xref: /freebsd/usr.bin/top/machine.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for FreeBSD 2.2
13  * Works for:
14  *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19  *          Steven Wallace  <swallace@freebsd.org>
20  *          Wolfram Schneider <wosch@FreeBSD.org>
21  *
22  * $FreeBSD$
23  */
24 
25 
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <stdio.h>
33 #include <nlist.h>
34 #include <math.h>
35 #include <kvm.h>
36 #include <pwd.h>
37 #include <sys/errno.h>
38 #include <sys/sysctl.h>
39 #include <sys/dkstat.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/proc.h>
43 #include <sys/user.h>
44 #include <sys/vmmeter.h>
45 #include <sys/resource.h>
46 #include <sys/rtprio.h>
47 
48 /* Swap */
49 #include <stdlib.h>
50 #include <sys/conf.h>
51 
52 #include <osreldate.h> /* for changes in kernel structures */
53 
54 #include "top.h"
55 #include "machine.h"
56 
57 static int check_nlist __P((struct nlist *));
58 static int getkval __P((unsigned long, int *, int, char *));
59 extern char* printable __P((char *));
60 int swapmode __P((int *retavail, int *retfree));
61 static int smpmode;
62 static int namelength;
63 static int cmdlength;
64 
65 
66 /* get_process_info passes back a handle.  This is what it looks like: */
67 
68 struct handle
69 {
70     struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71     int remaining;		/* number of pointers remaining */
72 };
73 
74 /* declarations for load_avg */
75 #include "loadavg.h"
76 
77 #define PP(pp, field) ((pp)->kp_proc . field)
78 #define EP(pp, field) ((pp)->kp_eproc . field)
79 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
80 
81 /* define what weighted cpu is.  */
82 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
83 			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
84 
85 /* what we consider to be process size: */
86 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
87 
88 /* definitions for indices in the nlist array */
89 
90 static struct nlist nlst[] = {
91 #define X_CCPU		0
92     { "_ccpu" },
93 #define X_CP_TIME	1
94     { "_cp_time" },
95 #define X_AVENRUN	2
96     { "_averunnable" },
97 
98 #define X_BUFSPACE	3
99 	{ "_bufspace" },	/* K in buffer cache */
100 #define X_CNT           4
101     { "_cnt" },		        /* struct vmmeter cnt */
102 
103 /* Last pid */
104 #define X_LASTPID	5
105     { "_nextpid" },
106     { 0 }
107 };
108 
109 /*
110  *  These definitions control the format of the per-process area
111  */
112 
113 static char smp_header[] =
114   "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
115 
116 #define smp_Proc_format \
117 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
118 
119 static char up_header[] =
120   "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
121 
122 #define up_Proc_format \
123 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
124 
125 
126 
127 /* process state names for the "STATE" column of the display */
128 /* the extra nulls in the string "run" are for adding a slash and
129    the processor number when needed */
130 
131 char *state_abbrev[] =
132 {
133     "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
134 };
135 
136 
137 static kvm_t *kd;
138 
139 /* values that we stash away in _init and use in later routines */
140 
141 static double logcpu;
142 
143 /* these are retrieved from the kernel in _init */
144 
145 static load_avg  ccpu;
146 
147 /* these are offsets obtained via nlist and used in the get_ functions */
148 
149 static unsigned long cp_time_offset;
150 static unsigned long avenrun_offset;
151 static unsigned long lastpid_offset;
152 static long lastpid;
153 static unsigned long cnt_offset;
154 static unsigned long bufspace_offset;
155 static long cnt;
156 
157 /* these are for calculating cpu state percentages */
158 
159 static long cp_time[CPUSTATES];
160 static long cp_old[CPUSTATES];
161 static long cp_diff[CPUSTATES];
162 
163 /* these are for detailing the process states */
164 
165 int process_states[6];
166 char *procstatenames[] = {
167     "", " starting, ", " running, ", " sleeping, ", " stopped, ",
168     " zombie, ",
169     NULL
170 };
171 
172 /* these are for detailing the cpu states */
173 
174 int cpu_states[CPUSTATES];
175 char *cpustatenames[] = {
176     "user", "nice", "system", "interrupt", "idle", NULL
177 };
178 
179 /* these are for detailing the memory statistics */
180 
181 int memory_stats[7];
182 char *memorynames[] = {
183     "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
184     NULL
185 };
186 
187 int swap_stats[7];
188 char *swapnames[] = {
189 /*   0           1            2           3            4       5 */
190     "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
191     NULL
192 };
193 
194 
195 /* these are for keeping track of the proc array */
196 
197 static int nproc;
198 static int onproc = -1;
199 static int pref_len;
200 static struct kinfo_proc *pbase;
201 static struct kinfo_proc **pref;
202 
203 /* these are for getting the memory statistics */
204 
205 static int pageshift;		/* log base 2 of the pagesize */
206 
207 /* define pagetok in terms of pageshift */
208 
209 #define pagetok(size) ((size) << pageshift)
210 
211 /* useful externals */
212 long percentages();
213 
214 #ifdef ORDER
215 /* sorting orders. first is default */
216 char *ordernames[] = {
217     "cpu", "size", "res", "time", "pri", NULL
218 };
219 #endif
220 
221 int
222 machine_init(statics)
223 
224 struct statics *statics;
225 
226 {
227     register int i = 0;
228     register int pagesize;
229     int modelen;
230     struct passwd *pw;
231 
232     modelen = sizeof(smpmode);
233     if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
234          sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
235 	modelen != sizeof(smpmode))
236 	    smpmode = 0;
237 
238     while ((pw = getpwent()) != NULL) {
239 	if (strlen(pw->pw_name) > namelength)
240 	    namelength = strlen(pw->pw_name);
241     }
242     if (namelength < 8)
243 	namelength = 8;
244     if (namelength > 16)
245 	namelength = 16;
246 
247     if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
248 	return -1;
249 
250 
251     /* get the list of symbols we want to access in the kernel */
252     (void) kvm_nlist(kd, nlst);
253     if (nlst[0].n_type == 0)
254     {
255 	fprintf(stderr, "top: nlist failed\n");
256 	return(-1);
257     }
258 
259     /* make sure they were all found */
260     if (i > 0 && check_nlist(nlst) > 0)
261     {
262 	return(-1);
263     }
264 
265     (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
266 	    nlst[X_CCPU].n_name);
267 
268     /* stash away certain offsets for later use */
269     cp_time_offset = nlst[X_CP_TIME].n_value;
270     avenrun_offset = nlst[X_AVENRUN].n_value;
271     lastpid_offset =  nlst[X_LASTPID].n_value;
272     cnt_offset = nlst[X_CNT].n_value;
273     bufspace_offset = nlst[X_BUFSPACE].n_value;
274 
275     /* this is used in calculating WCPU -- calculate it ahead of time */
276     logcpu = log(loaddouble(ccpu));
277 
278     pbase = NULL;
279     pref = NULL;
280     nproc = 0;
281     onproc = -1;
282     /* get the page size with "getpagesize" and calculate pageshift from it */
283     pagesize = getpagesize();
284     pageshift = 0;
285     while (pagesize > 1)
286     {
287 	pageshift++;
288 	pagesize >>= 1;
289     }
290 
291     /* we only need the amount of log(2)1024 for our conversion */
292     pageshift -= LOG1024;
293 
294     /* fill in the statics information */
295     statics->procstate_names = procstatenames;
296     statics->cpustate_names = cpustatenames;
297     statics->memory_names = memorynames;
298     statics->swap_names = swapnames;
299 #ifdef ORDER
300     statics->order_names = ordernames;
301 #endif
302 
303     /* all done! */
304     return(0);
305 }
306 
307 char *format_header(uname_field)
308 
309 register char *uname_field;
310 
311 {
312     register char *ptr;
313     static char Header[128];
314 
315     snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
316 	     namelength, namelength, uname_field);
317 
318     cmdlength = 80 - strlen(Header) + 6;
319 
320     return Header;
321 }
322 
323 static int swappgsin = -1;
324 static int swappgsout = -1;
325 extern struct timeval timeout;
326 
327 void
328 get_system_info(si)
329 
330 struct system_info *si;
331 
332 {
333     long total;
334     load_avg avenrun[3];
335     int mib[2];
336     struct timeval boottime;
337     size_t bt_size;
338 
339     /* get the cp_time array */
340     (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
341 		   nlst[X_CP_TIME].n_name);
342     (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
343 		   nlst[X_AVENRUN].n_name);
344 
345     (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
346 		   "!");
347 
348     /* convert load averages to doubles */
349     {
350 	register int i;
351 	register double *infoloadp;
352 	load_avg *avenrunp;
353 
354 #ifdef notyet
355 	struct loadavg sysload;
356 	int size;
357 	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
358 #endif
359 
360 	infoloadp = si->load_avg;
361 	avenrunp = avenrun;
362 	for (i = 0; i < 3; i++)
363 	{
364 #ifdef notyet
365 	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
366 #endif
367 	    *infoloadp++ = loaddouble(*avenrunp++);
368 	}
369     }
370 
371     /* convert cp_time counts to percentages */
372     total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
373 
374     /* sum memory & swap statistics */
375     {
376 	struct vmmeter sum;
377 	static unsigned int swap_delay = 0;
378 	static int swapavail = 0;
379 	static int swapfree = 0;
380 	static int bufspace = 0;
381 
382         (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
383 		   "_cnt");
384         (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
385 		   "_bufspace");
386 
387 	/* convert memory stats to Kbytes */
388 	memory_stats[0] = pagetok(sum.v_active_count);
389 	memory_stats[1] = pagetok(sum.v_inactive_count);
390 	memory_stats[2] = pagetok(sum.v_wire_count);
391 	memory_stats[3] = pagetok(sum.v_cache_count);
392 	memory_stats[4] = bufspace / 1024;
393 	memory_stats[5] = pagetok(sum.v_free_count);
394 	memory_stats[6] = -1;
395 
396 	/* first interval */
397         if (swappgsin < 0) {
398 	    swap_stats[4] = 0;
399 	    swap_stats[5] = 0;
400 	}
401 
402 	/* compute differences between old and new swap statistic */
403 	else {
404 	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
405 	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
406 	}
407 
408         swappgsin = sum.v_swappgsin;
409 	swappgsout = sum.v_swappgsout;
410 
411 	/* call CPU heavy swapmode() only for changes */
412         if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
413 	    swap_stats[3] = swapmode(&swapavail, &swapfree);
414 	    swap_stats[0] = swapavail;
415 	    swap_stats[1] = swapavail - swapfree;
416 	    swap_stats[2] = swapfree;
417 	}
418         swap_delay = 1;
419 	swap_stats[6] = -1;
420     }
421 
422     /* set arrays and strings */
423     si->cpustates = cpu_states;
424     si->memory = memory_stats;
425     si->swap = swap_stats;
426 
427 
428     if(lastpid > 0) {
429 	si->last_pid = lastpid;
430     } else {
431 	si->last_pid = -1;
432     }
433 
434     /*
435      * Print how long system has been up.
436      * (Found by looking getting "boottime" from the kernel)
437      */
438     mib[0] = CTL_KERN;
439     mib[1] = KERN_BOOTTIME;
440     bt_size = sizeof(boottime);
441     if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
442 	boottime.tv_sec != 0) {
443 	si->boottime = boottime;
444     } else {
445 	si->boottime.tv_sec = -1;
446     }
447 }
448 
449 static struct handle handle;
450 
451 caddr_t get_process_info(si, sel, compare)
452 
453 struct system_info *si;
454 struct process_select *sel;
455 int (*compare)();
456 
457 {
458     register int i;
459     register int total_procs;
460     register int active_procs;
461     register struct kinfo_proc **prefp;
462     register struct kinfo_proc *pp;
463 
464     /* these are copied out of sel for speed */
465     int show_idle;
466     int show_self;
467     int show_system;
468     int show_uid;
469     int show_command;
470 
471 
472     pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
473     if (nproc > onproc)
474 	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
475 		* (onproc = nproc));
476     if (pref == NULL || pbase == NULL) {
477 	(void) fprintf(stderr, "top: Out of memory.\n");
478 	quit(23);
479     }
480     /* get a pointer to the states summary array */
481     si->procstates = process_states;
482 
483     /* set up flags which define what we are going to select */
484     show_idle = sel->idle;
485     show_self = sel->self;
486     show_system = sel->system;
487     show_uid = sel->uid != -1;
488     show_command = sel->command != NULL;
489 
490     /* count up process states and get pointers to interesting procs */
491     total_procs = 0;
492     active_procs = 0;
493     memset((char *)process_states, 0, sizeof(process_states));
494     prefp = pref;
495     for (pp = pbase, i = 0; i < nproc; pp++, i++)
496     {
497 	/*
498 	 *  Place pointers to each valid proc structure in pref[].
499 	 *  Process slots that are actually in use have a non-zero
500 	 *  status field.  Processes with P_SYSTEM set are system
501 	 *  processes---these get ignored unless show_sysprocs is set.
502 	 */
503 	if (PP(pp, p_stat) != 0 &&
504 	    (show_self != PP(pp, p_pid)) &&
505 	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
506 	{
507 	    total_procs++;
508 	    process_states[(unsigned char) PP(pp, p_stat)]++;
509 	    if ((PP(pp, p_stat) != SZOMB) &&
510 		(show_idle || (PP(pp, p_pctcpu) != 0) ||
511 		 (PP(pp, p_stat) == SRUN)) &&
512 		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
513 	    {
514 		*prefp++ = pp;
515 		active_procs++;
516 	    }
517 	}
518     }
519 
520     /* if requested, sort the "interesting" processes */
521     if (compare != NULL)
522     {
523 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
524     }
525 
526     /* remember active and total counts */
527     si->p_total = total_procs;
528     si->p_active = pref_len = active_procs;
529 
530     /* pass back a handle */
531     handle.next_proc = pref;
532     handle.remaining = active_procs;
533     return((caddr_t)&handle);
534 }
535 
536 char fmt[128];		/* static area where result is built */
537 
538 char *format_next_process(handle, get_userid)
539 
540 caddr_t handle;
541 char *(*get_userid)();
542 
543 {
544     register struct kinfo_proc *pp;
545     register long cputime;
546     register double pct;
547     struct handle *hp;
548     char status[16];
549     int state;
550 
551     /* find and remember the next proc structure */
552     hp = (struct handle *)handle;
553     pp = *(hp->next_proc++);
554     hp->remaining--;
555 
556 
557     /* get the process's user struct and set cputime */
558     if ((PP(pp, p_flag) & P_INMEM) == 0) {
559 	/*
560 	 * Print swapped processes as <pname>
561 	 */
562 	char *comm = PP(pp, p_comm);
563 #define COMSIZ sizeof(PP(pp, p_comm))
564 	char buf[COMSIZ];
565 	(void) strncpy(buf, comm, COMSIZ);
566 	comm[0] = '<';
567 	(void) strncpy(&comm[1], buf, COMSIZ - 2);
568 	comm[COMSIZ - 2] = '\0';
569 	(void) strncat(comm, ">", COMSIZ - 1);
570 	comm[COMSIZ - 1] = '\0';
571     }
572 
573 #if 0
574     /* This does not produce the correct results */
575     cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
576 #endif
577     /* This does not count interrupts */
578     cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
579 
580     /* calculate the base for cpu percentages */
581     pct = pctdouble(PP(pp, p_pctcpu));
582 
583     /* generate "STATE" field */
584     switch (state = PP(pp, p_stat)) {
585 	case SRUN:
586 	    if (smpmode && PP(pp, p_oncpu) != 0xff)
587 		sprintf(status, "CPU%d", PP(pp, p_oncpu));
588 	    else
589 		strcpy(status, "RUN");
590 	    break;
591 	case SSLEEP:
592 	    if (PP(pp, p_wmesg) != NULL) {
593 		sprintf(status, "%.6s", EP(pp, e_wmesg));
594 		break;
595 	    }
596 	    /* fall through */
597 	default:
598 
599 	    if (state >= 0 &&
600 	        state < sizeof(state_abbrev) / sizeof(*state_abbrev))
601 		    sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
602 	    else
603 		    sprintf(status, "?%5d", state);
604 	    break;
605     }
606 
607     /* format this entry */
608     sprintf(fmt,
609 	    smpmode ? smp_Proc_format : up_Proc_format,
610 	    PP(pp, p_pid),
611 	    namelength, namelength,
612 	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
613 	    PP(pp, p_priority) - PZERO,
614 
615 	    /*
616 	     * normal time      -> nice value -20 - +20
617 	     * real time 0 - 31 -> nice value -52 - -21
618 	     * idle time 0 - 31 -> nice value +21 - +52
619 	     */
620 	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
621 	    	PP(pp, p_nice) - NZERO :
622 	    	(RTP_PRIO_IS_REALTIME(PP(pp, p_rtprio.type)) ?
623 		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
624 		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
625 	    format_k2(PROCSIZE(pp)),
626 	    format_k2(pagetok(VP(pp, vm_rssize))),
627 	    status,
628 	    smpmode ? PP(pp, p_lastcpu) : 0,
629 	    format_time(cputime),
630 	    100.0 * weighted_cpu(pct, pp),
631 	    100.0 * pct,
632 	    cmdlength,
633 	    printable(PP(pp, p_comm)));
634 
635     /* return the result */
636     return(fmt);
637 }
638 
639 
640 /*
641  * check_nlist(nlst) - checks the nlist to see if any symbols were not
642  *		found.  For every symbol that was not found, a one-line
643  *		message is printed to stderr.  The routine returns the
644  *		number of symbols NOT found.
645  */
646 
647 static int check_nlist(nlst)
648 
649 register struct nlist *nlst;
650 
651 {
652     register int i;
653 
654     /* check to see if we got ALL the symbols we requested */
655     /* this will write one line to stderr for every symbol not found */
656 
657     i = 0;
658     while (nlst->n_name != NULL)
659     {
660 	if (nlst->n_type == 0)
661 	{
662 	    /* this one wasn't found */
663 	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
664 			   nlst->n_name);
665 	    i = 1;
666 	}
667 	nlst++;
668     }
669 
670     return(i);
671 }
672 
673 
674 /*
675  *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
676  *	"offset" is the byte offset into the kernel for the desired value,
677  *  	"ptr" points to a buffer into which the value is retrieved,
678  *  	"size" is the size of the buffer (and the object to retrieve),
679  *  	"refstr" is a reference string used when printing error meessages,
680  *	    if "refstr" starts with a '!', then a failure on read will not
681  *  	    be fatal (this may seem like a silly way to do things, but I
682  *  	    really didn't want the overhead of another argument).
683  *
684  */
685 
686 static int getkval(offset, ptr, size, refstr)
687 
688 unsigned long offset;
689 int *ptr;
690 int size;
691 char *refstr;
692 
693 {
694     if (kvm_read(kd, offset, (char *) ptr, size) != size)
695     {
696 	if (*refstr == '!')
697 	{
698 	    return(0);
699 	}
700 	else
701 	{
702 	    fprintf(stderr, "top: kvm_read for %s: %s\n",
703 		refstr, strerror(errno));
704 	    quit(23);
705 	}
706     }
707     return(1);
708 }
709 
710 /* comparison routines for qsort */
711 
712 /*
713  *  proc_compare - comparison function for "qsort"
714  *	Compares the resource consumption of two processes using five
715  *  	distinct keys.  The keys (in descending order of importance) are:
716  *  	percent cpu, cpu ticks, state, resident set size, total virtual
717  *  	memory usage.  The process states are ordered as follows (from least
718  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
719  *  	array declaration below maps a process state index into a number
720  *  	that reflects this ordering.
721  */
722 
723 static unsigned char sorted_state[] =
724 {
725     0,	/* not used		*/
726     3,	/* sleep		*/
727     1,	/* ABANDONED (WAIT)	*/
728     6,	/* run			*/
729     5,	/* start		*/
730     2,	/* zombie		*/
731     4	/* stop			*/
732 };
733 
734 
735 #define ORDERKEY_PCTCPU \
736   if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \
737      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
738 
739 #define ORDERKEY_CPTICKS \
740   if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
741 
742 #define ORDERKEY_STATE \
743   if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
744                 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
745 
746 #define ORDERKEY_PRIO \
747   if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
748 
749 #define ORDERKEY_RSSIZE \
750   if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
751 
752 #define ORDERKEY_MEM \
753   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
754 
755 /* compare_cpu - the comparison function for sorting by cpu percentage */
756 
757 int
758 #ifdef ORDER
759 compare_cpu(pp1, pp2)
760 #else
761 proc_compare(pp1, pp2)
762 #endif
763 
764 struct proc **pp1;
765 struct proc **pp2;
766 
767 {
768     register struct kinfo_proc *p1;
769     register struct kinfo_proc *p2;
770     register int result;
771     register pctcpu lresult;
772 
773     /* remove one level of indirection */
774     p1 = *(struct kinfo_proc **) pp1;
775     p2 = *(struct kinfo_proc **) pp2;
776 
777     ORDERKEY_PCTCPU
778     ORDERKEY_CPTICKS
779     ORDERKEY_STATE
780     ORDERKEY_PRIO
781     ORDERKEY_RSSIZE
782     ORDERKEY_MEM
783     ;
784 
785     return(result);
786 }
787 
788 #ifdef ORDER
789 /* compare routines */
790 int compare_size(), compare_res(), compare_time(), compare_prio();
791 
792 int (*proc_compares[])() = {
793     compare_cpu,
794     compare_size,
795     compare_res,
796     compare_time,
797     compare_prio,
798     NULL
799 };
800 
801 /* compare_size - the comparison function for sorting by total memory usage */
802 
803 int
804 compare_size(pp1, pp2)
805 
806 struct proc **pp1;
807 struct proc **pp2;
808 
809 {
810     register struct kinfo_proc *p1;
811     register struct kinfo_proc *p2;
812     register int result;
813     register pctcpu lresult;
814 
815     /* remove one level of indirection */
816     p1 = *(struct kinfo_proc **) pp1;
817     p2 = *(struct kinfo_proc **) pp2;
818 
819     ORDERKEY_MEM
820     ORDERKEY_RSSIZE
821     ORDERKEY_PCTCPU
822     ORDERKEY_CPTICKS
823     ORDERKEY_STATE
824     ORDERKEY_PRIO
825     ;
826 
827     return(result);
828 }
829 
830 /* compare_res - the comparison function for sorting by resident set size */
831 
832 int
833 compare_res(pp1, pp2)
834 
835 struct proc **pp1;
836 struct proc **pp2;
837 
838 {
839     register struct kinfo_proc *p1;
840     register struct kinfo_proc *p2;
841     register int result;
842     register pctcpu lresult;
843 
844     /* remove one level of indirection */
845     p1 = *(struct kinfo_proc **) pp1;
846     p2 = *(struct kinfo_proc **) pp2;
847 
848     ORDERKEY_RSSIZE
849     ORDERKEY_MEM
850     ORDERKEY_PCTCPU
851     ORDERKEY_CPTICKS
852     ORDERKEY_STATE
853     ORDERKEY_PRIO
854     ;
855 
856     return(result);
857 }
858 
859 /* compare_time - the comparison function for sorting by total cpu time */
860 
861 int
862 compare_time(pp1, pp2)
863 
864 struct proc **pp1;
865 struct proc **pp2;
866 
867 {
868     register struct kinfo_proc *p1;
869     register struct kinfo_proc *p2;
870     register int result;
871     register pctcpu lresult;
872 
873     /* remove one level of indirection */
874     p1 = *(struct kinfo_proc **) pp1;
875     p2 = *(struct kinfo_proc **) pp2;
876 
877     ORDERKEY_CPTICKS
878     ORDERKEY_PCTCPU
879     ORDERKEY_STATE
880     ORDERKEY_PRIO
881     ORDERKEY_RSSIZE
882     ORDERKEY_MEM
883     ;
884 
885       return(result);
886   }
887 
888 /* compare_prio - the comparison function for sorting by cpu percentage */
889 
890 int
891 compare_prio(pp1, pp2)
892 
893 struct proc **pp1;
894 struct proc **pp2;
895 
896 {
897     register struct kinfo_proc *p1;
898     register struct kinfo_proc *p2;
899     register int result;
900     register pctcpu lresult;
901 
902     /* remove one level of indirection */
903     p1 = *(struct kinfo_proc **) pp1;
904     p2 = *(struct kinfo_proc **) pp2;
905 
906     ORDERKEY_PRIO
907     ORDERKEY_CPTICKS
908     ORDERKEY_PCTCPU
909     ORDERKEY_STATE
910     ORDERKEY_RSSIZE
911     ORDERKEY_MEM
912     ;
913 
914     return(result);
915 }
916 #endif
917 
918 /*
919  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
920  *		the process does not exist.
921  *		It is EXTREMLY IMPORTANT that this function work correctly.
922  *		If top runs setuid root (as in SVR4), then this function
923  *		is the only thing that stands in the way of a serious
924  *		security problem.  It validates requests for the "kill"
925  *		and "renice" commands.
926  */
927 
928 int proc_owner(pid)
929 
930 int pid;
931 
932 {
933     register int cnt;
934     register struct kinfo_proc **prefp;
935     register struct kinfo_proc *pp;
936 
937     prefp = pref;
938     cnt = pref_len;
939     while (--cnt >= 0)
940     {
941 	pp = *prefp++;
942 	if (PP(pp, p_pid) == (pid_t)pid)
943 	{
944 	    return((int)EP(pp, e_pcred.p_ruid));
945 	}
946     }
947     return(-1);
948 }
949 
950 
951 /*
952  * swapmode is based on a program called swapinfo written
953  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
954  */
955 
956 #define	SVAR(var) __STRING(var)	/* to force expansion */
957 #define	KGET(idx, var)							\
958 	KGET1(idx, &var, sizeof(var), SVAR(var))
959 #define	KGET1(idx, p, s, msg)						\
960 	KGET2(nlst[idx].n_value, p, s, msg)
961 #define	KGET2(addr, p, s, msg)						\
962 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
963 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
964 		return (0);                                             \
965        }
966 #define	KGETRET(addr, p, s, msg)					\
967 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
968 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
969 		return (0);						\
970 	}
971 
972 
973 int
974 swapmode(retavail, retfree)
975 	int *retavail;
976 	int *retfree;
977 {
978 	int n;
979 	int pagesize = getpagesize();
980 	struct kvm_swap swapary[1];
981 
982 	*retavail = 0;
983 	*retfree = 0;
984 
985 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
986 
987 	n = kvm_getswapinfo(kd, swapary, 1, 0);
988 	if (n < 0 || swapary[0].ksw_total == 0)
989 		return(0);
990 
991 	*retavail = CONVERT(swapary[0].ksw_total);
992 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
993 
994 	n = (int)((double)swapary[0].ksw_used * 100.0 /
995 	    (double)swapary[0].ksw_total);
996 	return(n);
997 }
998 
999