1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 static int has_swap; 154 155 /* these are for keeping track of the proc array */ 156 157 static int nproc; 158 static int onproc = -1; 159 static int pref_len; 160 static struct kinfo_proc *pbase; 161 static struct kinfo_proc **pref; 162 static struct kinfo_proc *previous_procs; 163 static struct kinfo_proc **previous_pref; 164 static int previous_proc_count = 0; 165 static int previous_proc_count_max = 0; 166 static int previous_thread; 167 168 /* data used for recalculating pctcpu */ 169 static double *pcpu; 170 static struct timespec proc_uptime; 171 static struct timeval proc_wall_time; 172 static struct timeval previous_wall_time; 173 static uint64_t previous_interval = 0; 174 175 /* total number of io operations */ 176 static long total_inblock; 177 static long total_oublock; 178 static long total_majflt; 179 180 /* these are for getting the memory statistics */ 181 182 static int arc_enabled; 183 static int carc_enabled; 184 static int pageshift; /* log base 2 of the pagesize */ 185 186 /* define pagetok in terms of pageshift */ 187 188 #define pagetok(size) ((size) << pageshift) 189 190 /* swap usage */ 191 #define ki_swap(kip) \ 192 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 193 194 /* 195 * Sorting orders. The first element is the default. 196 */ 197 static const char *ordernames[] = { 198 "cpu", "size", "res", "time", "pri", "threads", 199 "total", "read", "write", "fault", "vcsw", "ivcsw", 200 "jid", "swap", "pid", NULL 201 }; 202 203 /* Per-cpu time states */ 204 static int maxcpu; 205 static int maxid; 206 static int ncpus; 207 static unsigned long cpumask; 208 static long *times; 209 static long *pcpu_cp_time; 210 static long *pcpu_cp_old; 211 static long *pcpu_cp_diff; 212 static int *pcpu_cpu_states; 213 214 /* Battery units and states */ 215 static int battery_units; 216 static int battery_life; 217 218 static int compare_swap(const void *a, const void *b); 219 static int compare_jid(const void *a, const void *b); 220 static int compare_pid(const void *a, const void *b); 221 static int compare_tid(const void *a, const void *b); 222 static const char *format_nice(const struct kinfo_proc *pp); 223 static void getsysctl(const char *name, void *ptr, size_t len); 224 static int swapmode(int *retavail, int *retfree); 225 static void update_layout(void); 226 static int find_uid(uid_t needle, int *haystack); 227 228 static int 229 find_uid(uid_t needle, int *haystack) 230 { 231 size_t i = 0; 232 233 for (; i < TOP_MAX_UIDS; ++i) 234 if ((uid_t)haystack[i] == needle) 235 return 1; 236 return (0); 237 } 238 239 void 240 toggle_pcpustats(void) 241 { 242 243 if (ncpus == 1) 244 return; 245 update_layout(); 246 } 247 248 /* Adjust display based on ncpus and the ARC state. */ 249 static void 250 update_layout(void) 251 { 252 253 y_mem = 3; 254 y_arc = 4; 255 y_carc = 5; 256 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 257 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 258 y_message = 4 + arc_enabled + carc_enabled + has_swap; 259 y_header = 5 + arc_enabled + carc_enabled + has_swap; 260 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 261 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 262 263 if (pcpu_stats) { 264 y_mem += ncpus - 1; 265 y_arc += ncpus - 1; 266 y_carc += ncpus - 1; 267 y_swap += ncpus - 1; 268 y_idlecursor += ncpus - 1; 269 y_message += ncpus - 1; 270 y_header += ncpus - 1; 271 y_procs += ncpus - 1; 272 Header_lines += ncpus - 1; 273 } 274 } 275 276 int 277 machine_init(struct statics *statics) 278 { 279 int i, j, empty, pagesize; 280 uint64_t arc_size; 281 int carc_en, nswapdev; 282 size_t size; 283 284 size = sizeof(smpmode); 285 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 286 size != sizeof(smpmode)) 287 smpmode = 0; 288 289 size = sizeof(arc_size); 290 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 291 NULL, 0) == 0 && arc_size != 0) 292 arc_enabled = 1; 293 size = sizeof(carc_en); 294 if (arc_enabled && 295 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 296 NULL, 0) == 0 && carc_en == 1) 297 carc_enabled = 1; 298 299 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 300 if (kd == NULL) 301 return (-1); 302 303 size = sizeof(nswapdev); 304 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 305 0) == 0 && nswapdev != 0) 306 has_swap = 1; 307 308 GETSYSCTL("kern.ccpu", ccpu); 309 310 /* this is used in calculating WCPU -- calculate it ahead of time */ 311 logcpu = log(loaddouble(ccpu)); 312 313 pbase = NULL; 314 pref = NULL; 315 pcpu = NULL; 316 nproc = 0; 317 onproc = -1; 318 319 /* get the page size and calculate pageshift from it */ 320 pagesize = getpagesize(); 321 pageshift = 0; 322 while (pagesize > 1) { 323 pageshift++; 324 pagesize >>= 1; 325 } 326 327 /* we only need the amount of log(2)1024 for our conversion */ 328 pageshift -= LOG1024; 329 330 /* fill in the statics information */ 331 statics->procstate_names = procstatenames; 332 statics->cpustate_names = cpustatenames; 333 statics->memory_names = memorynames; 334 if (arc_enabled) 335 statics->arc_names = arcnames; 336 else 337 statics->arc_names = NULL; 338 if (carc_enabled) 339 statics->carc_names = carcnames; 340 else 341 statics->carc_names = NULL; 342 if (has_swap) 343 statics->swap_names = swapnames; 344 else 345 statics->swap_names = NULL; 346 statics->order_names = ordernames; 347 348 /* Allocate state for per-CPU stats. */ 349 cpumask = 0; 350 ncpus = 0; 351 GETSYSCTL("kern.smp.maxcpus", maxcpu); 352 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 353 if (times == NULL) 354 err(1, "calloc for kern.smp.maxcpus"); 355 size = sizeof(long) * maxcpu * CPUSTATES; 356 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 357 err(1, "sysctlbyname kern.cp_times"); 358 pcpu_cp_time = calloc(1, size); 359 maxid = (size / CPUSTATES / sizeof(long)) - 1; 360 for (i = 0; i <= maxid; i++) { 361 empty = 1; 362 for (j = 0; empty && j < CPUSTATES; j++) { 363 if (times[i * CPUSTATES + j] != 0) 364 empty = 0; 365 } 366 if (!empty) { 367 cpumask |= (1ul << i); 368 ncpus++; 369 } 370 } 371 assert(ncpus > 0); 372 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 373 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 374 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 375 statics->ncpus = ncpus; 376 377 /* Allocate state of battery units reported via ACPI. */ 378 battery_units = 0; 379 size = sizeof(int); 380 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 381 statics->nbatteries = battery_units; 382 383 update_layout(); 384 385 /* all done! */ 386 return (0); 387 } 388 389 char * 390 format_header(const char *uname_field) 391 { 392 static struct sbuf* header = NULL; 393 394 /* clean up from last time. */ 395 if (header != NULL) { 396 sbuf_clear(header); 397 } else { 398 header = sbuf_new_auto(); 399 } 400 401 switch (displaymode) { 402 case DISP_CPU: { 403 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 404 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 405 ps.jail ? " JID" : ""); 406 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 407 if (!ps.thread) { 408 sbuf_cat(header, "THR "); 409 } 410 sbuf_cat(header, "PRI NICE SIZE RES "); 411 if (ps.swap) { 412 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 413 } 414 sbuf_cat(header, "STATE "); 415 if (smpmode) { 416 sbuf_cat(header, "C "); 417 } 418 sbuf_cat(header, "TIME "); 419 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 420 sbuf_cat(header, "COMMAND"); 421 sbuf_finish(header); 422 break; 423 } 424 case DISP_IO: { 425 sbuf_printf(header, " %s%*s %-*.*s", 426 ps.thread_id ? " THR" : "PID", 427 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 428 namelength, namelength, uname_field); 429 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 430 sbuf_finish(header); 431 break; 432 } 433 case DISP_MAX: 434 assert("displaymode must not be set to DISP_MAX"); 435 } 436 437 return sbuf_data(header); 438 } 439 440 static int swappgsin = -1; 441 static int swappgsout = -1; 442 443 444 void 445 get_system_info(struct system_info *si) 446 { 447 struct loadavg sysload; 448 int mib[2]; 449 struct timeval boottime; 450 uint64_t arc_stat, arc_stat2; 451 int i, j; 452 size_t size; 453 454 /* get the CPU stats */ 455 size = (maxid + 1) * CPUSTATES * sizeof(long); 456 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 457 err(1, "sysctlbyname kern.cp_times"); 458 GETSYSCTL("kern.cp_time", cp_time); 459 GETSYSCTL("vm.loadavg", sysload); 460 GETSYSCTL("kern.lastpid", lastpid); 461 462 /* convert load averages to doubles */ 463 for (i = 0; i < 3; i++) 464 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 465 466 /* convert cp_time counts to percentages */ 467 for (i = j = 0; i <= maxid; i++) { 468 if ((cpumask & (1ul << i)) == 0) 469 continue; 470 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 471 &pcpu_cp_time[j * CPUSTATES], 472 &pcpu_cp_old[j * CPUSTATES], 473 &pcpu_cp_diff[j * CPUSTATES]); 474 j++; 475 } 476 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 477 478 /* sum memory & swap statistics */ 479 { 480 static unsigned int swap_delay = 0; 481 static int swapavail = 0; 482 static int swapfree = 0; 483 static long bufspace = 0; 484 static uint64_t nspgsin, nspgsout; 485 486 GETSYSCTL("vfs.bufspace", bufspace); 487 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 488 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 489 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 490 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 491 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 492 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 493 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 494 /* convert memory stats to Kbytes */ 495 memory_stats[0] = pagetok(memory_stats[0]); 496 memory_stats[1] = pagetok(memory_stats[1]); 497 memory_stats[2] = pagetok(memory_stats[2]); 498 memory_stats[3] = pagetok(memory_stats[3]); 499 memory_stats[4] = bufspace / 1024; 500 memory_stats[5] = pagetok(memory_stats[5]); 501 memory_stats[6] = -1; 502 503 /* first interval */ 504 if (swappgsin < 0) { 505 swap_stats[4] = 0; 506 swap_stats[5] = 0; 507 } 508 509 /* compute differences between old and new swap statistic */ 510 else { 511 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 512 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 513 } 514 515 swappgsin = nspgsin; 516 swappgsout = nspgsout; 517 518 /* call CPU heavy swapmode() only for changes */ 519 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 520 swap_stats[3] = swapmode(&swapavail, &swapfree); 521 swap_stats[0] = swapavail; 522 swap_stats[1] = swapavail - swapfree; 523 swap_stats[2] = swapfree; 524 } 525 swap_delay = 1; 526 swap_stats[6] = -1; 527 } 528 529 if (arc_enabled) { 530 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 531 arc_stats[0] = arc_stat >> 10; 532 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 533 arc_stats[1] = arc_stat >> 10; 534 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 535 arc_stats[2] = arc_stat >> 10; 536 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 537 arc_stats[3] = arc_stat >> 10; 538 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 539 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 540 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 541 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 542 arc_stats[5] = arc_stat >> 10; 543 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 544 arc_stats[5] += arc_stat >> 10; 545 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 546 arc_stats[5] += arc_stat >> 10; 547 si->arc = arc_stats; 548 } 549 if (carc_enabled) { 550 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 551 carc_stats[0] = arc_stat >> 10; 552 carc_stats[2] = arc_stat >> 10; /* For ratio */ 553 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 554 carc_stats[1] = arc_stat >> 10; 555 si->carc = carc_stats; 556 } 557 558 /* set arrays and strings */ 559 if (pcpu_stats) { 560 si->cpustates = pcpu_cpu_states; 561 si->ncpus = ncpus; 562 } else { 563 si->cpustates = cpu_states; 564 si->ncpus = 1; 565 } 566 si->memory = memory_stats; 567 si->swap = swap_stats; 568 569 570 if (lastpid > 0) { 571 si->last_pid = lastpid; 572 } else { 573 si->last_pid = -1; 574 } 575 576 /* 577 * Print how long system has been up. 578 * (Found by looking getting "boottime" from the kernel) 579 */ 580 mib[0] = CTL_KERN; 581 mib[1] = KERN_BOOTTIME; 582 size = sizeof(boottime); 583 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 584 boottime.tv_sec != 0) { 585 si->boottime = boottime; 586 } else { 587 si->boottime.tv_sec = -1; 588 } 589 590 battery_life = 0; 591 if (battery_units > 0) { 592 GETSYSCTL("hw.acpi.battery.life", battery_life); 593 } 594 si->battery = battery_life; 595 } 596 597 #define NOPROC ((void *)-1) 598 599 /* 600 * We need to compare data from the old process entry with the new 601 * process entry. 602 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 603 * structure to cache the mapping. We also use a negative cache pointer 604 * of NOPROC to avoid duplicate lookups. 605 * XXX: this could be done when the actual processes are fetched, we do 606 * it here out of laziness. 607 */ 608 static const struct kinfo_proc * 609 get_old_proc(struct kinfo_proc *pp) 610 { 611 const struct kinfo_proc * const *oldpp, *oldp; 612 613 /* 614 * If this is the first fetch of the kinfo_procs then we don't have 615 * any previous entries. 616 */ 617 if (previous_proc_count == 0) 618 return (NULL); 619 /* negative cache? */ 620 if (pp->ki_udata == NOPROC) 621 return (NULL); 622 /* cached? */ 623 if (pp->ki_udata != NULL) 624 return (pp->ki_udata); 625 /* 626 * Not cached, 627 * 1) look up based on pid. 628 * 2) compare process start. 629 * If we fail here, then setup a negative cache entry, otherwise 630 * cache it. 631 */ 632 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 633 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 634 if (oldpp == NULL) { 635 pp->ki_udata = NOPROC; 636 return (NULL); 637 } 638 oldp = *oldpp; 639 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 640 pp->ki_udata = NOPROC; 641 return (NULL); 642 } 643 pp->ki_udata = __DECONST(void *, oldp); 644 return (oldp); 645 } 646 647 /* 648 * Return the total amount of IO done in blocks in/out and faults. 649 * store the values individually in the pointers passed in. 650 */ 651 static long 652 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 653 long *vcsw, long *ivcsw) 654 { 655 const struct kinfo_proc *oldp; 656 static struct kinfo_proc dummy; 657 long ret; 658 659 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 660 if (oldp == NULL) { 661 memset(&dummy, 0, sizeof(dummy)); 662 oldp = &dummy; 663 } 664 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 665 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 666 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 667 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 668 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 669 ret = 670 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 671 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 672 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 673 return (ret); 674 } 675 676 /* 677 * If there was a previous update, use the delta in ki_runtime over 678 * the previous interval to calculate pctcpu. Otherwise, fall back 679 * to using the kernel's ki_pctcpu. 680 */ 681 static double 682 proc_calc_pctcpu(struct kinfo_proc *pp) 683 { 684 const struct kinfo_proc *oldp; 685 686 if (previous_interval != 0) { 687 oldp = get_old_proc(pp); 688 if (oldp != NULL) 689 return ((double)(pp->ki_runtime - oldp->ki_runtime) 690 / previous_interval); 691 692 /* 693 * If this process/thread was created during the previous 694 * interval, charge it's total runtime to the previous 695 * interval. 696 */ 697 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 698 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 699 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 700 return ((double)pp->ki_runtime / previous_interval); 701 } 702 return (pctdouble(pp->ki_pctcpu)); 703 } 704 705 /* 706 * Return true if this process has used any CPU time since the 707 * previous update. 708 */ 709 static int 710 proc_used_cpu(struct kinfo_proc *pp) 711 { 712 const struct kinfo_proc *oldp; 713 714 oldp = get_old_proc(pp); 715 if (oldp == NULL) 716 return (PCTCPU(pp) != 0); 717 return (pp->ki_runtime != oldp->ki_runtime || 718 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 719 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 720 } 721 722 /* 723 * Return the total number of block in/out and faults by a process. 724 */ 725 static long 726 get_io_total(const struct kinfo_proc *pp) 727 { 728 long dummy; 729 730 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 731 } 732 733 static struct handle handle; 734 735 void * 736 get_process_info(struct system_info *si, struct process_select *sel, 737 int (*compare)(const void *, const void *)) 738 { 739 int i; 740 int total_procs; 741 long p_io; 742 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 743 long nsec; 744 int active_procs; 745 struct kinfo_proc **prefp; 746 struct kinfo_proc *pp; 747 struct timespec previous_proc_uptime; 748 749 /* 750 * If thread state was toggled, don't cache the previous processes. 751 */ 752 if (previous_thread != sel->thread) 753 nproc = 0; 754 previous_thread = sel->thread; 755 756 /* 757 * Save the previous process info. 758 */ 759 if (previous_proc_count_max < nproc) { 760 free(previous_procs); 761 previous_procs = calloc(nproc, sizeof(*previous_procs)); 762 free(previous_pref); 763 previous_pref = calloc(nproc, sizeof(*previous_pref)); 764 if (previous_procs == NULL || previous_pref == NULL) { 765 fprintf(stderr, "top: Out of memory.\n"); 766 quit(TOP_EX_SYS_ERROR); 767 } 768 previous_proc_count_max = nproc; 769 } 770 if (nproc) { 771 for (i = 0; i < nproc; i++) 772 previous_pref[i] = &previous_procs[i]; 773 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 774 qsort(previous_pref, nproc, sizeof(*previous_pref), 775 ps.thread ? compare_tid : compare_pid); 776 } 777 previous_proc_count = nproc; 778 previous_proc_uptime = proc_uptime; 779 previous_wall_time = proc_wall_time; 780 previous_interval = 0; 781 782 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 783 0, &nproc); 784 gettimeofday(&proc_wall_time, NULL); 785 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 786 memset(&proc_uptime, 0, sizeof(proc_uptime)); 787 else if (previous_proc_uptime.tv_sec != 0 && 788 previous_proc_uptime.tv_nsec != 0) { 789 previous_interval = (proc_uptime.tv_sec - 790 previous_proc_uptime.tv_sec) * 1000000; 791 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 792 if (nsec < 0) { 793 previous_interval -= 1000000; 794 nsec += 1000000000; 795 } 796 previous_interval += nsec / 1000; 797 } 798 if (nproc > onproc) { 799 pref = realloc(pref, sizeof(*pref) * nproc); 800 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 801 onproc = nproc; 802 } 803 if (pref == NULL || pbase == NULL || pcpu == NULL) { 804 fprintf(stderr, "top: Out of memory.\n"); 805 quit(TOP_EX_SYS_ERROR); 806 } 807 /* get a pointer to the states summary array */ 808 si->procstates = process_states; 809 810 /* count up process states and get pointers to interesting procs */ 811 total_procs = 0; 812 active_procs = 0; 813 total_inblock = 0; 814 total_oublock = 0; 815 total_majflt = 0; 816 memset(process_states, 0, sizeof(process_states)); 817 prefp = pref; 818 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 819 820 if (pp->ki_stat == 0) 821 /* not in use */ 822 continue; 823 824 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 825 /* skip self */ 826 continue; 827 828 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 829 /* skip system process */ 830 continue; 831 832 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 833 &p_vcsw, &p_ivcsw); 834 total_inblock += p_inblock; 835 total_oublock += p_oublock; 836 total_majflt += p_majflt; 837 total_procs++; 838 process_states[(unsigned char)pp->ki_stat]++; 839 840 if (pp->ki_stat == SZOMB) 841 /* skip zombies */ 842 continue; 843 844 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 845 /* skip kernel idle process */ 846 continue; 847 848 PCTCPU(pp) = proc_calc_pctcpu(pp); 849 if (sel->thread && PCTCPU(pp) > 1.0) 850 PCTCPU(pp) = 1.0; 851 if (displaymode == DISP_CPU && !sel->idle && 852 (!proc_used_cpu(pp) || 853 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 854 /* skip idle or non-running processes */ 855 continue; 856 857 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 858 /* skip processes that aren't doing I/O */ 859 continue; 860 861 if (sel->jid != -1 && pp->ki_jid != sel->jid) 862 /* skip proc. that don't belong to the selected JID */ 863 continue; 864 865 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 866 /* skip proc. that don't belong to the selected UID */ 867 continue; 868 869 if (sel->pid != -1 && pp->ki_pid != sel->pid) 870 continue; 871 872 *prefp++ = pp; 873 active_procs++; 874 } 875 876 /* if requested, sort the "interesting" processes */ 877 if (compare != NULL) 878 qsort(pref, active_procs, sizeof(*pref), compare); 879 880 /* remember active and total counts */ 881 si->p_total = total_procs; 882 si->p_pactive = pref_len = active_procs; 883 884 /* pass back a handle */ 885 handle.next_proc = pref; 886 handle.remaining = active_procs; 887 return (&handle); 888 } 889 890 char * 891 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 892 { 893 struct kinfo_proc *pp; 894 const struct kinfo_proc *oldp; 895 long cputime; 896 char status[22]; 897 size_t state; 898 struct rusage ru, *rup; 899 long p_tot, s_tot; 900 char *cmdbuf = NULL; 901 char **args; 902 static struct sbuf* procbuf = NULL; 903 904 /* clean up from last time. */ 905 if (procbuf != NULL) { 906 sbuf_clear(procbuf); 907 } else { 908 procbuf = sbuf_new_auto(); 909 } 910 911 912 /* find and remember the next proc structure */ 913 pp = *(xhandle->next_proc++); 914 xhandle->remaining--; 915 916 /* get the process's command name */ 917 if ((pp->ki_flag & P_INMEM) == 0) { 918 /* 919 * Print swapped processes as <pname> 920 */ 921 size_t len; 922 923 len = strlen(pp->ki_comm); 924 if (len > sizeof(pp->ki_comm) - 3) 925 len = sizeof(pp->ki_comm) - 3; 926 memmove(pp->ki_comm + 1, pp->ki_comm, len); 927 pp->ki_comm[0] = '<'; 928 pp->ki_comm[len + 1] = '>'; 929 pp->ki_comm[len + 2] = '\0'; 930 } 931 932 /* 933 * Convert the process's runtime from microseconds to seconds. This 934 * time includes the interrupt time although that is not wanted here. 935 * ps(1) is similarly sloppy. 936 */ 937 cputime = (pp->ki_runtime + 500000) / 1000000; 938 939 /* generate "STATE" field */ 940 switch (state = pp->ki_stat) { 941 case SRUN: 942 if (smpmode && pp->ki_oncpu != NOCPU) 943 sprintf(status, "CPU%d", pp->ki_oncpu); 944 else 945 strcpy(status, "RUN"); 946 break; 947 case SLOCK: 948 if (pp->ki_kiflag & KI_LOCKBLOCK) { 949 sprintf(status, "*%.6s", pp->ki_lockname); 950 break; 951 } 952 /* fall through */ 953 case SSLEEP: 954 sprintf(status, "%.6s", pp->ki_wmesg); 955 break; 956 default: 957 958 if (state < nitems(state_abbrev)) { 959 sprintf(status, "%.6s", state_abbrev[state]); 960 } else { 961 sprintf(status, "?%5zu", state); 962 } 963 break; 964 } 965 966 cmdbuf = calloc(screen_width + 1, 1); 967 if (cmdbuf == NULL) { 968 warn("calloc(%d)", screen_width + 1); 969 return NULL; 970 } 971 972 if (!(flags & FMT_SHOWARGS)) { 973 if (ps.thread && pp->ki_flag & P_HADTHREADS && 974 pp->ki_tdname[0]) { 975 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 976 pp->ki_tdname, pp->ki_moretdname); 977 } else { 978 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 979 } 980 } else { 981 if (pp->ki_flag & P_SYSTEM || 982 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 983 !(*args)) { 984 if (ps.thread && pp->ki_flag & P_HADTHREADS && 985 pp->ki_tdname[0]) { 986 snprintf(cmdbuf, screen_width, 987 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 988 pp->ki_moretdname); 989 } else { 990 snprintf(cmdbuf, screen_width, 991 "[%s]", pp->ki_comm); 992 } 993 } else { 994 const char *src; 995 char *dst, *argbuf; 996 const char *cmd; 997 size_t argbuflen; 998 size_t len; 999 1000 argbuflen = screen_width * 4; 1001 argbuf = calloc(argbuflen + 1, 1); 1002 if (argbuf == NULL) { 1003 warn("calloc(%zu)", argbuflen + 1); 1004 free(cmdbuf); 1005 return NULL; 1006 } 1007 1008 dst = argbuf; 1009 1010 /* Extract cmd name from argv */ 1011 cmd = basename(*args); 1012 1013 for (; (src = *args++) != NULL; ) { 1014 if (*src == '\0') 1015 continue; 1016 len = (argbuflen - (dst - argbuf) - 1) / 4; 1017 strvisx(dst, src, 1018 MIN(strlen(src), len), 1019 VIS_NL | VIS_CSTYLE | VIS_OCTAL | VIS_SAFE); 1020 while (*dst != '\0') 1021 dst++; 1022 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1023 *dst++ = ' '; /* add delimiting space */ 1024 } 1025 if (dst != argbuf && dst[-1] == ' ') 1026 dst--; 1027 *dst = '\0'; 1028 1029 if (strcmp(cmd, pp->ki_comm) != 0) { 1030 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1031 pp->ki_tdname[0]) 1032 snprintf(cmdbuf, screen_width, 1033 "%s (%s){%s%s}", argbuf, 1034 pp->ki_comm, pp->ki_tdname, 1035 pp->ki_moretdname); 1036 else 1037 snprintf(cmdbuf, screen_width, 1038 "%s (%s)", argbuf, pp->ki_comm); 1039 } else { 1040 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1041 pp->ki_tdname[0]) 1042 snprintf(cmdbuf, screen_width, 1043 "%s{%s%s}", argbuf, pp->ki_tdname, 1044 pp->ki_moretdname); 1045 else 1046 strlcpy(cmdbuf, argbuf, screen_width); 1047 } 1048 free(argbuf); 1049 } 1050 } 1051 1052 if (displaymode == DISP_IO) { 1053 oldp = get_old_proc(pp); 1054 if (oldp != NULL) { 1055 ru.ru_inblock = RU(pp)->ru_inblock - 1056 RU(oldp)->ru_inblock; 1057 ru.ru_oublock = RU(pp)->ru_oublock - 1058 RU(oldp)->ru_oublock; 1059 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1060 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1061 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1062 rup = &ru; 1063 } else { 1064 rup = RU(pp); 1065 } 1066 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1067 s_tot = total_inblock + total_oublock + total_majflt; 1068 1069 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1070 1071 if (ps.jail) { 1072 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1073 } 1074 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1075 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1076 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1077 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1078 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1079 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1080 sbuf_printf(procbuf, "%6ld ", p_tot); 1081 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1082 1083 } else { 1084 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1085 if (ps.jail) { 1086 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1087 } 1088 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1089 1090 if (!ps.thread) { 1091 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1092 } else { 1093 sbuf_printf(procbuf, " "); 1094 } 1095 1096 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1097 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1098 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1099 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1100 if (ps.swap) { 1101 sbuf_printf(procbuf, "%*s ", 1102 TOP_SWAP_LEN - 1, 1103 format_k(pagetok(ki_swap(pp)))); 1104 } 1105 sbuf_printf(procbuf, "%-6.6s ", status); 1106 if (smpmode) { 1107 int cpu; 1108 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1109 cpu = pp->ki_oncpu; 1110 } else { 1111 cpu = pp->ki_lastcpu; 1112 } 1113 sbuf_printf(procbuf, "%3d ", cpu); 1114 } 1115 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1116 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1117 } 1118 sbuf_printf(procbuf, "%s", cmdbuf); 1119 free(cmdbuf); 1120 return (sbuf_data(procbuf)); 1121 } 1122 1123 static void 1124 getsysctl(const char *name, void *ptr, size_t len) 1125 { 1126 size_t nlen = len; 1127 1128 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1129 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1130 strerror(errno)); 1131 quit(TOP_EX_SYS_ERROR); 1132 } 1133 if (nlen != len) { 1134 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1135 name, (unsigned long)len, (unsigned long)nlen); 1136 quit(TOP_EX_SYS_ERROR); 1137 } 1138 } 1139 1140 static const char * 1141 format_nice(const struct kinfo_proc *pp) 1142 { 1143 const char *fifo, *kproc; 1144 int rtpri; 1145 static char nicebuf[4 + 1]; 1146 1147 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1148 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1149 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1150 case PRI_ITHD: 1151 return ("-"); 1152 case PRI_REALTIME: 1153 /* 1154 * XXX: the kernel doesn't tell us the original rtprio and 1155 * doesn't really know what it was, so to recover it we 1156 * must be more chummy with the implementation than the 1157 * implementation is with itself. pri_user gives a 1158 * constant "base" priority, but is only initialized 1159 * properly for user threads. pri_native gives what the 1160 * kernel calls the "base" priority, but it isn't constant 1161 * since it is changed by priority propagation. pri_native 1162 * also isn't properly initialized for all threads, but it 1163 * is properly initialized for kernel realtime and idletime 1164 * threads. Thus we use pri_user for the base priority of 1165 * user threads (it is always correct) and pri_native for 1166 * the base priority of kernel realtime and idletime threads 1167 * (there is nothing better, and it is usually correct). 1168 * 1169 * The field width and thus the buffer are too small for 1170 * values like "kr31F", but such values shouldn't occur, 1171 * and if they do then the tailing "F" is not displayed. 1172 */ 1173 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1174 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1175 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1176 kproc, rtpri, fifo); 1177 break; 1178 case PRI_TIMESHARE: 1179 if (pp->ki_flag & P_KPROC) 1180 return ("-"); 1181 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1182 break; 1183 case PRI_IDLE: 1184 /* XXX: as above. */ 1185 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1186 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1187 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1188 kproc, rtpri, fifo); 1189 break; 1190 default: 1191 return ("?"); 1192 } 1193 return (nicebuf); 1194 } 1195 1196 /* comparison routines for qsort */ 1197 1198 static int 1199 compare_pid(const void *p1, const void *p2) 1200 { 1201 const struct kinfo_proc * const *pp1 = p1; 1202 const struct kinfo_proc * const *pp2 = p2; 1203 1204 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1205 1206 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1207 } 1208 1209 static int 1210 compare_tid(const void *p1, const void *p2) 1211 { 1212 const struct kinfo_proc * const *pp1 = p1; 1213 const struct kinfo_proc * const *pp2 = p2; 1214 1215 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1216 1217 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1218 } 1219 1220 /* 1221 * proc_compare - comparison function for "qsort" 1222 * Compares the resource consumption of two processes using five 1223 * distinct keys. The keys (in descending order of importance) are: 1224 * percent cpu, cpu ticks, state, resident set size, total virtual 1225 * memory usage. The process states are ordered as follows (from least 1226 * to most important): WAIT, zombie, sleep, stop, start, run. The 1227 * array declaration below maps a process state index into a number 1228 * that reflects this ordering. 1229 */ 1230 1231 static int sorted_state[] = { 1232 0, /* not used */ 1233 3, /* sleep */ 1234 1, /* ABANDONED (WAIT) */ 1235 6, /* run */ 1236 5, /* start */ 1237 2, /* zombie */ 1238 4 /* stop */ 1239 }; 1240 1241 1242 #define ORDERKEY_PCTCPU(a, b) do { \ 1243 double diff; \ 1244 if (ps.wcpu) \ 1245 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1246 weighted_cpu(PCTCPU((a)), (a)); \ 1247 else \ 1248 diff = PCTCPU((b)) - PCTCPU((a)); \ 1249 if (diff != 0) \ 1250 return (diff > 0 ? 1 : -1); \ 1251 } while (0) 1252 1253 #define ORDERKEY_CPTICKS(a, b) do { \ 1254 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1255 if (diff != 0) \ 1256 return (diff > 0 ? 1 : -1); \ 1257 } while (0) 1258 1259 #define ORDERKEY_STATE(a, b) do { \ 1260 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1261 if (diff != 0) \ 1262 return (diff > 0 ? 1 : -1); \ 1263 } while (0) 1264 1265 #define ORDERKEY_PRIO(a, b) do { \ 1266 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1267 if (diff != 0) \ 1268 return (diff > 0 ? 1 : -1); \ 1269 } while (0) 1270 1271 #define ORDERKEY_THREADS(a, b) do { \ 1272 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1273 if (diff != 0) \ 1274 return (diff > 0 ? 1 : -1); \ 1275 } while (0) 1276 1277 #define ORDERKEY_RSSIZE(a, b) do { \ 1278 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1279 if (diff != 0) \ 1280 return (diff > 0 ? 1 : -1); \ 1281 } while (0) 1282 1283 #define ORDERKEY_MEM(a, b) do { \ 1284 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1285 if (diff != 0) \ 1286 return (diff > 0 ? 1 : -1); \ 1287 } while (0) 1288 1289 #define ORDERKEY_JID(a, b) do { \ 1290 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1291 if (diff != 0) \ 1292 return (diff > 0 ? 1 : -1); \ 1293 } while (0) 1294 1295 #define ORDERKEY_SWAP(a, b) do { \ 1296 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1297 if (diff != 0) \ 1298 return (diff > 0 ? 1 : -1); \ 1299 } while (0) 1300 1301 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1302 1303 static int 1304 compare_cpu(const void *arg1, const void *arg2) 1305 { 1306 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1307 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1308 1309 ORDERKEY_PCTCPU(p1, p2); 1310 ORDERKEY_CPTICKS(p1, p2); 1311 ORDERKEY_STATE(p1, p2); 1312 ORDERKEY_PRIO(p1, p2); 1313 ORDERKEY_RSSIZE(p1, p2); 1314 ORDERKEY_MEM(p1, p2); 1315 1316 return (0); 1317 } 1318 1319 /* compare_size - the comparison function for sorting by total memory usage */ 1320 1321 static int 1322 compare_size(const void *arg1, const void *arg2) 1323 { 1324 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1325 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1326 1327 ORDERKEY_MEM(p1, p2); 1328 ORDERKEY_RSSIZE(p1, p2); 1329 ORDERKEY_PCTCPU(p1, p2); 1330 ORDERKEY_CPTICKS(p1, p2); 1331 ORDERKEY_STATE(p1, p2); 1332 ORDERKEY_PRIO(p1, p2); 1333 1334 return (0); 1335 } 1336 1337 /* compare_res - the comparison function for sorting by resident set size */ 1338 1339 static int 1340 compare_res(const void *arg1, const void *arg2) 1341 { 1342 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1343 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1344 1345 ORDERKEY_RSSIZE(p1, p2); 1346 ORDERKEY_MEM(p1, p2); 1347 ORDERKEY_PCTCPU(p1, p2); 1348 ORDERKEY_CPTICKS(p1, p2); 1349 ORDERKEY_STATE(p1, p2); 1350 ORDERKEY_PRIO(p1, p2); 1351 1352 return (0); 1353 } 1354 1355 /* compare_time - the comparison function for sorting by total cpu time */ 1356 1357 static int 1358 compare_time(const void *arg1, const void *arg2) 1359 { 1360 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1361 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1362 1363 ORDERKEY_CPTICKS(p1, p2); 1364 ORDERKEY_PCTCPU(p1, p2); 1365 ORDERKEY_STATE(p1, p2); 1366 ORDERKEY_PRIO(p1, p2); 1367 ORDERKEY_RSSIZE(p1, p2); 1368 ORDERKEY_MEM(p1, p2); 1369 1370 return (0); 1371 } 1372 1373 /* compare_prio - the comparison function for sorting by priority */ 1374 1375 static int 1376 compare_prio(const void *arg1, const void *arg2) 1377 { 1378 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1379 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1380 1381 ORDERKEY_PRIO(p1, p2); 1382 ORDERKEY_CPTICKS(p1, p2); 1383 ORDERKEY_PCTCPU(p1, p2); 1384 ORDERKEY_STATE(p1, p2); 1385 ORDERKEY_RSSIZE(p1, p2); 1386 ORDERKEY_MEM(p1, p2); 1387 1388 return (0); 1389 } 1390 1391 /* compare_threads - the comparison function for sorting by threads */ 1392 static int 1393 compare_threads(const void *arg1, const void *arg2) 1394 { 1395 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1396 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1397 1398 ORDERKEY_THREADS(p1, p2); 1399 ORDERKEY_PCTCPU(p1, p2); 1400 ORDERKEY_CPTICKS(p1, p2); 1401 ORDERKEY_STATE(p1, p2); 1402 ORDERKEY_PRIO(p1, p2); 1403 ORDERKEY_RSSIZE(p1, p2); 1404 ORDERKEY_MEM(p1, p2); 1405 1406 return (0); 1407 } 1408 1409 /* compare_jid - the comparison function for sorting by jid */ 1410 static int 1411 compare_jid(const void *arg1, const void *arg2) 1412 { 1413 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1414 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1415 1416 ORDERKEY_JID(p1, p2); 1417 ORDERKEY_PCTCPU(p1, p2); 1418 ORDERKEY_CPTICKS(p1, p2); 1419 ORDERKEY_STATE(p1, p2); 1420 ORDERKEY_PRIO(p1, p2); 1421 ORDERKEY_RSSIZE(p1, p2); 1422 ORDERKEY_MEM(p1, p2); 1423 1424 return (0); 1425 } 1426 1427 /* compare_swap - the comparison function for sorting by swap */ 1428 static int 1429 compare_swap(const void *arg1, const void *arg2) 1430 { 1431 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1432 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1433 1434 ORDERKEY_SWAP(p1, p2); 1435 ORDERKEY_PCTCPU(p1, p2); 1436 ORDERKEY_CPTICKS(p1, p2); 1437 ORDERKEY_STATE(p1, p2); 1438 ORDERKEY_PRIO(p1, p2); 1439 ORDERKEY_RSSIZE(p1, p2); 1440 ORDERKEY_MEM(p1, p2); 1441 1442 return (0); 1443 } 1444 1445 /* assorted comparison functions for sorting by i/o */ 1446 1447 static int 1448 compare_iototal(const void *arg1, const void *arg2) 1449 { 1450 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1451 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1452 1453 return (get_io_total(p2) - get_io_total(p1)); 1454 } 1455 1456 static int 1457 compare_ioread(const void *arg1, const void *arg2) 1458 { 1459 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1460 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1461 long dummy, inp1, inp2; 1462 1463 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1464 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1465 1466 return (inp2 - inp1); 1467 } 1468 1469 static int 1470 compare_iowrite(const void *arg1, const void *arg2) 1471 { 1472 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1473 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1474 long dummy, oup1, oup2; 1475 1476 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1477 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1478 1479 return (oup2 - oup1); 1480 } 1481 1482 static int 1483 compare_iofault(const void *arg1, const void *arg2) 1484 { 1485 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1486 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1487 long dummy, flp1, flp2; 1488 1489 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1490 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1491 1492 return (flp2 - flp1); 1493 } 1494 1495 static int 1496 compare_vcsw(const void *arg1, const void *arg2) 1497 { 1498 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1499 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1500 long dummy, flp1, flp2; 1501 1502 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1503 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1504 1505 return (flp2 - flp1); 1506 } 1507 1508 static int 1509 compare_ivcsw(const void *arg1, const void *arg2) 1510 { 1511 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1512 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1513 long dummy, flp1, flp2; 1514 1515 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1516 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1517 1518 return (flp2 - flp1); 1519 } 1520 1521 int (*compares[])(const void *arg1, const void *arg2) = { 1522 compare_cpu, 1523 compare_size, 1524 compare_res, 1525 compare_time, 1526 compare_prio, 1527 compare_threads, 1528 compare_iototal, 1529 compare_ioread, 1530 compare_iowrite, 1531 compare_iofault, 1532 compare_vcsw, 1533 compare_ivcsw, 1534 compare_jid, 1535 compare_swap, 1536 NULL 1537 }; 1538 1539 1540 static int 1541 swapmode(int *retavail, int *retfree) 1542 { 1543 int n; 1544 struct kvm_swap swapary[1]; 1545 static int pagesize = 0; 1546 static unsigned long swap_maxpages = 0; 1547 1548 *retavail = 0; 1549 *retfree = 0; 1550 1551 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1552 1553 n = kvm_getswapinfo(kd, swapary, 1, 0); 1554 if (n < 0 || swapary[0].ksw_total == 0) 1555 return (0); 1556 1557 if (pagesize == 0) 1558 pagesize = getpagesize(); 1559 if (swap_maxpages == 0) 1560 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1561 1562 /* ksw_total contains the total size of swap all devices which may 1563 exceed the maximum swap size allocatable in the system */ 1564 if ( swapary[0].ksw_total > swap_maxpages ) 1565 swapary[0].ksw_total = swap_maxpages; 1566 1567 *retavail = CONVERT(swapary[0].ksw_total); 1568 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1569 1570 #undef CONVERT 1571 1572 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1573 return (n); 1574 } 1575