481 {
482 	struct loadavg sysload;
483 	int mib[2];
484 	struct timeval boottime;
485 	uint64_t arc_stat, arc_stat2;
486 	int i, j;
487 	size_t size;
488 
489 	/* get the CPU stats */
490 	size = (maxid + 1) * CPUSTATES * sizeof(long);
491 	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
492 		err(1, "sysctlbyname kern.cp_times");
493 	GETSYSCTL("kern.cp_time", cp_time);
494 	GETSYSCTL("vm.loadavg", sysload);
495 	GETSYSCTL("kern.lastpid", lastpid);
496 
497 	/* convert load averages to doubles */
498 	for (i = 0; i < 3; i++)
499 		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
500 
501 	/* convert cp_time counts to percentages */
502 	for (i = j = 0; i <= maxid; i++) {
503 		if ((cpumask & (1ul << i)) == 0)
504 			continue;
505 		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
506 		    &pcpu_cp_time[j * CPUSTATES],
507 		    &pcpu_cp_old[j * CPUSTATES],
508 		    &pcpu_cp_diff[j * CPUSTATES]);
509 		j++;
510 	}
511 	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
512 
513 	/* sum memory & swap statistics */
514 	{
515 		static unsigned int swap_delay = 0;
516 		static int swapavail = 0;
517 		static int swapfree = 0;
518 		static long bufspace = 0;
519 		static uint64_t nspgsin, nspgsout;
520 
521 		GETSYSCTL("vfs.bufspace", bufspace);
522 		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
523 		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
524 		GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
525 		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
526 		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
527 		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
528 		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
529 		/* convert memory stats to Kbytes */
530 		memory_stats[0] = pagetok(memory_stats[0]);
531 		memory_stats[1] = pagetok(memory_stats[1]);
532 		memory_stats[2] = pagetok(memory_stats[2]);
533 		memory_stats[3] = pagetok(memory_stats[3]);
534 		memory_stats[4] = bufspace / 1024;
535 		memory_stats[5] = pagetok(memory_stats[5]);
536 		memory_stats[6] = -1;
537 
538 		/* first interval */
539 		if (swappgsin < 0) {
540 			swap_stats[4] = 0;
541 			swap_stats[5] = 0;
542 		}
543 
544 		/* compute differences between old and new swap statistic */
545 		else {
546 			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
547 			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
548 		}
549 
550 		swappgsin = nspgsin;
551 		swappgsout = nspgsout;
552 
553 		/* call CPU heavy swapmode() only for changes */
554 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
555 			swap_stats[3] = swapmode(&swapavail, &swapfree);
556 			swap_stats[0] = swapavail;
557 			swap_stats[1] = swapavail - swapfree;
558 			swap_stats[2] = swapfree;
559 		}
560 		swap_delay = 1;
561 		swap_stats[6] = -1;
562 	}
563 
564 	if (arc_enabled) {
565 		GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
566 		arc_stats[0] = arc_stat >> 10;
567 		GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
568 		arc_stats[1] = arc_stat >> 10;
569 		GETSYSCTL("vfs.zfs.mru_size", arc_stat);
570 		arc_stats[2] = arc_stat >> 10;
571 		GETSYSCTL("vfs.zfs.anon_size", arc_stat);
572 		arc_stats[3] = arc_stat >> 10;
573 		GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
574 		GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
575 		arc_stats[4] = (arc_stat + arc_stat2) >> 10;
576 		GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
577 		arc_stats[5] = arc_stat >> 10;
578 		si->arc = arc_stats;
579 	}
580 	if (carc_enabled) {
581 		GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
582 		carc_stats[0] = arc_stat >> 10;
583 		carc_stats[2] = arc_stat >> 10; /* For ratio */
584 		GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
585 		carc_stats[1] = arc_stat >> 10;
586 		si->carc = carc_stats;
587 	}
588 
589 	/* set arrays and strings */
590 	if (pcpu_stats) {
591 		si->cpustates = pcpu_cpu_states;
592 		si->ncpus = ncpus;
593 	} else {
594 		si->cpustates = cpu_states;
595 		si->ncpus = 1;
596 	}
597 	si->memory = memory_stats;
598 	si->swap = swap_stats;
599 
600 
601 	if (lastpid > 0) {
602 		si->last_pid = lastpid;
603 	} else {
604 		si->last_pid = -1;
605 	}
606 
607 	/*
608 	 * Print how long system has been up.
609 	 * (Found by looking getting "boottime" from the kernel)
610 	 */
611 	mib[0] = CTL_KERN;
612 	mib[1] = KERN_BOOTTIME;
613 	size = sizeof(boottime);
614 	if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
615 	    boottime.tv_sec != 0) {
616 		si->boottime = boottime;
617 	} else {
618 		si->boottime.tv_sec = -1;
619 	}
620 }
621 
622 #define NOPROC	((void *)-1)
623 
624 /*
625  * We need to compare data from the old process entry with the new
626  * process entry.
627  * To facilitate doing this quickly we stash a pointer in the kinfo_proc
628  * structure to cache the mapping.  We also use a negative cache pointer
629  * of NOPROC to avoid duplicate lookups.
630  * XXX: this could be done when the actual processes are fetched, we do
631  * it here out of laziness.
632  */
633 const struct kinfo_proc *
634 get_old_proc(struct kinfo_proc *pp)
635 {
636 	struct kinfo_proc **oldpp, *oldp;
637 
638 	/*
639 	 * If this is the first fetch of the kinfo_procs then we don't have
640 	 * any previous entries.
641 	 */
642 	if (previous_proc_count == 0)
643 		return (NULL);
644 	/* negative cache? */
645 	if (pp->ki_udata == NOPROC)
646 		return (NULL);
647 	/* cached? */
648 	if (pp->ki_udata != NULL)
649 		return (pp->ki_udata);
650 	/*
651 	 * Not cached,
652 	 * 1) look up based on pid.
653 	 * 2) compare process start.
654 	 * If we fail here, then setup a negative cache entry, otherwise
655 	 * cache it.
656 	 */
657 	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
658 	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
659 	if (oldpp == NULL) {
660 		pp->ki_udata = NOPROC;
661 		return (NULL);
662 	}
663 	oldp = *oldpp;
664 	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
665 		pp->ki_udata = NOPROC;
666 		return (NULL);
667 	}
668 	pp->ki_udata = oldp;
669 	return (oldp);
670 }
671 
672 /*
673  * Return the total amount of IO done in blocks in/out and faults.
674  * store the values individually in the pointers passed in.
675  */
676 long
677 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
678     long *vcsw, long *ivcsw)
679 {
680 	const struct kinfo_proc *oldp;
681 	static struct kinfo_proc dummy;
682 	long ret;
683 
684 	oldp = get_old_proc(pp);
685 	if (oldp == NULL) {
686 		bzero(&dummy, sizeof(dummy));
687 		oldp = &dummy;
688 	}
689 	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
690 	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
691 	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
692 	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
693 	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
694 	ret =
695 	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
696 	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
697 	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
698 	return (ret);
699 }
700 
701 /*
702  * If there was a previous update, use the delta in ki_runtime over
703  * the previous interval to calculate pctcpu.  Otherwise, fall back
704  * to using the kernel's ki_pctcpu.
705  */
706 static double
707 proc_calc_pctcpu(struct kinfo_proc *pp)
708 {
709 	const struct kinfo_proc *oldp;
710 
711 	if (previous_interval != 0) {
712 		oldp = get_old_proc(pp);
713 		if (oldp != NULL)
714 			return ((double)(pp->ki_runtime - oldp->ki_runtime)
715 			    / previous_interval);
716 
717 		/*
718 		 * If this process/thread was created during the previous
719 		 * interval, charge it's total runtime to the previous
720 		 * interval.
721 		 */
722 		else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
723 		    (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
724 		    pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
725 			return ((double)pp->ki_runtime / previous_interval);
726 	}
727 	return (pctdouble(pp->ki_pctcpu));
728 }
729 
730 /*
731  * Return true if this process has used any CPU time since the
732  * previous update.
733  */
734 static int
735 proc_used_cpu(struct kinfo_proc *pp)
736 {
737 	const struct kinfo_proc *oldp;
738 
739 	oldp = get_old_proc(pp);
740 	if (oldp == NULL)
741 		return (PCTCPU(pp) != 0);
742 	return (pp->ki_runtime != oldp->ki_runtime ||
743 	    RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
744 	    RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
745 }
746 
747 /*
748  * Return the total number of block in/out and faults by a process.
749  */
750 long
751 get_io_total(struct kinfo_proc *pp)
752 {
753 	long dummy;
754 
755 	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
756 }
757 
758 static struct handle handle;
759 
760 caddr_t
761 get_process_info(struct system_info *si, struct process_select *sel,
762     int (*compare)(const void *, const void *))
763 {
764 	int i;
765 	int total_procs;
766 	long p_io;
767 	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
768 	long nsec;
769 	int active_procs;
770 	struct kinfo_proc **prefp;
771 	struct kinfo_proc *pp;
772 	struct timespec previous_proc_uptime;
773 
774 	/* these are copied out of sel for speed */
775 	int show_idle;
776 	int show_jid;
777 	int show_self;
778 	int show_system;
779 	int show_uid;
780 	int show_command;
781 	int show_kidle;
782 
783 	/*
784 	 * If thread state was toggled, don't cache the previous processes.
785 	 */
786 	if (previous_thread != sel->thread)
787 		nproc = 0;
788 	previous_thread = sel->thread;
789 
790 	/*
791 	 * Save the previous process info.
792 	 */
793 	if (previous_proc_count_max < nproc) {
794 		free(previous_procs);
795 		previous_procs = malloc(nproc * sizeof(*previous_procs));
796 		free(previous_pref);
797 		previous_pref = malloc(nproc * sizeof(*previous_pref));
798 		if (previous_procs == NULL || previous_pref == NULL) {
799 			(void) fprintf(stderr, "top: Out of memory.\n");
800 			quit(23);
801 		}
802 		previous_proc_count_max = nproc;
803 	}
804 	if (nproc) {
805 		for (i = 0; i < nproc; i++)
806 			previous_pref[i] = &previous_procs[i];
807 		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
808 		qsort(previous_pref, nproc, sizeof(*previous_pref),
809 		    ps.thread ? compare_tid : compare_pid);
810 	}
811 	previous_proc_count = nproc;
812 	previous_proc_uptime = proc_uptime;
813 	previous_wall_time = proc_wall_time;
814 	previous_interval = 0;
815 
816 	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
817 	    0, &nproc);
818 	(void)gettimeofday(&proc_wall_time, NULL);
819 	if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
820 		memset(&proc_uptime, 0, sizeof(proc_uptime));
821 	else if (previous_proc_uptime.tv_sec != 0 &&
822 	    previous_proc_uptime.tv_nsec != 0) {
823 		previous_interval = (proc_uptime.tv_sec -
824 		    previous_proc_uptime.tv_sec) * 1000000;
825 		nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
826 		if (nsec < 0) {
827 			previous_interval -= 1000000;
828 			nsec += 1000000000;
829 		}
830 		previous_interval += nsec / 1000;
831 	}
832 	if (nproc > onproc) {
833 		pref = realloc(pref, sizeof(*pref) * nproc);
834 		pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
835 		onproc = nproc;
836 	}
837 	if (pref == NULL || pbase == NULL || pcpu == NULL) {
838 		(void) fprintf(stderr, "top: Out of memory.\n");
839 		quit(23);
840 	}
841 	/* get a pointer to the states summary array */
842 	si->procstates = process_states;
843 
844 	/* set up flags which define what we are going to select */
845 	show_idle = sel->idle;
846 	show_jid = sel->jid != -1;
847 	show_self = sel->self == -1;
848 	show_system = sel->system;
849 	show_uid = sel->uid[0] != -1;
850 	show_command = sel->command != NULL;
851 	show_kidle = sel->kidle;
852 
853 	/* count up process states and get pointers to interesting procs */
854 	total_procs = 0;
855 	active_procs = 0;
856 	total_inblock = 0;
857 	total_oublock = 0;
858 	total_majflt = 0;
859 	memset((char *)process_states, 0, sizeof(process_states));
860 	prefp = pref;
861 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
862 
863 		if (pp->ki_stat == 0)
864 			/* not in use */
865 			continue;
866 
867 		if (!show_self && pp->ki_pid == sel->self)
868 			/* skip self */
869 			continue;
870 
871 		if (!show_system && (pp->ki_flag & P_SYSTEM))
872 			/* skip system process */
873 			continue;
874 
875 		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
876 		    &p_vcsw, &p_ivcsw);
877 		total_inblock += p_inblock;
878 		total_oublock += p_oublock;
879 		total_majflt += p_majflt;
880 		total_procs++;
881 		process_states[pp->ki_stat]++;
882 
883 		if (pp->ki_stat == SZOMB)
884 			/* skip zombies */
885 			continue;
886 
887 		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
888 			/* skip kernel idle process */
889 			continue;
890 
891 		PCTCPU(pp) = proc_calc_pctcpu(pp);
892 		if (sel->thread && PCTCPU(pp) > 1.0)
893 			PCTCPU(pp) = 1.0;
894 		if (displaymode == DISP_CPU && !show_idle &&
895 		    (!proc_used_cpu(pp) ||
896 		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
897 			/* skip idle or non-running processes */
898 			continue;
899 
900 		if (displaymode == DISP_IO && !show_idle && p_io == 0)
901 			/* skip processes that aren't doing I/O */
902 			continue;
903 
904 		if (show_jid && pp->ki_jid != sel->jid)
905 			/* skip proc. that don't belong to the selected JID */
906 			continue;
907 
908 		if (show_uid && !find_uid(pp->ki_ruid, sel->uid))
909 			/* skip proc. that don't belong to the selected UID */
910 			continue;
911 
912 		*prefp++ = pp;
913 		active_procs++;
914 	}
915 
916 	/* if requested, sort the "interesting" processes */
917 	if (compare != NULL)
918 		qsort(pref, active_procs, sizeof(*pref), compare);
919 
920 	/* remember active and total counts */
921 	si->p_total = total_procs;
922 	si->p_active = pref_len = active_procs;
923 
924 	/* pass back a handle */
925 	handle.next_proc = pref;
926 	handle.remaining = active_procs;
927 	return ((caddr_t)&handle);
928 }
929 
930 static char fmt[512];	/* static area where result is built */
931 
932 char *
933 format_next_process(caddr_t xhandle, char *(*get_userid)(int), int flags)
934 {
935 	struct kinfo_proc *pp;
936 	const struct kinfo_proc *oldp;
937 	long cputime;
938 	double pct;
939 	struct handle *hp;
940 	char status[16];
941 	int cpu, state;
942 	struct rusage ru, *rup;
943 	long p_tot, s_tot;
944 	char *proc_fmt, thr_buf[6];
945 	char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1];
946 	char *cmdbuf = NULL;
947 	char **args;
948 	const int cmdlen = 128;
949 
950 	/* find and remember the next proc structure */
951 	hp = (struct handle *)xhandle;
952 	pp = *(hp->next_proc++);
953 	hp->remaining--;
954 
955 	/* get the process's command name */
956 	if ((pp->ki_flag & P_INMEM) == 0) {
957 		/*
958 		 * Print swapped processes as <pname>
959 		 */
960 		size_t len;
961 
962 		len = strlen(pp->ki_comm);
963 		if (len > sizeof(pp->ki_comm) - 3)
964 			len = sizeof(pp->ki_comm) - 3;
965 		memmove(pp->ki_comm + 1, pp->ki_comm, len);
966 		pp->ki_comm[0] = '<';
967 		pp->ki_comm[len + 1] = '>';
968 		pp->ki_comm[len + 2] = '\0';
969 	}
970 
971 	/*
972 	 * Convert the process's runtime from microseconds to seconds.  This
973 	 * time includes the interrupt time although that is not wanted here.
974 	 * ps(1) is similarly sloppy.
975 	 */
976 	cputime = (pp->ki_runtime + 500000) / 1000000;
977 
978 	/* calculate the base for cpu percentages */
979 	pct = PCTCPU(pp);
980 
981 	/* generate "STATE" field */
982 	switch (state = pp->ki_stat) {
983 	case SRUN:
984 		if (smpmode && pp->ki_oncpu != NOCPU)
985 			sprintf(status, "CPU%d", pp->ki_oncpu);
986 		else
987 			strcpy(status, "RUN");
988 		break;
989 	case SLOCK:
990 		if (pp->ki_kiflag & KI_LOCKBLOCK) {
991 			sprintf(status, "*%.6s", pp->ki_lockname);
992 			break;
993 		}
994 		/* fall through */
995 	case SSLEEP:
996 		sprintf(status, "%.6s", pp->ki_wmesg);
997 		break;
998 	default:
999 
1000 		if (state >= 0 &&
1001 		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
1002 			sprintf(status, "%.6s", state_abbrev[state]);
1003 		else
1004 			sprintf(status, "?%5d", state);
1005 		break;
1006 	}
1007 
1008 	cmdbuf = (char *)malloc(cmdlen + 1);
1009 	if (cmdbuf == NULL) {
1010 		warn("malloc(%d)", cmdlen + 1);
1011 		return NULL;
1012 	}
1013 
1014 	if (!(flags & FMT_SHOWARGS)) {
1015 		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1016 		    pp->ki_tdname[0]) {
1017 			snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm,
1018 			    pp->ki_tdname, pp->ki_moretdname);
1019 		} else {
1020 			snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm);
1021 		}
1022 	} else {
1023 		if (pp->ki_flag & P_SYSTEM ||
1024 		    pp->ki_args == NULL ||
1025 		    (args = kvm_getargv(kd, pp, cmdlen)) == NULL ||
1026 		    !(*args)) {
1027 			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1028 		    	    pp->ki_tdname[0]) {
1029 				snprintf(cmdbuf, cmdlen,
1030 				    "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
1031 				    pp->ki_moretdname);
1032 			} else {
1033 				snprintf(cmdbuf, cmdlen,
1034 				    "[%s]", pp->ki_comm);
1035 			}
1036 		} else {
1037 			char *src, *dst, *argbuf;
1038 			char *cmd;
1039 			size_t argbuflen;
1040 			size_t len;
1041 
1042 			argbuflen = cmdlen * 4;
1043 			argbuf = (char *)malloc(argbuflen + 1);
1044 			if (argbuf == NULL) {
1045 				warn("malloc(%zu)", argbuflen + 1);
1046 				free(cmdbuf);
1047 				return NULL;
1048 			}
1049 
1050 			dst = argbuf;
1051 
1052 			/* Extract cmd name from argv */
1053 			cmd = strrchr(*args, '/');
1054 			if (cmd == NULL)
1055 				cmd = *args;
1056 			else
1057 				cmd++;
1058 
1059 			for (; (src = *args++) != NULL; ) {
1060 				if (*src == '\0')
1061 					continue;
1062 				len = (argbuflen - (dst - argbuf) - 1) / 4;
1063 				strvisx(dst, src,
1064 				    MIN(strlen(src), len),
1065 				    VIS_NL | VIS_CSTYLE);
1066 				while (*dst != '\0')
1067 					dst++;
1068 				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
1069 					*dst++ = ' '; /* add delimiting space */
1070 			}
1071 			if (dst != argbuf && dst[-1] == ' ')
1072 				dst--;
1073 			*dst = '\0';
1074 
1075 			if (strcmp(cmd, pp->ki_comm) != 0) {
1076 				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1077 				    pp->ki_tdname[0])
1078 					snprintf(cmdbuf, cmdlen,
1079 					    "%s (%s){%s%s}", argbuf,
1080 					    pp->ki_comm, pp->ki_tdname,
1081 					    pp->ki_moretdname);
1082 				else
1083 					snprintf(cmdbuf, cmdlen,
1084 					    "%s (%s)", argbuf, pp->ki_comm);
1085 			} else {
1086 				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1087 				    pp->ki_tdname[0])
1088 					snprintf(cmdbuf, cmdlen,
1089 					    "%s{%s%s}", argbuf, pp->ki_tdname,
1090 					    pp->ki_moretdname);
1091 				else
1092 					strlcpy(cmdbuf, argbuf, cmdlen);
1093 			}
1094 			free(argbuf);
1095 		}
1096 	}
1097 
1098 	if (ps.jail == 0)
1099 		jid_buf[0] = '\0';
1100 	else
1101 		snprintf(jid_buf, sizeof(jid_buf), "%*d",
1102 		    jidlength - 1, pp->ki_jid);
1103 
1104 	if (ps.swap == 0)
1105 		swap_buf[0] = '\0';
1106 	else
1107 		snprintf(swap_buf, sizeof(swap_buf), "%*s",
1108 		    swaplength - 1,
1109 		    format_k2(pagetok(ki_swap(pp)))); /* XXX */
1110 
1111 	if (displaymode == DISP_IO) {
1112 		oldp = get_old_proc(pp);
1113 		if (oldp != NULL) {
1114 			ru.ru_inblock = RU(pp)->ru_inblock -
1115 			    RU(oldp)->ru_inblock;
1116 			ru.ru_oublock = RU(pp)->ru_oublock -
1117 			    RU(oldp)->ru_oublock;
1118 			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
1119 			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
1120 			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
1121 			rup = &ru;
1122 		} else {
1123 			rup = RU(pp);
1124 		}
1125 		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
1126 		s_tot = total_inblock + total_oublock + total_majflt;
1127 
1128 		snprintf(fmt, sizeof(fmt), io_Proc_format,
1129 		    pp->ki_pid,
1130 		    jidlength, jid_buf,
1131 		    namelength, namelength, (*get_userid)(pp->ki_ruid),
1132 		    rup->ru_nvcsw,
1133 		    rup->ru_nivcsw,
1134 		    rup->ru_inblock,
1135 		    rup->ru_oublock,
1136 		    rup->ru_majflt,
1137 		    p_tot,
1138 		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
1139 		    screen_width > cmdlengthdelta ?
1140 		    screen_width - cmdlengthdelta : 0,
1141 		    printable(cmdbuf));
1142 
1143 		free(cmdbuf);
1144 
1145 		return (fmt);
1146 	}
1147 
1148 	/* format this entry */
1149 	if (smpmode) {
1150 		if (state == SRUN && pp->ki_oncpu != NOCPU)
1151 			cpu = pp->ki_oncpu;
1152 		else
1153 			cpu = pp->ki_lastcpu;
1154 	} else
1155 		cpu = 0;
1156 	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
1157 	if (ps.thread != 0)
1158 		thr_buf[0] = '\0';
1159 	else
1160 		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
1161 		    (int)(sizeof(thr_buf) - 2), pp->ki_numthreads);
1162 
1163 	snprintf(fmt, sizeof(fmt), proc_fmt,
1164 	    pp->ki_pid,
1165 	    jidlength, jid_buf,
1166 	    namelength, namelength, (*get_userid)(pp->ki_ruid),
1167 	    thr_buf,
1168 	    pp->ki_pri.pri_level - PZERO,
1169 	    format_nice(pp),
1170 	    format_k2(PROCSIZE(pp)),
1171 	    format_k2(pagetok(pp->ki_rssize)),
1172 	    swaplength, swaplength, swap_buf,
1173 	    status,
1174 	    cpu,
1175 	    format_time(cputime),
1176 	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
1177 	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
1178 	    printable(cmdbuf));
1179 
1180 	free(cmdbuf);
1181 
1182 	/* return the result */
1183 	return (fmt);
1184 }
1185 
1186 static void
1187 getsysctl(const char *name, void *ptr, size_t len)
1188 {
1189 	size_t nlen = len;
1190 
1191 	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1192 		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1193 		    strerror(errno));
1194 		quit(23);
1195 	}
1196 	if (nlen != len) {
1197 		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1198 		    name, (unsigned long)len, (unsigned long)nlen);
1199 		quit(23);
1200 	}
1201 }
1202 
1203 static const char *
1204 format_nice(const struct kinfo_proc *pp)
1205 {
1206 	const char *fifo, *kproc;
1207 	int rtpri;
1208 	static char nicebuf[4 + 1];
1209 
1210 	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1211 	kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
1212 	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1213 	case PRI_ITHD:
1214 		return ("-");
1215 	case PRI_REALTIME:
1216 		/*
1217 		 * XXX: the kernel doesn't tell us the original rtprio and
1218 		 * doesn't really know what it was, so to recover it we
1219 		 * must be more chummy with the implementation than the
1220 		 * implementation is with itself.  pri_user gives a
1221 		 * constant "base" priority, but is only initialized
1222 		 * properly for user threads.  pri_native gives what the
1223 		 * kernel calls the "base" priority, but it isn't constant
1224 		 * since it is changed by priority propagation.  pri_native
1225 		 * also isn't properly initialized for all threads, but it
1226 		 * is properly initialized for kernel realtime and idletime
1227 		 * threads.  Thus we use pri_user for the base priority of
1228 		 * user threads (it is always correct) and pri_native for
1229 		 * the base priority of kernel realtime and idletime threads
1230 		 * (there is nothing better, and it is usually correct).
1231 		 *
1232 		 * The field width and thus the buffer are too small for
1233 		 * values like "kr31F", but such values shouldn't occur,
1234 		 * and if they do then the tailing "F" is not displayed.
1235 		 */
1236 		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1237 		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1238 		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1239 		    kproc, rtpri, fifo);
1240 		break;
1241 	case PRI_TIMESHARE:
1242 		if (pp->ki_flag & P_KPROC)
1243 			return ("-");
1244 		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1245 		break;
1246 	case PRI_IDLE:
1247 		/* XXX: as above. */
1248 		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1249 		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1250 		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1251 		    kproc, rtpri, fifo);
1252 		break;
1253 	default:
1254 		return ("?");
1255 	}
1256 	return (nicebuf);
1257 }
1258 
1259 /* comparison routines for qsort */
1260 
1261 static int
1262 compare_pid(const void *p1, const void *p2)
1263 {
1264 	const struct kinfo_proc * const *pp1 = p1;
1265 	const struct kinfo_proc * const *pp2 = p2;
1266 
1267 	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1268 		abort();
1269 
1270 	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1271 }
1272 
1273 static int
1274 compare_tid(const void *p1, const void *p2)
1275 {
1276 	const struct kinfo_proc * const *pp1 = p1;
1277 	const struct kinfo_proc * const *pp2 = p2;
1278 
1279 	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1280 		abort();
1281 
1282 	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1283 }
1284 
1285 /*
1286  *  proc_compare - comparison function for "qsort"
1287  *	Compares the resource consumption of two processes using five
1288  *	distinct keys.  The keys (in descending order of importance) are:
1289  *	percent cpu, cpu ticks, state, resident set size, total virtual
1290  *	memory usage.  The process states are ordered as follows (from least
1291  *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1292  *	array declaration below maps a process state index into a number
1293  *	that reflects this ordering.
1294  */
1295 
1296 static int sorted_state[] = {
1297 	0,	/* not used		*/
1298 	3,	/* sleep		*/
1299 	1,	/* ABANDONED (WAIT)	*/
1300 	6,	/* run			*/
1301 	5,	/* start		*/
1302 	2,	/* zombie		*/
1303 	4	/* stop			*/
1304 };
1305 
1306 
1307 #define ORDERKEY_PCTCPU(a, b) do { \
1308 	double diff; \
1309 	if (ps.wcpu) \
1310 		diff = weighted_cpu(PCTCPU((b)), (b)) - \
1311 		    weighted_cpu(PCTCPU((a)), (a)); \
1312 	else \
1313 		diff = PCTCPU((b)) - PCTCPU((a)); \
1314 	if (diff != 0) \
1315 		return (diff > 0 ? 1 : -1); \
1316 } while (0)
1317 
1318 #define ORDERKEY_CPTICKS(a, b) do { \
1319 	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1320 	if (diff != 0) \
1321 		return (diff > 0 ? 1 : -1); \
1322 } while (0)
1323 
1324 #define ORDERKEY_STATE(a, b) do { \
1325 	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1326 	if (diff != 0) \
1327 		return (diff > 0 ? 1 : -1); \
1328 } while (0)
1329 
1330 #define ORDERKEY_PRIO(a, b) do { \
1331 	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1332 	if (diff != 0) \
1333 		return (diff > 0 ? 1 : -1); \
1334 } while (0)
1335 
1336 #define	ORDERKEY_THREADS(a, b) do { \
1337 	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1338 	if (diff != 0) \
1339 		return (diff > 0 ? 1 : -1); \
1340 } while (0)
1341 
1342 #define ORDERKEY_RSSIZE(a, b) do { \
1343 	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1344 	if (diff != 0) \
1345 		return (diff > 0 ? 1 : -1); \
1346 } while (0)
1347 
1348 #define ORDERKEY_MEM(a, b) do { \
1349 	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1350 	if (diff != 0) \
1351 		return (diff > 0 ? 1 : -1); \
1352 } while (0)
1353 
1354 #define ORDERKEY_JID(a, b) do { \
1355 	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1356 	if (diff != 0) \
1357 		return (diff > 0 ? 1 : -1); \
1358 } while (0)
1359 
1360 #define ORDERKEY_SWAP(a, b) do { \
1361 	int diff = (int)ki_swap(b) - (int)ki_swap(a); \
1362 	if (diff != 0) \
1363 		return (diff > 0 ? 1 : -1); \
1364 } while (0)
1365 
1366 /* compare_cpu - the comparison function for sorting by cpu percentage */
1367 
1368 int
1369 compare_cpu(void *arg1, void *arg2)
1370 {
1371 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1372 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1373 
1374 	ORDERKEY_PCTCPU(p1, p2);
1375 	ORDERKEY_CPTICKS(p1, p2);
1376 	ORDERKEY_STATE(p1, p2);
1377 	ORDERKEY_PRIO(p1, p2);
1378 	ORDERKEY_RSSIZE(p1, p2);
1379 	ORDERKEY_MEM(p1, p2);
1380 
1381 	return (0);
1382 }
1383 
1384 /* "cpu" compare routines */
1385 int compare_size(), compare_res(), compare_time(), compare_prio(),
1386     compare_threads();
1387 
1388 /*
1389  * "io" compare routines.  Context switches aren't i/o, but are displayed
1390  * on the "io" display.
1391  */
1392 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1393     compare_vcsw(), compare_ivcsw();
1394 
1395 int (*compares[])() = {
1396 	compare_cpu,
1397 	compare_size,
1398 	compare_res,
1399 	compare_time,
1400 	compare_prio,
1401 	compare_threads,
1402 	compare_iototal,
1403 	compare_ioread,
1404 	compare_iowrite,
1405 	compare_iofault,
1406 	compare_vcsw,
1407 	compare_ivcsw,
1408 	compare_jid,
1409 	compare_swap,
1410 	NULL
1411 };
1412 
1413 /* compare_size - the comparison function for sorting by total memory usage */
1414 
1415 int
1416 compare_size(void *arg1, void *arg2)
1417 {
1418 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1419 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1420 
1421 	ORDERKEY_MEM(p1, p2);
1422 	ORDERKEY_RSSIZE(p1, p2);
1423 	ORDERKEY_PCTCPU(p1, p2);
1424 	ORDERKEY_CPTICKS(p1, p2);
1425 	ORDERKEY_STATE(p1, p2);
1426 	ORDERKEY_PRIO(p1, p2);
1427 
1428 	return (0);
1429 }
1430 
1431 /* compare_res - the comparison function for sorting by resident set size */
1432 
1433 int
1434 compare_res(void *arg1, void *arg2)
1435 {
1436 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1437 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1438 
1439 	ORDERKEY_RSSIZE(p1, p2);
1440 	ORDERKEY_MEM(p1, p2);
1441 	ORDERKEY_PCTCPU(p1, p2);
1442 	ORDERKEY_CPTICKS(p1, p2);
1443 	ORDERKEY_STATE(p1, p2);
1444 	ORDERKEY_PRIO(p1, p2);
1445 
1446 	return (0);
1447 }
1448 
1449 /* compare_time - the comparison function for sorting by total cpu time */
1450 
1451 int
1452 compare_time(void *arg1, void *arg2)
1453 {
1454 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1455 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1456 
1457 	ORDERKEY_CPTICKS(p1, p2);
1458 	ORDERKEY_PCTCPU(p1, p2);
1459 	ORDERKEY_STATE(p1, p2);
1460 	ORDERKEY_PRIO(p1, p2);
1461 	ORDERKEY_RSSIZE(p1, p2);
1462 	ORDERKEY_MEM(p1, p2);
1463 
1464 	return (0);
1465 }
1466 
1467 /* compare_prio - the comparison function for sorting by priority */
1468 
1469 int
1470 compare_prio(void *arg1, void *arg2)
1471 {
1472 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1473 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1474 
1475 	ORDERKEY_PRIO(p1, p2);
1476 	ORDERKEY_CPTICKS(p1, p2);
1477 	ORDERKEY_PCTCPU(p1, p2);
1478 	ORDERKEY_STATE(p1, p2);
1479 	ORDERKEY_RSSIZE(p1, p2);
1480 	ORDERKEY_MEM(p1, p2);
1481 
1482 	return (0);
1483 }
1484 
1485 /* compare_threads - the comparison function for sorting by threads */
1486 int
1487 compare_threads(void *arg1, void *arg2)
1488 {
1489 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1490 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1491 
1492 	ORDERKEY_THREADS(p1, p2);
1493 	ORDERKEY_PCTCPU(p1, p2);
1494 	ORDERKEY_CPTICKS(p1, p2);
1495 	ORDERKEY_STATE(p1, p2);
1496 	ORDERKEY_PRIO(p1, p2);
1497 	ORDERKEY_RSSIZE(p1, p2);
1498 	ORDERKEY_MEM(p1, p2);
1499 
1500 	return (0);
1501 }
1502 
1503 /* compare_jid - the comparison function for sorting by jid */
1504 static int
1505 compare_jid(const void *arg1, const void *arg2)
1506 {
1507 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1508 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1509 
1510 	ORDERKEY_JID(p1, p2);
1511 	ORDERKEY_PCTCPU(p1, p2);
1512 	ORDERKEY_CPTICKS(p1, p2);
1513 	ORDERKEY_STATE(p1, p2);
1514 	ORDERKEY_PRIO(p1, p2);
1515 	ORDERKEY_RSSIZE(p1, p2);
1516 	ORDERKEY_MEM(p1, p2);
1517 
1518 	return (0);
1519 }
1520 
1521 /* compare_swap - the comparison function for sorting by swap */
1522 static int
1523 compare_swap(const void *arg1, const void *arg2)
1524 {
1525 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1526 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1527 
1528 	ORDERKEY_SWAP(p1, p2);
1529 	ORDERKEY_PCTCPU(p1, p2);
1530 	ORDERKEY_CPTICKS(p1, p2);
1531 	ORDERKEY_STATE(p1, p2);
1532 	ORDERKEY_PRIO(p1, p2);
1533 	ORDERKEY_RSSIZE(p1, p2);
1534 	ORDERKEY_MEM(p1, p2);
1535 
1536 	return (0);
1537 }
1538 
1539 /* assorted comparison functions for sorting by i/o */
1540 
1541 int
1542 compare_iototal(void *arg1, void *arg2)
1543 {
1544 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1545 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1546 
1547 	return (get_io_total(p2) - get_io_total(p1));
1548 }
1549 
1550 int
1551 compare_ioread(void *arg1, void *arg2)
1552 {
1553 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1554 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1555 	long dummy, inp1, inp2;
1556 
1557 	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1558 	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1559 
1560 	return (inp2 - inp1);
1561 }
1562 
1563 int
1564 compare_iowrite(void *arg1, void *arg2)
1565 {
1566 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1567 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1568 	long dummy, oup1, oup2;
1569 
1570 	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1571 	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1572 
1573 	return (oup2 - oup1);
1574 }
1575 
1576 int
1577 compare_iofault(void *arg1, void *arg2)
1578 {
1579 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1580 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1581 	long dummy, flp1, flp2;
1582 
1583 	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1584 	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1585 
1586 	return (flp2 - flp1);
1587 }
1588 
1589 int
1590 compare_vcsw(void *arg1, void *arg2)
1591 {
1592 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1593 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1594 	long dummy, flp1, flp2;
1595 
1596 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1597 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1598 
1599 	return (flp2 - flp1);
1600 }
1601 
1602 int
1603 compare_ivcsw(void *arg1, void *arg2)
1604 {
1605 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1606 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1607 	long dummy, flp1, flp2;
1608 
1609 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1610 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1611 
1612 	return (flp2 - flp1);
1613 }
1614 
1615 /*
1616  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1617  *		the process does not exist.
1618  *		It is EXTREMELY IMPORTANT that this function work correctly.
1619  *		If top runs setuid root (as in SVR4), then this function
1620  *		is the only thing that stands in the way of a serious
1621  *		security problem.  It validates requests for the "kill"
1622  *		and "renice" commands.
1623  */
1624 
1625 int
1626 proc_owner(int pid)
1627 {
1628 	int cnt;
1629 	struct kinfo_proc **prefp;
1630 	struct kinfo_proc *pp;
1631 
1632 	prefp = pref;
1633 	cnt = pref_len;
1634 	while (--cnt >= 0) {
1635 		pp = *prefp++;
1636 		if (pp->ki_pid == (pid_t)pid)
1637 			return ((int)pp->ki_ruid);
1638 	}
1639 	return (-1);
1640 }
1641 
1642 static int
1643 swapmode(int *retavail, int *retfree)
1644 {
1645 	int n;
1646 	struct kvm_swap swapary[1];
1647 	static int pagesize = 0;
1648 	static u_long swap_maxpages = 0;
1649 
1650 	*retavail = 0;
1651 	*retfree = 0;
1652 
1653 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1654 
1655 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1656 	if (n < 0 || swapary[0].ksw_total == 0)
1657 		return (0);
1658 
1659 	if (pagesize == 0)
1660 		pagesize = getpagesize();
1661 	if (swap_maxpages == 0)
1662 		GETSYSCTL("vm.swap_maxpages", swap_maxpages);
1663 
1664 	/* ksw_total contains the total size of swap all devices which may
1665 	   exceed the maximum swap size allocatable in the system */
1666 	if ( swapary[0].ksw_total > swap_maxpages )
1667 		swapary[0].ksw_total = swap_maxpages;
1668 
1669 	*retavail = CONVERT(swapary[0].ksw_total);
1670 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1671 
1672 	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1673 	return (n);
1674 }
1675