1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 static int has_swap; 154 155 /* these are for keeping track of the proc array */ 156 157 static int nproc; 158 static int onproc = -1; 159 static int pref_len; 160 static struct kinfo_proc *pbase; 161 static struct kinfo_proc **pref; 162 static struct kinfo_proc *previous_procs; 163 static struct kinfo_proc **previous_pref; 164 static int previous_proc_count = 0; 165 static int previous_proc_count_max = 0; 166 static int previous_thread; 167 168 /* data used for recalculating pctcpu */ 169 static double *pcpu; 170 static struct timespec proc_uptime; 171 static struct timeval proc_wall_time; 172 static struct timeval previous_wall_time; 173 static uint64_t previous_interval = 0; 174 175 /* total number of io operations */ 176 static long total_inblock; 177 static long total_oublock; 178 static long total_majflt; 179 180 /* these are for getting the memory statistics */ 181 182 static int arc_enabled; 183 static int carc_enabled; 184 static int pageshift; /* log base 2 of the pagesize */ 185 186 /* define pagetok in terms of pageshift */ 187 188 #define pagetok(size) ((size) << pageshift) 189 190 /* swap usage */ 191 #define ki_swap(kip) \ 192 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 193 194 /* 195 * Sorting orders. The first element is the default. 196 */ 197 static const char *ordernames[] = { 198 "cpu", "size", "res", "time", "pri", "threads", 199 "total", "read", "write", "fault", "vcsw", "ivcsw", 200 "jid", "swap", "pid", NULL 201 }; 202 203 /* Per-cpu time states */ 204 static int maxcpu; 205 static int maxid; 206 static int ncpus; 207 static unsigned long cpumask; 208 static long *times; 209 static long *pcpu_cp_time; 210 static long *pcpu_cp_old; 211 static long *pcpu_cp_diff; 212 static int *pcpu_cpu_states; 213 214 static int compare_swap(const void *a, const void *b); 215 static int compare_jid(const void *a, const void *b); 216 static int compare_pid(const void *a, const void *b); 217 static int compare_tid(const void *a, const void *b); 218 static const char *format_nice(const struct kinfo_proc *pp); 219 static void getsysctl(const char *name, void *ptr, size_t len); 220 static int swapmode(int *retavail, int *retfree); 221 static void update_layout(void); 222 static int find_uid(uid_t needle, int *haystack); 223 224 static int 225 find_uid(uid_t needle, int *haystack) 226 { 227 size_t i = 0; 228 229 for (; i < TOP_MAX_UIDS; ++i) 230 if ((uid_t)haystack[i] == needle) 231 return 1; 232 return (0); 233 } 234 235 void 236 toggle_pcpustats(void) 237 { 238 239 if (ncpus == 1) 240 return; 241 update_layout(); 242 } 243 244 /* Adjust display based on ncpus and the ARC state. */ 245 static void 246 update_layout(void) 247 { 248 249 y_mem = 3; 250 y_arc = 4; 251 y_carc = 5; 252 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 253 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 254 y_message = 4 + arc_enabled + carc_enabled + has_swap; 255 y_header = 5 + arc_enabled + carc_enabled + has_swap; 256 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 257 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 258 259 if (pcpu_stats) { 260 y_mem += ncpus - 1; 261 y_arc += ncpus - 1; 262 y_carc += ncpus - 1; 263 y_swap += ncpus - 1; 264 y_idlecursor += ncpus - 1; 265 y_message += ncpus - 1; 266 y_header += ncpus - 1; 267 y_procs += ncpus - 1; 268 Header_lines += ncpus - 1; 269 } 270 } 271 272 int 273 machine_init(struct statics *statics) 274 { 275 int i, j, empty, pagesize; 276 uint64_t arc_size; 277 int carc_en, nswapdev; 278 size_t size; 279 280 size = sizeof(smpmode); 281 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 282 NULL, 0) != 0 && 283 sysctlbyname("kern.smp.active", &smpmode, &size, 284 NULL, 0) != 0) || 285 size != sizeof(smpmode)) 286 smpmode = 0; 287 288 size = sizeof(arc_size); 289 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 290 NULL, 0) == 0 && arc_size != 0) 291 arc_enabled = 1; 292 size = sizeof(carc_en); 293 if (arc_enabled && 294 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 295 NULL, 0) == 0 && carc_en == 1) 296 carc_enabled = 1; 297 298 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 299 if (kd == NULL) 300 return (-1); 301 302 size = sizeof(nswapdev); 303 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 304 0) == 0 && nswapdev != 0) 305 has_swap = 1; 306 307 GETSYSCTL("kern.ccpu", ccpu); 308 309 /* this is used in calculating WCPU -- calculate it ahead of time */ 310 logcpu = log(loaddouble(ccpu)); 311 312 pbase = NULL; 313 pref = NULL; 314 pcpu = NULL; 315 nproc = 0; 316 onproc = -1; 317 318 /* get the page size and calculate pageshift from it */ 319 pagesize = getpagesize(); 320 pageshift = 0; 321 while (pagesize > 1) { 322 pageshift++; 323 pagesize >>= 1; 324 } 325 326 /* we only need the amount of log(2)1024 for our conversion */ 327 pageshift -= LOG1024; 328 329 /* fill in the statics information */ 330 statics->procstate_names = procstatenames; 331 statics->cpustate_names = cpustatenames; 332 statics->memory_names = memorynames; 333 if (arc_enabled) 334 statics->arc_names = arcnames; 335 else 336 statics->arc_names = NULL; 337 if (carc_enabled) 338 statics->carc_names = carcnames; 339 else 340 statics->carc_names = NULL; 341 if (has_swap) 342 statics->swap_names = swapnames; 343 else 344 statics->swap_names = NULL; 345 statics->order_names = ordernames; 346 347 /* Allocate state for per-CPU stats. */ 348 cpumask = 0; 349 ncpus = 0; 350 GETSYSCTL("kern.smp.maxcpus", maxcpu); 351 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 352 if (times == NULL) 353 err(1, "calloc for kern.smp.maxcpus"); 354 size = sizeof(long) * maxcpu * CPUSTATES; 355 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 356 err(1, "sysctlbyname kern.cp_times"); 357 pcpu_cp_time = calloc(1, size); 358 maxid = (size / CPUSTATES / sizeof(long)) - 1; 359 for (i = 0; i <= maxid; i++) { 360 empty = 1; 361 for (j = 0; empty && j < CPUSTATES; j++) { 362 if (times[i * CPUSTATES + j] != 0) 363 empty = 0; 364 } 365 if (!empty) { 366 cpumask |= (1ul << i); 367 ncpus++; 368 } 369 } 370 assert(ncpus > 0); 371 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 372 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 373 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 374 statics->ncpus = ncpus; 375 376 update_layout(); 377 378 /* all done! */ 379 return (0); 380 } 381 382 char * 383 format_header(const char *uname_field) 384 { 385 static struct sbuf* header = NULL; 386 387 /* clean up from last time. */ 388 if (header != NULL) { 389 sbuf_clear(header); 390 } else { 391 header = sbuf_new_auto(); 392 } 393 394 switch (displaymode) { 395 case DISP_CPU: { 396 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 397 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 398 ps.jail ? " JID" : ""); 399 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 400 if (!ps.thread) { 401 sbuf_cat(header, "THR "); 402 } 403 sbuf_cat(header, "PRI NICE SIZE RES "); 404 if (ps.swap) { 405 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 406 } 407 sbuf_cat(header, "STATE "); 408 if (smpmode) { 409 sbuf_cat(header, "C "); 410 } 411 sbuf_cat(header, "TIME "); 412 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 413 sbuf_cat(header, "COMMAND"); 414 sbuf_finish(header); 415 break; 416 } 417 case DISP_IO: { 418 sbuf_printf(header, " %s%*s %-*.*s", 419 ps.thread_id ? " THR" : "PID", 420 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 421 namelength, namelength, uname_field); 422 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 423 sbuf_finish(header); 424 break; 425 } 426 case DISP_MAX: 427 assert("displaymode must not be set to DISP_MAX"); 428 } 429 430 return sbuf_data(header); 431 } 432 433 static int swappgsin = -1; 434 static int swappgsout = -1; 435 436 437 void 438 get_system_info(struct system_info *si) 439 { 440 struct loadavg sysload; 441 int mib[2]; 442 struct timeval boottime; 443 uint64_t arc_stat, arc_stat2; 444 int i, j; 445 size_t size; 446 447 /* get the CPU stats */ 448 size = (maxid + 1) * CPUSTATES * sizeof(long); 449 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 450 err(1, "sysctlbyname kern.cp_times"); 451 GETSYSCTL("kern.cp_time", cp_time); 452 GETSYSCTL("vm.loadavg", sysload); 453 GETSYSCTL("kern.lastpid", lastpid); 454 455 /* convert load averages to doubles */ 456 for (i = 0; i < 3; i++) 457 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 458 459 /* convert cp_time counts to percentages */ 460 for (i = j = 0; i <= maxid; i++) { 461 if ((cpumask & (1ul << i)) == 0) 462 continue; 463 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 464 &pcpu_cp_time[j * CPUSTATES], 465 &pcpu_cp_old[j * CPUSTATES], 466 &pcpu_cp_diff[j * CPUSTATES]); 467 j++; 468 } 469 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 470 471 /* sum memory & swap statistics */ 472 { 473 static unsigned int swap_delay = 0; 474 static int swapavail = 0; 475 static int swapfree = 0; 476 static long bufspace = 0; 477 static uint64_t nspgsin, nspgsout; 478 479 GETSYSCTL("vfs.bufspace", bufspace); 480 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 481 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 482 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 483 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 484 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 485 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 486 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 487 /* convert memory stats to Kbytes */ 488 memory_stats[0] = pagetok(memory_stats[0]); 489 memory_stats[1] = pagetok(memory_stats[1]); 490 memory_stats[2] = pagetok(memory_stats[2]); 491 memory_stats[3] = pagetok(memory_stats[3]); 492 memory_stats[4] = bufspace / 1024; 493 memory_stats[5] = pagetok(memory_stats[5]); 494 memory_stats[6] = -1; 495 496 /* first interval */ 497 if (swappgsin < 0) { 498 swap_stats[4] = 0; 499 swap_stats[5] = 0; 500 } 501 502 /* compute differences between old and new swap statistic */ 503 else { 504 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 505 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 506 } 507 508 swappgsin = nspgsin; 509 swappgsout = nspgsout; 510 511 /* call CPU heavy swapmode() only for changes */ 512 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 513 swap_stats[3] = swapmode(&swapavail, &swapfree); 514 swap_stats[0] = swapavail; 515 swap_stats[1] = swapavail - swapfree; 516 swap_stats[2] = swapfree; 517 } 518 swap_delay = 1; 519 swap_stats[6] = -1; 520 } 521 522 if (arc_enabled) { 523 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 524 arc_stats[0] = arc_stat >> 10; 525 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 526 arc_stats[1] = arc_stat >> 10; 527 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 528 arc_stats[2] = arc_stat >> 10; 529 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 530 arc_stats[3] = arc_stat >> 10; 531 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 532 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 533 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 534 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 535 arc_stats[5] = arc_stat >> 10; 536 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 537 arc_stats[5] += arc_stat >> 10; 538 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 539 arc_stats[5] += arc_stat >> 10; 540 si->arc = arc_stats; 541 } 542 if (carc_enabled) { 543 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 544 carc_stats[0] = arc_stat >> 10; 545 carc_stats[2] = arc_stat >> 10; /* For ratio */ 546 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 547 carc_stats[1] = arc_stat >> 10; 548 si->carc = carc_stats; 549 } 550 551 /* set arrays and strings */ 552 if (pcpu_stats) { 553 si->cpustates = pcpu_cpu_states; 554 si->ncpus = ncpus; 555 } else { 556 si->cpustates = cpu_states; 557 si->ncpus = 1; 558 } 559 si->memory = memory_stats; 560 si->swap = swap_stats; 561 562 563 if (lastpid > 0) { 564 si->last_pid = lastpid; 565 } else { 566 si->last_pid = -1; 567 } 568 569 /* 570 * Print how long system has been up. 571 * (Found by looking getting "boottime" from the kernel) 572 */ 573 mib[0] = CTL_KERN; 574 mib[1] = KERN_BOOTTIME; 575 size = sizeof(boottime); 576 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 577 boottime.tv_sec != 0) { 578 si->boottime = boottime; 579 } else { 580 si->boottime.tv_sec = -1; 581 } 582 } 583 584 #define NOPROC ((void *)-1) 585 586 /* 587 * We need to compare data from the old process entry with the new 588 * process entry. 589 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 590 * structure to cache the mapping. We also use a negative cache pointer 591 * of NOPROC to avoid duplicate lookups. 592 * XXX: this could be done when the actual processes are fetched, we do 593 * it here out of laziness. 594 */ 595 static const struct kinfo_proc * 596 get_old_proc(struct kinfo_proc *pp) 597 { 598 const struct kinfo_proc * const *oldpp, *oldp; 599 600 /* 601 * If this is the first fetch of the kinfo_procs then we don't have 602 * any previous entries. 603 */ 604 if (previous_proc_count == 0) 605 return (NULL); 606 /* negative cache? */ 607 if (pp->ki_udata == NOPROC) 608 return (NULL); 609 /* cached? */ 610 if (pp->ki_udata != NULL) 611 return (pp->ki_udata); 612 /* 613 * Not cached, 614 * 1) look up based on pid. 615 * 2) compare process start. 616 * If we fail here, then setup a negative cache entry, otherwise 617 * cache it. 618 */ 619 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 620 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 621 if (oldpp == NULL) { 622 pp->ki_udata = NOPROC; 623 return (NULL); 624 } 625 oldp = *oldpp; 626 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 627 pp->ki_udata = NOPROC; 628 return (NULL); 629 } 630 pp->ki_udata = __DECONST(void *, oldp); 631 return (oldp); 632 } 633 634 /* 635 * Return the total amount of IO done in blocks in/out and faults. 636 * store the values individually in the pointers passed in. 637 */ 638 static long 639 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 640 long *vcsw, long *ivcsw) 641 { 642 const struct kinfo_proc *oldp; 643 static struct kinfo_proc dummy; 644 long ret; 645 646 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 647 if (oldp == NULL) { 648 memset(&dummy, 0, sizeof(dummy)); 649 oldp = &dummy; 650 } 651 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 652 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 653 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 654 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 655 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 656 ret = 657 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 658 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 659 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 660 return (ret); 661 } 662 663 /* 664 * If there was a previous update, use the delta in ki_runtime over 665 * the previous interval to calculate pctcpu. Otherwise, fall back 666 * to using the kernel's ki_pctcpu. 667 */ 668 static double 669 proc_calc_pctcpu(struct kinfo_proc *pp) 670 { 671 const struct kinfo_proc *oldp; 672 673 if (previous_interval != 0) { 674 oldp = get_old_proc(pp); 675 if (oldp != NULL) 676 return ((double)(pp->ki_runtime - oldp->ki_runtime) 677 / previous_interval); 678 679 /* 680 * If this process/thread was created during the previous 681 * interval, charge it's total runtime to the previous 682 * interval. 683 */ 684 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 685 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 686 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 687 return ((double)pp->ki_runtime / previous_interval); 688 } 689 return (pctdouble(pp->ki_pctcpu)); 690 } 691 692 /* 693 * Return true if this process has used any CPU time since the 694 * previous update. 695 */ 696 static int 697 proc_used_cpu(struct kinfo_proc *pp) 698 { 699 const struct kinfo_proc *oldp; 700 701 oldp = get_old_proc(pp); 702 if (oldp == NULL) 703 return (PCTCPU(pp) != 0); 704 return (pp->ki_runtime != oldp->ki_runtime || 705 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 706 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 707 } 708 709 /* 710 * Return the total number of block in/out and faults by a process. 711 */ 712 static long 713 get_io_total(const struct kinfo_proc *pp) 714 { 715 long dummy; 716 717 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 718 } 719 720 static struct handle handle; 721 722 void * 723 get_process_info(struct system_info *si, struct process_select *sel, 724 int (*compare)(const void *, const void *)) 725 { 726 int i; 727 int total_procs; 728 long p_io; 729 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 730 long nsec; 731 int active_procs; 732 struct kinfo_proc **prefp; 733 struct kinfo_proc *pp; 734 struct timespec previous_proc_uptime; 735 736 /* 737 * If thread state was toggled, don't cache the previous processes. 738 */ 739 if (previous_thread != sel->thread) 740 nproc = 0; 741 previous_thread = sel->thread; 742 743 /* 744 * Save the previous process info. 745 */ 746 if (previous_proc_count_max < nproc) { 747 free(previous_procs); 748 previous_procs = calloc(nproc, sizeof(*previous_procs)); 749 free(previous_pref); 750 previous_pref = calloc(nproc, sizeof(*previous_pref)); 751 if (previous_procs == NULL || previous_pref == NULL) { 752 fprintf(stderr, "top: Out of memory.\n"); 753 quit(TOP_EX_SYS_ERROR); 754 } 755 previous_proc_count_max = nproc; 756 } 757 if (nproc) { 758 for (i = 0; i < nproc; i++) 759 previous_pref[i] = &previous_procs[i]; 760 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 761 qsort(previous_pref, nproc, sizeof(*previous_pref), 762 ps.thread ? compare_tid : compare_pid); 763 } 764 previous_proc_count = nproc; 765 previous_proc_uptime = proc_uptime; 766 previous_wall_time = proc_wall_time; 767 previous_interval = 0; 768 769 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 770 0, &nproc); 771 gettimeofday(&proc_wall_time, NULL); 772 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 773 memset(&proc_uptime, 0, sizeof(proc_uptime)); 774 else if (previous_proc_uptime.tv_sec != 0 && 775 previous_proc_uptime.tv_nsec != 0) { 776 previous_interval = (proc_uptime.tv_sec - 777 previous_proc_uptime.tv_sec) * 1000000; 778 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 779 if (nsec < 0) { 780 previous_interval -= 1000000; 781 nsec += 1000000000; 782 } 783 previous_interval += nsec / 1000; 784 } 785 if (nproc > onproc) { 786 pref = realloc(pref, sizeof(*pref) * nproc); 787 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 788 onproc = nproc; 789 } 790 if (pref == NULL || pbase == NULL || pcpu == NULL) { 791 fprintf(stderr, "top: Out of memory.\n"); 792 quit(TOP_EX_SYS_ERROR); 793 } 794 /* get a pointer to the states summary array */ 795 si->procstates = process_states; 796 797 /* count up process states and get pointers to interesting procs */ 798 total_procs = 0; 799 active_procs = 0; 800 total_inblock = 0; 801 total_oublock = 0; 802 total_majflt = 0; 803 memset(process_states, 0, sizeof(process_states)); 804 prefp = pref; 805 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 806 807 if (pp->ki_stat == 0) 808 /* not in use */ 809 continue; 810 811 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 812 /* skip self */ 813 continue; 814 815 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 816 /* skip system process */ 817 continue; 818 819 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 820 &p_vcsw, &p_ivcsw); 821 total_inblock += p_inblock; 822 total_oublock += p_oublock; 823 total_majflt += p_majflt; 824 total_procs++; 825 process_states[(unsigned char)pp->ki_stat]++; 826 827 if (pp->ki_stat == SZOMB) 828 /* skip zombies */ 829 continue; 830 831 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 832 /* skip kernel idle process */ 833 continue; 834 835 PCTCPU(pp) = proc_calc_pctcpu(pp); 836 if (sel->thread && PCTCPU(pp) > 1.0) 837 PCTCPU(pp) = 1.0; 838 if (displaymode == DISP_CPU && !sel->idle && 839 (!proc_used_cpu(pp) || 840 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 841 /* skip idle or non-running processes */ 842 continue; 843 844 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 845 /* skip processes that aren't doing I/O */ 846 continue; 847 848 if (sel->jid != -1 && pp->ki_jid != sel->jid) 849 /* skip proc. that don't belong to the selected JID */ 850 continue; 851 852 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 853 /* skip proc. that don't belong to the selected UID */ 854 continue; 855 856 if (sel->pid != -1 && pp->ki_pid != sel->pid) 857 continue; 858 859 *prefp++ = pp; 860 active_procs++; 861 } 862 863 /* if requested, sort the "interesting" processes */ 864 if (compare != NULL) 865 qsort(pref, active_procs, sizeof(*pref), compare); 866 867 /* remember active and total counts */ 868 si->p_total = total_procs; 869 si->p_pactive = pref_len = active_procs; 870 871 /* pass back a handle */ 872 handle.next_proc = pref; 873 handle.remaining = active_procs; 874 return (&handle); 875 } 876 877 char * 878 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 879 { 880 struct kinfo_proc *pp; 881 const struct kinfo_proc *oldp; 882 long cputime; 883 char status[22]; 884 size_t state; 885 struct rusage ru, *rup; 886 long p_tot, s_tot; 887 char *cmdbuf = NULL; 888 char **args; 889 static struct sbuf* procbuf = NULL; 890 891 /* clean up from last time. */ 892 if (procbuf != NULL) { 893 sbuf_clear(procbuf); 894 } else { 895 procbuf = sbuf_new_auto(); 896 } 897 898 899 /* find and remember the next proc structure */ 900 pp = *(xhandle->next_proc++); 901 xhandle->remaining--; 902 903 /* get the process's command name */ 904 if ((pp->ki_flag & P_INMEM) == 0) { 905 /* 906 * Print swapped processes as <pname> 907 */ 908 size_t len; 909 910 len = strlen(pp->ki_comm); 911 if (len > sizeof(pp->ki_comm) - 3) 912 len = sizeof(pp->ki_comm) - 3; 913 memmove(pp->ki_comm + 1, pp->ki_comm, len); 914 pp->ki_comm[0] = '<'; 915 pp->ki_comm[len + 1] = '>'; 916 pp->ki_comm[len + 2] = '\0'; 917 } 918 919 /* 920 * Convert the process's runtime from microseconds to seconds. This 921 * time includes the interrupt time although that is not wanted here. 922 * ps(1) is similarly sloppy. 923 */ 924 cputime = (pp->ki_runtime + 500000) / 1000000; 925 926 /* generate "STATE" field */ 927 switch (state = pp->ki_stat) { 928 case SRUN: 929 if (smpmode && pp->ki_oncpu != NOCPU) 930 sprintf(status, "CPU%d", pp->ki_oncpu); 931 else 932 strcpy(status, "RUN"); 933 break; 934 case SLOCK: 935 if (pp->ki_kiflag & KI_LOCKBLOCK) { 936 sprintf(status, "*%.6s", pp->ki_lockname); 937 break; 938 } 939 /* fall through */ 940 case SSLEEP: 941 sprintf(status, "%.6s", pp->ki_wmesg); 942 break; 943 default: 944 945 if (state < nitems(state_abbrev)) { 946 sprintf(status, "%.6s", state_abbrev[state]); 947 } else { 948 sprintf(status, "?%5zu", state); 949 } 950 break; 951 } 952 953 cmdbuf = calloc(screen_width + 1, 1); 954 if (cmdbuf == NULL) { 955 warn("calloc(%d)", screen_width + 1); 956 return NULL; 957 } 958 959 if (!(flags & FMT_SHOWARGS)) { 960 if (ps.thread && pp->ki_flag & P_HADTHREADS && 961 pp->ki_tdname[0]) { 962 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 963 pp->ki_tdname, pp->ki_moretdname); 964 } else { 965 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 966 } 967 } else { 968 if (pp->ki_flag & P_SYSTEM || 969 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 970 !(*args)) { 971 if (ps.thread && pp->ki_flag & P_HADTHREADS && 972 pp->ki_tdname[0]) { 973 snprintf(cmdbuf, screen_width, 974 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 975 pp->ki_moretdname); 976 } else { 977 snprintf(cmdbuf, screen_width, 978 "[%s]", pp->ki_comm); 979 } 980 } else { 981 const char *src; 982 char *dst, *argbuf; 983 const char *cmd; 984 size_t argbuflen; 985 size_t len; 986 987 argbuflen = screen_width * 4; 988 argbuf = calloc(argbuflen + 1, 1); 989 if (argbuf == NULL) { 990 warn("calloc(%zu)", argbuflen + 1); 991 free(cmdbuf); 992 return NULL; 993 } 994 995 dst = argbuf; 996 997 /* Extract cmd name from argv */ 998 cmd = basename(*args); 999 1000 for (; (src = *args++) != NULL; ) { 1001 if (*src == '\0') 1002 continue; 1003 len = (argbuflen - (dst - argbuf) - 1) / 4; 1004 strvisx(dst, src, 1005 MIN(strlen(src), len), 1006 VIS_NL | VIS_CSTYLE | VIS_OCTAL | VIS_SAFE); 1007 while (*dst != '\0') 1008 dst++; 1009 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1010 *dst++ = ' '; /* add delimiting space */ 1011 } 1012 if (dst != argbuf && dst[-1] == ' ') 1013 dst--; 1014 *dst = '\0'; 1015 1016 if (strcmp(cmd, pp->ki_comm) != 0) { 1017 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1018 pp->ki_tdname[0]) 1019 snprintf(cmdbuf, screen_width, 1020 "%s (%s){%s%s}", argbuf, 1021 pp->ki_comm, pp->ki_tdname, 1022 pp->ki_moretdname); 1023 else 1024 snprintf(cmdbuf, screen_width, 1025 "%s (%s)", argbuf, pp->ki_comm); 1026 } else { 1027 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1028 pp->ki_tdname[0]) 1029 snprintf(cmdbuf, screen_width, 1030 "%s{%s%s}", argbuf, pp->ki_tdname, 1031 pp->ki_moretdname); 1032 else 1033 strlcpy(cmdbuf, argbuf, screen_width); 1034 } 1035 free(argbuf); 1036 } 1037 } 1038 1039 if (displaymode == DISP_IO) { 1040 oldp = get_old_proc(pp); 1041 if (oldp != NULL) { 1042 ru.ru_inblock = RU(pp)->ru_inblock - 1043 RU(oldp)->ru_inblock; 1044 ru.ru_oublock = RU(pp)->ru_oublock - 1045 RU(oldp)->ru_oublock; 1046 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1047 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1048 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1049 rup = &ru; 1050 } else { 1051 rup = RU(pp); 1052 } 1053 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1054 s_tot = total_inblock + total_oublock + total_majflt; 1055 1056 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1057 1058 if (ps.jail) { 1059 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1060 } 1061 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1062 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1063 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1064 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1065 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1066 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1067 sbuf_printf(procbuf, "%6ld ", p_tot); 1068 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1069 1070 } else { 1071 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1072 if (ps.jail) { 1073 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1074 } 1075 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1076 1077 if (!ps.thread) { 1078 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1079 } else { 1080 sbuf_printf(procbuf, " "); 1081 } 1082 1083 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1084 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1085 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1086 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1087 if (ps.swap) { 1088 sbuf_printf(procbuf, "%*s ", 1089 TOP_SWAP_LEN - 1, 1090 format_k(pagetok(ki_swap(pp)))); 1091 } 1092 sbuf_printf(procbuf, "%-6.6s ", status); 1093 if (smpmode) { 1094 int cpu; 1095 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1096 cpu = pp->ki_oncpu; 1097 } else { 1098 cpu = pp->ki_lastcpu; 1099 } 1100 sbuf_printf(procbuf, "%3d ", cpu); 1101 } 1102 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1103 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1104 } 1105 sbuf_printf(procbuf, "%s", cmdbuf); 1106 free(cmdbuf); 1107 return (sbuf_data(procbuf)); 1108 } 1109 1110 static void 1111 getsysctl(const char *name, void *ptr, size_t len) 1112 { 1113 size_t nlen = len; 1114 1115 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1116 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1117 strerror(errno)); 1118 quit(TOP_EX_SYS_ERROR); 1119 } 1120 if (nlen != len) { 1121 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1122 name, (unsigned long)len, (unsigned long)nlen); 1123 quit(TOP_EX_SYS_ERROR); 1124 } 1125 } 1126 1127 static const char * 1128 format_nice(const struct kinfo_proc *pp) 1129 { 1130 const char *fifo, *kproc; 1131 int rtpri; 1132 static char nicebuf[4 + 1]; 1133 1134 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1135 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1136 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1137 case PRI_ITHD: 1138 return ("-"); 1139 case PRI_REALTIME: 1140 /* 1141 * XXX: the kernel doesn't tell us the original rtprio and 1142 * doesn't really know what it was, so to recover it we 1143 * must be more chummy with the implementation than the 1144 * implementation is with itself. pri_user gives a 1145 * constant "base" priority, but is only initialized 1146 * properly for user threads. pri_native gives what the 1147 * kernel calls the "base" priority, but it isn't constant 1148 * since it is changed by priority propagation. pri_native 1149 * also isn't properly initialized for all threads, but it 1150 * is properly initialized for kernel realtime and idletime 1151 * threads. Thus we use pri_user for the base priority of 1152 * user threads (it is always correct) and pri_native for 1153 * the base priority of kernel realtime and idletime threads 1154 * (there is nothing better, and it is usually correct). 1155 * 1156 * The field width and thus the buffer are too small for 1157 * values like "kr31F", but such values shouldn't occur, 1158 * and if they do then the tailing "F" is not displayed. 1159 */ 1160 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1161 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1162 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1163 kproc, rtpri, fifo); 1164 break; 1165 case PRI_TIMESHARE: 1166 if (pp->ki_flag & P_KPROC) 1167 return ("-"); 1168 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1169 break; 1170 case PRI_IDLE: 1171 /* XXX: as above. */ 1172 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1173 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1174 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1175 kproc, rtpri, fifo); 1176 break; 1177 default: 1178 return ("?"); 1179 } 1180 return (nicebuf); 1181 } 1182 1183 /* comparison routines for qsort */ 1184 1185 static int 1186 compare_pid(const void *p1, const void *p2) 1187 { 1188 const struct kinfo_proc * const *pp1 = p1; 1189 const struct kinfo_proc * const *pp2 = p2; 1190 1191 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1192 1193 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1194 } 1195 1196 static int 1197 compare_tid(const void *p1, const void *p2) 1198 { 1199 const struct kinfo_proc * const *pp1 = p1; 1200 const struct kinfo_proc * const *pp2 = p2; 1201 1202 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1203 1204 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1205 } 1206 1207 /* 1208 * proc_compare - comparison function for "qsort" 1209 * Compares the resource consumption of two processes using five 1210 * distinct keys. The keys (in descending order of importance) are: 1211 * percent cpu, cpu ticks, state, resident set size, total virtual 1212 * memory usage. The process states are ordered as follows (from least 1213 * to most important): WAIT, zombie, sleep, stop, start, run. The 1214 * array declaration below maps a process state index into a number 1215 * that reflects this ordering. 1216 */ 1217 1218 static int sorted_state[] = { 1219 0, /* not used */ 1220 3, /* sleep */ 1221 1, /* ABANDONED (WAIT) */ 1222 6, /* run */ 1223 5, /* start */ 1224 2, /* zombie */ 1225 4 /* stop */ 1226 }; 1227 1228 1229 #define ORDERKEY_PCTCPU(a, b) do { \ 1230 double diff; \ 1231 if (ps.wcpu) \ 1232 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1233 weighted_cpu(PCTCPU((a)), (a)); \ 1234 else \ 1235 diff = PCTCPU((b)) - PCTCPU((a)); \ 1236 if (diff != 0) \ 1237 return (diff > 0 ? 1 : -1); \ 1238 } while (0) 1239 1240 #define ORDERKEY_CPTICKS(a, b) do { \ 1241 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1242 if (diff != 0) \ 1243 return (diff > 0 ? 1 : -1); \ 1244 } while (0) 1245 1246 #define ORDERKEY_STATE(a, b) do { \ 1247 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1248 if (diff != 0) \ 1249 return (diff > 0 ? 1 : -1); \ 1250 } while (0) 1251 1252 #define ORDERKEY_PRIO(a, b) do { \ 1253 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1254 if (diff != 0) \ 1255 return (diff > 0 ? 1 : -1); \ 1256 } while (0) 1257 1258 #define ORDERKEY_THREADS(a, b) do { \ 1259 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1260 if (diff != 0) \ 1261 return (diff > 0 ? 1 : -1); \ 1262 } while (0) 1263 1264 #define ORDERKEY_RSSIZE(a, b) do { \ 1265 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1266 if (diff != 0) \ 1267 return (diff > 0 ? 1 : -1); \ 1268 } while (0) 1269 1270 #define ORDERKEY_MEM(a, b) do { \ 1271 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1272 if (diff != 0) \ 1273 return (diff > 0 ? 1 : -1); \ 1274 } while (0) 1275 1276 #define ORDERKEY_JID(a, b) do { \ 1277 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1278 if (diff != 0) \ 1279 return (diff > 0 ? 1 : -1); \ 1280 } while (0) 1281 1282 #define ORDERKEY_SWAP(a, b) do { \ 1283 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1284 if (diff != 0) \ 1285 return (diff > 0 ? 1 : -1); \ 1286 } while (0) 1287 1288 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1289 1290 static int 1291 compare_cpu(const void *arg1, const void *arg2) 1292 { 1293 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1294 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1295 1296 ORDERKEY_PCTCPU(p1, p2); 1297 ORDERKEY_CPTICKS(p1, p2); 1298 ORDERKEY_STATE(p1, p2); 1299 ORDERKEY_PRIO(p1, p2); 1300 ORDERKEY_RSSIZE(p1, p2); 1301 ORDERKEY_MEM(p1, p2); 1302 1303 return (0); 1304 } 1305 1306 /* compare_size - the comparison function for sorting by total memory usage */ 1307 1308 static int 1309 compare_size(const void *arg1, const void *arg2) 1310 { 1311 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1312 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1313 1314 ORDERKEY_MEM(p1, p2); 1315 ORDERKEY_RSSIZE(p1, p2); 1316 ORDERKEY_PCTCPU(p1, p2); 1317 ORDERKEY_CPTICKS(p1, p2); 1318 ORDERKEY_STATE(p1, p2); 1319 ORDERKEY_PRIO(p1, p2); 1320 1321 return (0); 1322 } 1323 1324 /* compare_res - the comparison function for sorting by resident set size */ 1325 1326 static int 1327 compare_res(const void *arg1, const void *arg2) 1328 { 1329 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1330 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1331 1332 ORDERKEY_RSSIZE(p1, p2); 1333 ORDERKEY_MEM(p1, p2); 1334 ORDERKEY_PCTCPU(p1, p2); 1335 ORDERKEY_CPTICKS(p1, p2); 1336 ORDERKEY_STATE(p1, p2); 1337 ORDERKEY_PRIO(p1, p2); 1338 1339 return (0); 1340 } 1341 1342 /* compare_time - the comparison function for sorting by total cpu time */ 1343 1344 static int 1345 compare_time(const void *arg1, const void *arg2) 1346 { 1347 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1348 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1349 1350 ORDERKEY_CPTICKS(p1, p2); 1351 ORDERKEY_PCTCPU(p1, p2); 1352 ORDERKEY_STATE(p1, p2); 1353 ORDERKEY_PRIO(p1, p2); 1354 ORDERKEY_RSSIZE(p1, p2); 1355 ORDERKEY_MEM(p1, p2); 1356 1357 return (0); 1358 } 1359 1360 /* compare_prio - the comparison function for sorting by priority */ 1361 1362 static int 1363 compare_prio(const void *arg1, const void *arg2) 1364 { 1365 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1366 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1367 1368 ORDERKEY_PRIO(p1, p2); 1369 ORDERKEY_CPTICKS(p1, p2); 1370 ORDERKEY_PCTCPU(p1, p2); 1371 ORDERKEY_STATE(p1, p2); 1372 ORDERKEY_RSSIZE(p1, p2); 1373 ORDERKEY_MEM(p1, p2); 1374 1375 return (0); 1376 } 1377 1378 /* compare_threads - the comparison function for sorting by threads */ 1379 static int 1380 compare_threads(const void *arg1, const void *arg2) 1381 { 1382 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1383 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1384 1385 ORDERKEY_THREADS(p1, p2); 1386 ORDERKEY_PCTCPU(p1, p2); 1387 ORDERKEY_CPTICKS(p1, p2); 1388 ORDERKEY_STATE(p1, p2); 1389 ORDERKEY_PRIO(p1, p2); 1390 ORDERKEY_RSSIZE(p1, p2); 1391 ORDERKEY_MEM(p1, p2); 1392 1393 return (0); 1394 } 1395 1396 /* compare_jid - the comparison function for sorting by jid */ 1397 static int 1398 compare_jid(const void *arg1, const void *arg2) 1399 { 1400 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1401 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1402 1403 ORDERKEY_JID(p1, p2); 1404 ORDERKEY_PCTCPU(p1, p2); 1405 ORDERKEY_CPTICKS(p1, p2); 1406 ORDERKEY_STATE(p1, p2); 1407 ORDERKEY_PRIO(p1, p2); 1408 ORDERKEY_RSSIZE(p1, p2); 1409 ORDERKEY_MEM(p1, p2); 1410 1411 return (0); 1412 } 1413 1414 /* compare_swap - the comparison function for sorting by swap */ 1415 static int 1416 compare_swap(const void *arg1, const void *arg2) 1417 { 1418 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1419 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1420 1421 ORDERKEY_SWAP(p1, p2); 1422 ORDERKEY_PCTCPU(p1, p2); 1423 ORDERKEY_CPTICKS(p1, p2); 1424 ORDERKEY_STATE(p1, p2); 1425 ORDERKEY_PRIO(p1, p2); 1426 ORDERKEY_RSSIZE(p1, p2); 1427 ORDERKEY_MEM(p1, p2); 1428 1429 return (0); 1430 } 1431 1432 /* assorted comparison functions for sorting by i/o */ 1433 1434 static int 1435 compare_iototal(const void *arg1, const void *arg2) 1436 { 1437 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1438 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1439 1440 return (get_io_total(p2) - get_io_total(p1)); 1441 } 1442 1443 static int 1444 compare_ioread(const void *arg1, const void *arg2) 1445 { 1446 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1447 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1448 long dummy, inp1, inp2; 1449 1450 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1451 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1452 1453 return (inp2 - inp1); 1454 } 1455 1456 static int 1457 compare_iowrite(const void *arg1, const void *arg2) 1458 { 1459 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1460 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1461 long dummy, oup1, oup2; 1462 1463 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1464 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1465 1466 return (oup2 - oup1); 1467 } 1468 1469 static int 1470 compare_iofault(const void *arg1, const void *arg2) 1471 { 1472 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1473 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1474 long dummy, flp1, flp2; 1475 1476 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1477 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1478 1479 return (flp2 - flp1); 1480 } 1481 1482 static int 1483 compare_vcsw(const void *arg1, const void *arg2) 1484 { 1485 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1486 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1487 long dummy, flp1, flp2; 1488 1489 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1490 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1491 1492 return (flp2 - flp1); 1493 } 1494 1495 static int 1496 compare_ivcsw(const void *arg1, const void *arg2) 1497 { 1498 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1499 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1500 long dummy, flp1, flp2; 1501 1502 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1503 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1504 1505 return (flp2 - flp1); 1506 } 1507 1508 int (*compares[])(const void *arg1, const void *arg2) = { 1509 compare_cpu, 1510 compare_size, 1511 compare_res, 1512 compare_time, 1513 compare_prio, 1514 compare_threads, 1515 compare_iototal, 1516 compare_ioread, 1517 compare_iowrite, 1518 compare_iofault, 1519 compare_vcsw, 1520 compare_ivcsw, 1521 compare_jid, 1522 compare_swap, 1523 NULL 1524 }; 1525 1526 1527 static int 1528 swapmode(int *retavail, int *retfree) 1529 { 1530 int n; 1531 struct kvm_swap swapary[1]; 1532 static int pagesize = 0; 1533 static unsigned long swap_maxpages = 0; 1534 1535 *retavail = 0; 1536 *retfree = 0; 1537 1538 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1539 1540 n = kvm_getswapinfo(kd, swapary, 1, 0); 1541 if (n < 0 || swapary[0].ksw_total == 0) 1542 return (0); 1543 1544 if (pagesize == 0) 1545 pagesize = getpagesize(); 1546 if (swap_maxpages == 0) 1547 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1548 1549 /* ksw_total contains the total size of swap all devices which may 1550 exceed the maximum swap size allocatable in the system */ 1551 if ( swapary[0].ksw_total > swap_maxpages ) 1552 swapary[0].ksw_total = swap_maxpages; 1553 1554 *retavail = CONVERT(swapary[0].ksw_total); 1555 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1556 1557 #undef CONVERT 1558 1559 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1560 return (n); 1561 } 1562