1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * 22 * $FreeBSD$ 23 */ 24 25 26 #include <sys/time.h> 27 #include <sys/types.h> 28 #include <sys/signal.h> 29 #include <sys/param.h> 30 31 #include "os.h" 32 #include <stdio.h> 33 #include <nlist.h> 34 #include <math.h> 35 #include <kvm.h> 36 #include <pwd.h> 37 #include <sys/errno.h> 38 #include <sys/sysctl.h> 39 #include <sys/dkstat.h> 40 #include <sys/file.h> 41 #include <sys/time.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/vmmeter.h> 45 #include <sys/resource.h> 46 #include <sys/rtprio.h> 47 48 /* Swap */ 49 #include <stdlib.h> 50 #include <sys/conf.h> 51 52 #include <osreldate.h> /* for changes in kernel structures */ 53 54 #include "top.h" 55 #include "machine.h" 56 57 static int check_nlist __P((struct nlist *)); 58 static int getkval __P((unsigned long, int *, int, char *)); 59 extern char* printable __P((char *)); 60 int swapmode __P((int *retavail, int *retfree)); 61 static int smpmode; 62 static int namelength; 63 static int cmdlength; 64 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle 69 { 70 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 71 int remaining; /* number of pointers remaining */ 72 }; 73 74 /* declarations for load_avg */ 75 #include "loadavg.h" 76 77 #define PP(pp, field) ((pp)->kp_proc . field) 78 #define EP(pp, field) ((pp)->kp_eproc . field) 79 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) 80 81 /* define what weighted cpu is. */ 82 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ 83 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) 84 85 /* what we consider to be process size: */ 86 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024) 87 88 /* definitions for indices in the nlist array */ 89 90 static struct nlist nlst[] = { 91 #define X_CCPU 0 92 { "_ccpu" }, 93 #define X_CP_TIME 1 94 { "_cp_time" }, 95 #define X_AVENRUN 2 96 { "_averunnable" }, 97 98 #define X_BUFSPACE 3 99 { "_bufspace" }, /* K in buffer cache */ 100 #define X_CNT 4 101 { "_cnt" }, /* struct vmmeter cnt */ 102 103 /* Last pid */ 104 #define X_LASTPID 5 105 { "_nextpid" }, 106 { 0 } 107 }; 108 109 /* 110 * These definitions control the format of the per-process area 111 */ 112 113 static char smp_header[] = 114 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 115 116 #define smp_Proc_format \ 117 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" 118 119 static char up_header[] = 120 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 121 122 #define up_Proc_format \ 123 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 124 125 126 127 /* process state names for the "STATE" column of the display */ 128 /* the extra nulls in the string "run" are for adding a slash and 129 the processor number when needed */ 130 131 char *state_abbrev[] = 132 { 133 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", 134 }; 135 136 137 static kvm_t *kd; 138 139 /* values that we stash away in _init and use in later routines */ 140 141 static double logcpu; 142 143 /* these are retrieved from the kernel in _init */ 144 145 static load_avg ccpu; 146 147 /* these are offsets obtained via nlist and used in the get_ functions */ 148 149 static unsigned long cp_time_offset; 150 static unsigned long avenrun_offset; 151 static unsigned long lastpid_offset; 152 static long lastpid; 153 static unsigned long cnt_offset; 154 static unsigned long bufspace_offset; 155 static long cnt; 156 157 /* these are for calculating cpu state percentages */ 158 159 static long cp_time[CPUSTATES]; 160 static long cp_old[CPUSTATES]; 161 static long cp_diff[CPUSTATES]; 162 163 /* these are for detailing the process states */ 164 165 int process_states[6]; 166 char *procstatenames[] = { 167 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 168 " zombie, ", 169 NULL 170 }; 171 172 /* these are for detailing the cpu states */ 173 174 int cpu_states[CPUSTATES]; 175 char *cpustatenames[] = { 176 "user", "nice", "system", "interrupt", "idle", NULL 177 }; 178 179 /* these are for detailing the memory statistics */ 180 181 int memory_stats[7]; 182 char *memorynames[] = { 183 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 184 NULL 185 }; 186 187 int swap_stats[7]; 188 char *swapnames[] = { 189 /* 0 1 2 3 4 5 */ 190 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 191 NULL 192 }; 193 194 195 /* these are for keeping track of the proc array */ 196 197 static int nproc; 198 static int onproc = -1; 199 static int pref_len; 200 static struct kinfo_proc *pbase; 201 static struct kinfo_proc **pref; 202 203 /* these are for getting the memory statistics */ 204 205 static int pageshift; /* log base 2 of the pagesize */ 206 207 /* define pagetok in terms of pageshift */ 208 209 #define pagetok(size) ((size) << pageshift) 210 211 /* useful externals */ 212 long percentages(); 213 214 #ifdef ORDER 215 /* sorting orders. first is default */ 216 char *ordernames[] = { 217 "cpu", "size", "res", "time", "pri", NULL 218 }; 219 #endif 220 221 int 222 machine_init(statics) 223 224 struct statics *statics; 225 226 { 227 register int i = 0; 228 register int pagesize; 229 int modelen; 230 struct passwd *pw; 231 232 modelen = sizeof(smpmode); 233 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 234 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || 235 modelen != sizeof(smpmode)) 236 smpmode = 0; 237 238 while ((pw = getpwent()) != NULL) { 239 if (strlen(pw->pw_name) > namelength) 240 namelength = strlen(pw->pw_name); 241 } 242 if (namelength < 8) 243 namelength = 8; 244 if (namelength > 16) 245 namelength = 16; 246 247 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 248 return -1; 249 250 251 /* get the list of symbols we want to access in the kernel */ 252 (void) kvm_nlist(kd, nlst); 253 if (nlst[0].n_type == 0) 254 { 255 fprintf(stderr, "top: nlist failed\n"); 256 return(-1); 257 } 258 259 /* make sure they were all found */ 260 if (i > 0 && check_nlist(nlst) > 0) 261 { 262 return(-1); 263 } 264 265 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 266 nlst[X_CCPU].n_name); 267 268 /* stash away certain offsets for later use */ 269 cp_time_offset = nlst[X_CP_TIME].n_value; 270 avenrun_offset = nlst[X_AVENRUN].n_value; 271 lastpid_offset = nlst[X_LASTPID].n_value; 272 cnt_offset = nlst[X_CNT].n_value; 273 bufspace_offset = nlst[X_BUFSPACE].n_value; 274 275 /* this is used in calculating WCPU -- calculate it ahead of time */ 276 logcpu = log(loaddouble(ccpu)); 277 278 pbase = NULL; 279 pref = NULL; 280 nproc = 0; 281 onproc = -1; 282 /* get the page size with "getpagesize" and calculate pageshift from it */ 283 pagesize = getpagesize(); 284 pageshift = 0; 285 while (pagesize > 1) 286 { 287 pageshift++; 288 pagesize >>= 1; 289 } 290 291 /* we only need the amount of log(2)1024 for our conversion */ 292 pageshift -= LOG1024; 293 294 /* fill in the statics information */ 295 statics->procstate_names = procstatenames; 296 statics->cpustate_names = cpustatenames; 297 statics->memory_names = memorynames; 298 statics->swap_names = swapnames; 299 #ifdef ORDER 300 statics->order_names = ordernames; 301 #endif 302 303 /* all done! */ 304 return(0); 305 } 306 307 char *format_header(uname_field) 308 309 register char *uname_field; 310 311 { 312 register char *ptr; 313 static char Header[128]; 314 315 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 316 namelength, namelength, uname_field); 317 318 cmdlength = 80 - strlen(Header) + 6; 319 320 return Header; 321 } 322 323 static int swappgsin = -1; 324 static int swappgsout = -1; 325 extern struct timeval timeout; 326 327 void 328 get_system_info(si) 329 330 struct system_info *si; 331 332 { 333 long total; 334 load_avg avenrun[3]; 335 int mib[2]; 336 struct timeval boottime; 337 size_t bt_size; 338 339 /* get the cp_time array */ 340 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 341 nlst[X_CP_TIME].n_name); 342 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 343 nlst[X_AVENRUN].n_name); 344 345 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 346 "!"); 347 348 /* convert load averages to doubles */ 349 { 350 register int i; 351 register double *infoloadp; 352 load_avg *avenrunp; 353 354 #ifdef notyet 355 struct loadavg sysload; 356 int size; 357 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 358 #endif 359 360 infoloadp = si->load_avg; 361 avenrunp = avenrun; 362 for (i = 0; i < 3; i++) 363 { 364 #ifdef notyet 365 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 366 #endif 367 *infoloadp++ = loaddouble(*avenrunp++); 368 } 369 } 370 371 /* convert cp_time counts to percentages */ 372 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 373 374 /* sum memory & swap statistics */ 375 { 376 struct vmmeter sum; 377 static unsigned int swap_delay = 0; 378 static int swapavail = 0; 379 static int swapfree = 0; 380 static int bufspace = 0; 381 382 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 383 "_cnt"); 384 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 385 "_bufspace"); 386 387 /* convert memory stats to Kbytes */ 388 memory_stats[0] = pagetok(sum.v_active_count); 389 memory_stats[1] = pagetok(sum.v_inactive_count); 390 memory_stats[2] = pagetok(sum.v_wire_count); 391 memory_stats[3] = pagetok(sum.v_cache_count); 392 memory_stats[4] = bufspace / 1024; 393 memory_stats[5] = pagetok(sum.v_free_count); 394 memory_stats[6] = -1; 395 396 /* first interval */ 397 if (swappgsin < 0) { 398 swap_stats[4] = 0; 399 swap_stats[5] = 0; 400 } 401 402 /* compute differences between old and new swap statistic */ 403 else { 404 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 405 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 406 } 407 408 swappgsin = sum.v_swappgsin; 409 swappgsout = sum.v_swappgsout; 410 411 /* call CPU heavy swapmode() only for changes */ 412 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 413 swap_stats[3] = swapmode(&swapavail, &swapfree); 414 swap_stats[0] = swapavail; 415 swap_stats[1] = swapavail - swapfree; 416 swap_stats[2] = swapfree; 417 } 418 swap_delay = 1; 419 swap_stats[6] = -1; 420 } 421 422 /* set arrays and strings */ 423 si->cpustates = cpu_states; 424 si->memory = memory_stats; 425 si->swap = swap_stats; 426 427 428 if(lastpid > 0) { 429 si->last_pid = lastpid; 430 } else { 431 si->last_pid = -1; 432 } 433 434 /* 435 * Print how long system has been up. 436 * (Found by looking getting "boottime" from the kernel) 437 */ 438 mib[0] = CTL_KERN; 439 mib[1] = KERN_BOOTTIME; 440 bt_size = sizeof(boottime); 441 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 442 boottime.tv_sec != 0) { 443 si->boottime = boottime; 444 } else { 445 si->boottime.tv_sec = -1; 446 } 447 } 448 449 static struct handle handle; 450 451 caddr_t get_process_info(si, sel, compare) 452 453 struct system_info *si; 454 struct process_select *sel; 455 int (*compare)(); 456 457 { 458 register int i; 459 register int total_procs; 460 register int active_procs; 461 register struct kinfo_proc **prefp; 462 register struct kinfo_proc *pp; 463 464 /* these are copied out of sel for speed */ 465 int show_idle; 466 int show_self; 467 int show_system; 468 int show_uid; 469 int show_command; 470 471 472 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 473 if (nproc > onproc) 474 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 475 * (onproc = nproc)); 476 if (pref == NULL || pbase == NULL) { 477 (void) fprintf(stderr, "top: Out of memory.\n"); 478 quit(23); 479 } 480 /* get a pointer to the states summary array */ 481 si->procstates = process_states; 482 483 /* set up flags which define what we are going to select */ 484 show_idle = sel->idle; 485 show_self = sel->self; 486 show_system = sel->system; 487 show_uid = sel->uid != -1; 488 show_command = sel->command != NULL; 489 490 /* count up process states and get pointers to interesting procs */ 491 total_procs = 0; 492 active_procs = 0; 493 memset((char *)process_states, 0, sizeof(process_states)); 494 prefp = pref; 495 for (pp = pbase, i = 0; i < nproc; pp++, i++) 496 { 497 /* 498 * Place pointers to each valid proc structure in pref[]. 499 * Process slots that are actually in use have a non-zero 500 * status field. Processes with P_SYSTEM set are system 501 * processes---these get ignored unless show_sysprocs is set. 502 */ 503 if (PP(pp, p_stat) != 0 && 504 (show_self != PP(pp, p_pid)) && 505 (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) 506 { 507 total_procs++; 508 process_states[(unsigned char) PP(pp, p_stat)]++; 509 if ((PP(pp, p_stat) != SZOMB) && 510 (show_idle || (PP(pp, p_pctcpu) != 0) || 511 (PP(pp, p_stat) == SRUN)) && 512 (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) 513 { 514 *prefp++ = pp; 515 active_procs++; 516 } 517 } 518 } 519 520 /* if requested, sort the "interesting" processes */ 521 if (compare != NULL) 522 { 523 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 524 } 525 526 /* remember active and total counts */ 527 si->p_total = total_procs; 528 si->p_active = pref_len = active_procs; 529 530 /* pass back a handle */ 531 handle.next_proc = pref; 532 handle.remaining = active_procs; 533 return((caddr_t)&handle); 534 } 535 536 char fmt[128]; /* static area where result is built */ 537 538 char *format_next_process(handle, get_userid) 539 540 caddr_t handle; 541 char *(*get_userid)(); 542 543 { 544 register struct kinfo_proc *pp; 545 register long cputime; 546 register double pct; 547 struct handle *hp; 548 char status[16]; 549 int state; 550 551 /* find and remember the next proc structure */ 552 hp = (struct handle *)handle; 553 pp = *(hp->next_proc++); 554 hp->remaining--; 555 556 557 /* get the process's user struct and set cputime */ 558 if ((PP(pp, p_flag) & P_INMEM) == 0) { 559 /* 560 * Print swapped processes as <pname> 561 */ 562 char *comm = PP(pp, p_comm); 563 #define COMSIZ sizeof(PP(pp, p_comm)) 564 char buf[COMSIZ]; 565 (void) strncpy(buf, comm, COMSIZ); 566 comm[0] = '<'; 567 (void) strncpy(&comm[1], buf, COMSIZ - 2); 568 comm[COMSIZ - 2] = '\0'; 569 (void) strncat(comm, ">", COMSIZ - 1); 570 comm[COMSIZ - 1] = '\0'; 571 } 572 573 #if 0 574 /* This does not produce the correct results */ 575 cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); 576 #endif 577 /* This does not count interrupts */ 578 cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000; 579 580 /* calculate the base for cpu percentages */ 581 pct = pctdouble(PP(pp, p_pctcpu)); 582 583 /* generate "STATE" field */ 584 switch (state = PP(pp, p_stat)) { 585 case SRUN: 586 if (smpmode && PP(pp, p_oncpu) != 0xff) 587 sprintf(status, "CPU%d", PP(pp, p_oncpu)); 588 else 589 strcpy(status, "RUN"); 590 break; 591 case SSLEEP: 592 if (PP(pp, p_wmesg) != NULL) { 593 sprintf(status, "%.6s", EP(pp, e_wmesg)); 594 break; 595 } 596 /* fall through */ 597 default: 598 599 if (state >= 0 && 600 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 601 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); 602 else 603 sprintf(status, "?%5d", state); 604 break; 605 } 606 607 /* format this entry */ 608 sprintf(fmt, 609 smpmode ? smp_Proc_format : up_Proc_format, 610 PP(pp, p_pid), 611 namelength, namelength, 612 (*get_userid)(EP(pp, e_pcred.p_ruid)), 613 PP(pp, p_priority) - PZERO, 614 615 /* 616 * normal time -> nice value -20 - +20 617 * real time 0 - 31 -> nice value -52 - -21 618 * idle time 0 - 31 -> nice value +21 - +52 619 */ 620 (PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ? 621 PP(pp, p_nice) - NZERO : 622 (RTP_PRIO_IS_REALTIME(PP(pp, p_rtprio.type)) ? 623 (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) : 624 (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))), 625 format_k2(PROCSIZE(pp)), 626 format_k2(pagetok(VP(pp, vm_rssize))), 627 status, 628 smpmode ? PP(pp, p_lastcpu) : 0, 629 format_time(cputime), 630 100.0 * weighted_cpu(pct, pp), 631 100.0 * pct, 632 cmdlength, 633 printable(PP(pp, p_comm))); 634 635 /* return the result */ 636 return(fmt); 637 } 638 639 640 /* 641 * check_nlist(nlst) - checks the nlist to see if any symbols were not 642 * found. For every symbol that was not found, a one-line 643 * message is printed to stderr. The routine returns the 644 * number of symbols NOT found. 645 */ 646 647 static int check_nlist(nlst) 648 649 register struct nlist *nlst; 650 651 { 652 register int i; 653 654 /* check to see if we got ALL the symbols we requested */ 655 /* this will write one line to stderr for every symbol not found */ 656 657 i = 0; 658 while (nlst->n_name != NULL) 659 { 660 if (nlst->n_type == 0) 661 { 662 /* this one wasn't found */ 663 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 664 nlst->n_name); 665 i = 1; 666 } 667 nlst++; 668 } 669 670 return(i); 671 } 672 673 674 /* 675 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 676 * "offset" is the byte offset into the kernel for the desired value, 677 * "ptr" points to a buffer into which the value is retrieved, 678 * "size" is the size of the buffer (and the object to retrieve), 679 * "refstr" is a reference string used when printing error meessages, 680 * if "refstr" starts with a '!', then a failure on read will not 681 * be fatal (this may seem like a silly way to do things, but I 682 * really didn't want the overhead of another argument). 683 * 684 */ 685 686 static int getkval(offset, ptr, size, refstr) 687 688 unsigned long offset; 689 int *ptr; 690 int size; 691 char *refstr; 692 693 { 694 if (kvm_read(kd, offset, (char *) ptr, size) != size) 695 { 696 if (*refstr == '!') 697 { 698 return(0); 699 } 700 else 701 { 702 fprintf(stderr, "top: kvm_read for %s: %s\n", 703 refstr, strerror(errno)); 704 quit(23); 705 } 706 } 707 return(1); 708 } 709 710 /* comparison routines for qsort */ 711 712 /* 713 * proc_compare - comparison function for "qsort" 714 * Compares the resource consumption of two processes using five 715 * distinct keys. The keys (in descending order of importance) are: 716 * percent cpu, cpu ticks, state, resident set size, total virtual 717 * memory usage. The process states are ordered as follows (from least 718 * to most important): WAIT, zombie, sleep, stop, start, run. The 719 * array declaration below maps a process state index into a number 720 * that reflects this ordering. 721 */ 722 723 static unsigned char sorted_state[] = 724 { 725 0, /* not used */ 726 3, /* sleep */ 727 1, /* ABANDONED (WAIT) */ 728 6, /* run */ 729 5, /* start */ 730 2, /* zombie */ 731 4 /* stop */ 732 }; 733 734 735 #define ORDERKEY_PCTCPU \ 736 if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \ 737 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 738 739 #define ORDERKEY_CPTICKS \ 740 if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0) 741 742 #define ORDERKEY_STATE \ 743 if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \ 744 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) 745 746 #define ORDERKEY_PRIO \ 747 if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) 748 749 #define ORDERKEY_RSSIZE \ 750 if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) 751 752 #define ORDERKEY_MEM \ 753 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 754 755 /* compare_cpu - the comparison function for sorting by cpu percentage */ 756 757 int 758 #ifdef ORDER 759 compare_cpu(pp1, pp2) 760 #else 761 proc_compare(pp1, pp2) 762 #endif 763 764 struct proc **pp1; 765 struct proc **pp2; 766 767 { 768 register struct kinfo_proc *p1; 769 register struct kinfo_proc *p2; 770 register int result; 771 register pctcpu lresult; 772 773 /* remove one level of indirection */ 774 p1 = *(struct kinfo_proc **) pp1; 775 p2 = *(struct kinfo_proc **) pp2; 776 777 ORDERKEY_PCTCPU 778 ORDERKEY_CPTICKS 779 ORDERKEY_STATE 780 ORDERKEY_PRIO 781 ORDERKEY_RSSIZE 782 ORDERKEY_MEM 783 ; 784 785 return(result); 786 } 787 788 #ifdef ORDER 789 /* compare routines */ 790 int compare_size(), compare_res(), compare_time(), compare_prio(); 791 792 int (*proc_compares[])() = { 793 compare_cpu, 794 compare_size, 795 compare_res, 796 compare_time, 797 compare_prio, 798 NULL 799 }; 800 801 /* compare_size - the comparison function for sorting by total memory usage */ 802 803 int 804 compare_size(pp1, pp2) 805 806 struct proc **pp1; 807 struct proc **pp2; 808 809 { 810 register struct kinfo_proc *p1; 811 register struct kinfo_proc *p2; 812 register int result; 813 register pctcpu lresult; 814 815 /* remove one level of indirection */ 816 p1 = *(struct kinfo_proc **) pp1; 817 p2 = *(struct kinfo_proc **) pp2; 818 819 ORDERKEY_MEM 820 ORDERKEY_RSSIZE 821 ORDERKEY_PCTCPU 822 ORDERKEY_CPTICKS 823 ORDERKEY_STATE 824 ORDERKEY_PRIO 825 ; 826 827 return(result); 828 } 829 830 /* compare_res - the comparison function for sorting by resident set size */ 831 832 int 833 compare_res(pp1, pp2) 834 835 struct proc **pp1; 836 struct proc **pp2; 837 838 { 839 register struct kinfo_proc *p1; 840 register struct kinfo_proc *p2; 841 register int result; 842 register pctcpu lresult; 843 844 /* remove one level of indirection */ 845 p1 = *(struct kinfo_proc **) pp1; 846 p2 = *(struct kinfo_proc **) pp2; 847 848 ORDERKEY_RSSIZE 849 ORDERKEY_MEM 850 ORDERKEY_PCTCPU 851 ORDERKEY_CPTICKS 852 ORDERKEY_STATE 853 ORDERKEY_PRIO 854 ; 855 856 return(result); 857 } 858 859 /* compare_time - the comparison function for sorting by total cpu time */ 860 861 int 862 compare_time(pp1, pp2) 863 864 struct proc **pp1; 865 struct proc **pp2; 866 867 { 868 register struct kinfo_proc *p1; 869 register struct kinfo_proc *p2; 870 register int result; 871 register pctcpu lresult; 872 873 /* remove one level of indirection */ 874 p1 = *(struct kinfo_proc **) pp1; 875 p2 = *(struct kinfo_proc **) pp2; 876 877 ORDERKEY_CPTICKS 878 ORDERKEY_PCTCPU 879 ORDERKEY_STATE 880 ORDERKEY_PRIO 881 ORDERKEY_RSSIZE 882 ORDERKEY_MEM 883 ; 884 885 return(result); 886 } 887 888 /* compare_prio - the comparison function for sorting by cpu percentage */ 889 890 int 891 compare_prio(pp1, pp2) 892 893 struct proc **pp1; 894 struct proc **pp2; 895 896 { 897 register struct kinfo_proc *p1; 898 register struct kinfo_proc *p2; 899 register int result; 900 register pctcpu lresult; 901 902 /* remove one level of indirection */ 903 p1 = *(struct kinfo_proc **) pp1; 904 p2 = *(struct kinfo_proc **) pp2; 905 906 ORDERKEY_PRIO 907 ORDERKEY_CPTICKS 908 ORDERKEY_PCTCPU 909 ORDERKEY_STATE 910 ORDERKEY_RSSIZE 911 ORDERKEY_MEM 912 ; 913 914 return(result); 915 } 916 #endif 917 918 /* 919 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 920 * the process does not exist. 921 * It is EXTREMLY IMPORTANT that this function work correctly. 922 * If top runs setuid root (as in SVR4), then this function 923 * is the only thing that stands in the way of a serious 924 * security problem. It validates requests for the "kill" 925 * and "renice" commands. 926 */ 927 928 int proc_owner(pid) 929 930 int pid; 931 932 { 933 register int cnt; 934 register struct kinfo_proc **prefp; 935 register struct kinfo_proc *pp; 936 937 prefp = pref; 938 cnt = pref_len; 939 while (--cnt >= 0) 940 { 941 pp = *prefp++; 942 if (PP(pp, p_pid) == (pid_t)pid) 943 { 944 return((int)EP(pp, e_pcred.p_ruid)); 945 } 946 } 947 return(-1); 948 } 949 950 951 /* 952 * swapmode is based on a program called swapinfo written 953 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 954 */ 955 956 #define SVAR(var) __STRING(var) /* to force expansion */ 957 #define KGET(idx, var) \ 958 KGET1(idx, &var, sizeof(var), SVAR(var)) 959 #define KGET1(idx, p, s, msg) \ 960 KGET2(nlst[idx].n_value, p, s, msg) 961 #define KGET2(addr, p, s, msg) \ 962 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 963 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 964 return (0); \ 965 } 966 #define KGETRET(addr, p, s, msg) \ 967 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 968 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 969 return (0); \ 970 } 971 972 973 int 974 swapmode(retavail, retfree) 975 int *retavail; 976 int *retfree; 977 { 978 int n; 979 int pagesize = getpagesize(); 980 struct kvm_swap swapary[1]; 981 982 *retavail = 0; 983 *retfree = 0; 984 985 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 986 987 n = kvm_getswapinfo(kd, swapary, 1, 0); 988 if (n < 0 || swapary[0].ksw_total == 0) 989 return(0); 990 991 *retavail = CONVERT(swapary[0].ksw_total); 992 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 993 994 n = (int)((double)swapary[0].ksw_used * 100.0 / 995 (double)swapary[0].ksw_total); 996 return(n); 997 } 998 999