1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 /* TOP_JID_LEN based on max of 999999 */ 71 #define TOP_JID_LEN 7 72 #define TOP_SWAP_LEN 6 73 static int jidlength; 74 static int swaplength; 75 static int cmdlengthdelta; 76 77 /* Prototypes for top internals */ 78 void quit(int); 79 80 /* get_process_info passes back a handle. This is what it looks like: */ 81 82 struct handle { 83 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 84 int remaining; /* number of pointers remaining */ 85 }; 86 87 /* declarations for load_avg */ 88 #include "loadavg.h" 89 90 /* define what weighted cpu is. */ 91 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 92 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 93 94 /* what we consider to be process size: */ 95 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 96 97 #define RU(pp) (&(pp)->ki_rusage) 98 #define RUTOT(pp) \ 99 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 100 101 #define PCTCPU(pp) (pcpu[pp - pbase]) 102 103 /* definitions for indices in the nlist array */ 104 105 /* 106 * These definitions control the format of the per-process area 107 */ 108 109 static char io_header[] = 110 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 111 112 #define io_Proc_format \ 113 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 114 115 static char smp_header_thr[] = 116 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 117 static char smp_header[] = 118 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 119 120 #define smp_Proc_format \ 121 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s" 122 123 static char up_header_thr[] = 124 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 125 static char up_header[] = 126 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 127 128 #define up_Proc_format \ 129 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s" 130 131 132 /* process state names for the "STATE" column of the display */ 133 /* the extra nulls in the string "run" are for adding a slash and 134 the processor number when needed */ 135 136 char *state_abbrev[] = { 137 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 138 }; 139 140 141 static kvm_t *kd; 142 143 /* values that we stash away in _init and use in later routines */ 144 145 static double logcpu; 146 147 /* these are retrieved from the kernel in _init */ 148 149 static load_avg ccpu; 150 151 /* these are used in the get_ functions */ 152 153 static int lastpid; 154 155 /* these are for calculating cpu state percentages */ 156 157 static long cp_time[CPUSTATES]; 158 static long cp_old[CPUSTATES]; 159 static long cp_diff[CPUSTATES]; 160 161 /* these are for detailing the process states */ 162 163 int process_states[8]; 164 char *procstatenames[] = { 165 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 166 " zombie, ", " waiting, ", " lock, ", 167 NULL 168 }; 169 170 /* these are for detailing the cpu states */ 171 172 int cpu_states[CPUSTATES]; 173 char *cpustatenames[] = { 174 "user", "nice", "system", "interrupt", "idle", NULL 175 }; 176 177 /* these are for detailing the memory statistics */ 178 179 int memory_stats[7]; 180 char *memorynames[] = { 181 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 182 "K Free", NULL 183 }; 184 185 int arc_stats[7]; 186 char *arcnames[] = { 187 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 188 NULL 189 }; 190 191 int carc_stats[5]; 192 char *carcnames[] = { 193 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", "K Overhead", 194 NULL 195 }; 196 197 int swap_stats[7]; 198 char *swapnames[] = { 199 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 200 NULL 201 }; 202 203 204 /* these are for keeping track of the proc array */ 205 206 static int nproc; 207 static int onproc = -1; 208 static int pref_len; 209 static struct kinfo_proc *pbase; 210 static struct kinfo_proc **pref; 211 static struct kinfo_proc *previous_procs; 212 static struct kinfo_proc **previous_pref; 213 static int previous_proc_count = 0; 214 static int previous_proc_count_max = 0; 215 static int previous_thread; 216 217 /* data used for recalculating pctcpu */ 218 static double *pcpu; 219 static struct timespec proc_uptime; 220 static struct timeval proc_wall_time; 221 static struct timeval previous_wall_time; 222 static uint64_t previous_interval = 0; 223 224 /* total number of io operations */ 225 static long total_inblock; 226 static long total_oublock; 227 static long total_majflt; 228 229 /* these are for getting the memory statistics */ 230 231 static int arc_enabled; 232 static int carc_enabled; 233 static int pageshift; /* log base 2 of the pagesize */ 234 235 /* define pagetok in terms of pageshift */ 236 237 #define pagetok(size) ((size) << pageshift) 238 239 /* swap usage */ 240 #define ki_swap(kip) \ 241 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 242 243 /* useful externals */ 244 long percentages(); 245 246 #ifdef ORDER 247 /* 248 * Sorting orders. The first element is the default. 249 */ 250 char *ordernames[] = { 251 "cpu", "size", "res", "time", "pri", "threads", 252 "total", "read", "write", "fault", "vcsw", "ivcsw", 253 "jid", "swap", "pid", NULL 254 }; 255 #endif 256 257 /* Per-cpu time states */ 258 static int maxcpu; 259 static int maxid; 260 static int ncpus; 261 static u_long cpumask; 262 static long *times; 263 static long *pcpu_cp_time; 264 static long *pcpu_cp_old; 265 static long *pcpu_cp_diff; 266 static int *pcpu_cpu_states; 267 268 static int compare_swap(const void *a, const void *b); 269 static int compare_jid(const void *a, const void *b); 270 static int compare_pid(const void *a, const void *b); 271 static int compare_tid(const void *a, const void *b); 272 static const char *format_nice(const struct kinfo_proc *pp); 273 static void getsysctl(const char *name, void *ptr, size_t len); 274 static int swapmode(int *retavail, int *retfree); 275 static void update_layout(void); 276 277 void 278 toggle_pcpustats(void) 279 { 280 281 if (ncpus == 1) 282 return; 283 update_layout(); 284 } 285 286 /* Adjust display based on ncpus and the ARC state. */ 287 static void 288 update_layout(void) 289 { 290 291 y_mem = 3; 292 y_arc = 4; 293 y_carc = 5; 294 y_swap = 4 + arc_enabled + carc_enabled; 295 y_idlecursor = 5 + arc_enabled + carc_enabled; 296 y_message = 5 + arc_enabled + carc_enabled; 297 y_header = 6 + arc_enabled + carc_enabled; 298 y_procs = 7 + arc_enabled + carc_enabled; 299 Header_lines = 7 + arc_enabled + carc_enabled; 300 301 if (pcpu_stats) { 302 y_mem += ncpus - 1; 303 y_arc += ncpus - 1; 304 y_carc += ncpus - 1; 305 y_swap += ncpus - 1; 306 y_idlecursor += ncpus - 1; 307 y_message += ncpus - 1; 308 y_header += ncpus - 1; 309 y_procs += ncpus - 1; 310 Header_lines += ncpus - 1; 311 } 312 } 313 314 int 315 machine_init(struct statics *statics, char do_unames) 316 { 317 int i, j, empty, pagesize; 318 uint64_t arc_size; 319 size_t size; 320 struct passwd *pw; 321 322 size = sizeof(smpmode); 323 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 324 NULL, 0) != 0 && 325 sysctlbyname("kern.smp.active", &smpmode, &size, 326 NULL, 0) != 0) || 327 size != sizeof(smpmode)) 328 smpmode = 0; 329 330 size = sizeof(arc_size); 331 if (sysctlbyname("vfs.zfs.compressed_arc_enabled", &arc_size, &size, 332 NULL, 0) == 0 && arc_size == 1) 333 carc_enabled = 1; 334 size = sizeof(arc_size); 335 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 336 NULL, 0) == 0 && arc_size != 0) 337 arc_enabled = 1; 338 339 if (do_unames) { 340 while ((pw = getpwent()) != NULL) { 341 if (strlen(pw->pw_name) > namelength) 342 namelength = strlen(pw->pw_name); 343 } 344 } 345 if (smpmode && namelength > SMPUNAMELEN) 346 namelength = SMPUNAMELEN; 347 else if (namelength > UPUNAMELEN) 348 namelength = UPUNAMELEN; 349 350 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 351 if (kd == NULL) 352 return (-1); 353 354 GETSYSCTL("kern.ccpu", ccpu); 355 356 /* this is used in calculating WCPU -- calculate it ahead of time */ 357 logcpu = log(loaddouble(ccpu)); 358 359 pbase = NULL; 360 pref = NULL; 361 pcpu = NULL; 362 nproc = 0; 363 onproc = -1; 364 365 /* get the page size and calculate pageshift from it */ 366 pagesize = getpagesize(); 367 pageshift = 0; 368 while (pagesize > 1) { 369 pageshift++; 370 pagesize >>= 1; 371 } 372 373 /* we only need the amount of log(2)1024 for our conversion */ 374 pageshift -= LOG1024; 375 376 /* fill in the statics information */ 377 statics->procstate_names = procstatenames; 378 statics->cpustate_names = cpustatenames; 379 statics->memory_names = memorynames; 380 if (arc_enabled) 381 statics->arc_names = arcnames; 382 else 383 statics->arc_names = NULL; 384 if (carc_enabled) 385 statics->carc_names = carcnames; 386 else 387 statics->carc_names = NULL; 388 statics->swap_names = swapnames; 389 #ifdef ORDER 390 statics->order_names = ordernames; 391 #endif 392 393 /* Allocate state for per-CPU stats. */ 394 cpumask = 0; 395 ncpus = 0; 396 GETSYSCTL("kern.smp.maxcpus", maxcpu); 397 size = sizeof(long) * maxcpu * CPUSTATES; 398 times = malloc(size); 399 if (times == NULL) 400 err(1, "malloc %zu bytes", size); 401 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 402 err(1, "sysctlbyname kern.cp_times"); 403 pcpu_cp_time = calloc(1, size); 404 maxid = (size / CPUSTATES / sizeof(long)) - 1; 405 for (i = 0; i <= maxid; i++) { 406 empty = 1; 407 for (j = 0; empty && j < CPUSTATES; j++) { 408 if (times[i * CPUSTATES + j] != 0) 409 empty = 0; 410 } 411 if (!empty) { 412 cpumask |= (1ul << i); 413 ncpus++; 414 } 415 } 416 size = sizeof(long) * ncpus * CPUSTATES; 417 pcpu_cp_old = calloc(1, size); 418 pcpu_cp_diff = calloc(1, size); 419 pcpu_cpu_states = calloc(1, size); 420 statics->ncpus = ncpus; 421 422 update_layout(); 423 424 /* all done! */ 425 return (0); 426 } 427 428 char * 429 format_header(char *uname_field) 430 { 431 static char Header[128]; 432 const char *prehead; 433 434 if (ps.jail) 435 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 436 else 437 jidlength = 0; 438 439 if (ps.swap) 440 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 441 else 442 swaplength = 0; 443 444 switch (displaymode) { 445 case DISP_CPU: 446 /* 447 * The logic of picking the right header format seems reverse 448 * here because we only want to display a THR column when 449 * "thread mode" is off (and threads are not listed as 450 * separate lines). 451 */ 452 prehead = smpmode ? 453 (ps.thread ? smp_header : smp_header_thr) : 454 (ps.thread ? up_header : up_header_thr); 455 snprintf(Header, sizeof(Header), prehead, 456 jidlength, ps.jail ? " JID" : "", 457 namelength, namelength, uname_field, 458 swaplength, ps.swap ? " SWAP" : "", 459 ps.wcpu ? "WCPU" : "CPU"); 460 break; 461 case DISP_IO: 462 prehead = io_header; 463 snprintf(Header, sizeof(Header), prehead, 464 jidlength, ps.jail ? " JID" : "", 465 namelength, namelength, uname_field); 466 break; 467 } 468 cmdlengthdelta = strlen(Header) - 7; 469 return (Header); 470 } 471 472 static int swappgsin = -1; 473 static int swappgsout = -1; 474 extern struct timeval timeout; 475 476 477 void 478 get_system_info(struct system_info *si) 479 { 480 long total; 481 struct loadavg sysload; 482 int mib[2]; 483 struct timeval boottime; 484 uint64_t arc_stat, arc_stat2; 485 int i, j; 486 size_t size; 487 488 /* get the CPU stats */ 489 size = (maxid + 1) * CPUSTATES * sizeof(long); 490 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 491 err(1, "sysctlbyname kern.cp_times"); 492 GETSYSCTL("kern.cp_time", cp_time); 493 GETSYSCTL("vm.loadavg", sysload); 494 GETSYSCTL("kern.lastpid", lastpid); 495 496 /* convert load averages to doubles */ 497 for (i = 0; i < 3; i++) 498 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 499 500 /* convert cp_time counts to percentages */ 501 for (i = j = 0; i <= maxid; i++) { 502 if ((cpumask & (1ul << i)) == 0) 503 continue; 504 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 505 &pcpu_cp_time[j * CPUSTATES], 506 &pcpu_cp_old[j * CPUSTATES], 507 &pcpu_cp_diff[j * CPUSTATES]); 508 j++; 509 } 510 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 511 512 /* sum memory & swap statistics */ 513 { 514 static unsigned int swap_delay = 0; 515 static int swapavail = 0; 516 static int swapfree = 0; 517 static long bufspace = 0; 518 static int nspgsin, nspgsout; 519 520 GETSYSCTL("vfs.bufspace", bufspace); 521 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 522 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 523 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 524 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 525 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 526 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 527 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 528 /* convert memory stats to Kbytes */ 529 memory_stats[0] = pagetok(memory_stats[0]); 530 memory_stats[1] = pagetok(memory_stats[1]); 531 memory_stats[2] = pagetok(memory_stats[2]); 532 memory_stats[3] = pagetok(memory_stats[3]); 533 memory_stats[4] = bufspace / 1024; 534 memory_stats[5] = pagetok(memory_stats[5]); 535 memory_stats[6] = -1; 536 537 /* first interval */ 538 if (swappgsin < 0) { 539 swap_stats[4] = 0; 540 swap_stats[5] = 0; 541 } 542 543 /* compute differences between old and new swap statistic */ 544 else { 545 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 546 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 547 } 548 549 swappgsin = nspgsin; 550 swappgsout = nspgsout; 551 552 /* call CPU heavy swapmode() only for changes */ 553 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 554 swap_stats[3] = swapmode(&swapavail, &swapfree); 555 swap_stats[0] = swapavail; 556 swap_stats[1] = swapavail - swapfree; 557 swap_stats[2] = swapfree; 558 } 559 swap_delay = 1; 560 swap_stats[6] = -1; 561 } 562 563 if (arc_enabled) { 564 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 565 arc_stats[0] = arc_stat >> 10; 566 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 567 arc_stats[1] = arc_stat >> 10; 568 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 569 arc_stats[2] = arc_stat >> 10; 570 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 571 arc_stats[3] = arc_stat >> 10; 572 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 573 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 574 arc_stats[4] = arc_stat + arc_stat2 >> 10; 575 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 576 arc_stats[5] = arc_stat >> 10; 577 si->arc = arc_stats; 578 } 579 if (carc_enabled) { 580 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 581 carc_stats[0] = arc_stat >> 10; 582 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 583 carc_stats[1] = arc_stat >> 10; 584 carc_stats[2] = arc_stats[0]; /* ARC Total */ 585 GETSYSCTL("kstat.zfs.misc.arcstats.overhead_size", arc_stat); 586 carc_stats[3] = arc_stat >> 10; 587 si->carc = carc_stats; 588 } 589 590 /* set arrays and strings */ 591 if (pcpu_stats) { 592 si->cpustates = pcpu_cpu_states; 593 si->ncpus = ncpus; 594 } else { 595 si->cpustates = cpu_states; 596 si->ncpus = 1; 597 } 598 si->memory = memory_stats; 599 si->swap = swap_stats; 600 601 602 if (lastpid > 0) { 603 si->last_pid = lastpid; 604 } else { 605 si->last_pid = -1; 606 } 607 608 /* 609 * Print how long system has been up. 610 * (Found by looking getting "boottime" from the kernel) 611 */ 612 mib[0] = CTL_KERN; 613 mib[1] = KERN_BOOTTIME; 614 size = sizeof(boottime); 615 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 616 boottime.tv_sec != 0) { 617 si->boottime = boottime; 618 } else { 619 si->boottime.tv_sec = -1; 620 } 621 } 622 623 #define NOPROC ((void *)-1) 624 625 /* 626 * We need to compare data from the old process entry with the new 627 * process entry. 628 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 629 * structure to cache the mapping. We also use a negative cache pointer 630 * of NOPROC to avoid duplicate lookups. 631 * XXX: this could be done when the actual processes are fetched, we do 632 * it here out of laziness. 633 */ 634 const struct kinfo_proc * 635 get_old_proc(struct kinfo_proc *pp) 636 { 637 struct kinfo_proc **oldpp, *oldp; 638 639 /* 640 * If this is the first fetch of the kinfo_procs then we don't have 641 * any previous entries. 642 */ 643 if (previous_proc_count == 0) 644 return (NULL); 645 /* negative cache? */ 646 if (pp->ki_udata == NOPROC) 647 return (NULL); 648 /* cached? */ 649 if (pp->ki_udata != NULL) 650 return (pp->ki_udata); 651 /* 652 * Not cached, 653 * 1) look up based on pid. 654 * 2) compare process start. 655 * If we fail here, then setup a negative cache entry, otherwise 656 * cache it. 657 */ 658 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 659 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 660 if (oldpp == NULL) { 661 pp->ki_udata = NOPROC; 662 return (NULL); 663 } 664 oldp = *oldpp; 665 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 666 pp->ki_udata = NOPROC; 667 return (NULL); 668 } 669 pp->ki_udata = oldp; 670 return (oldp); 671 } 672 673 /* 674 * Return the total amount of IO done in blocks in/out and faults. 675 * store the values individually in the pointers passed in. 676 */ 677 long 678 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 679 long *vcsw, long *ivcsw) 680 { 681 const struct kinfo_proc *oldp; 682 static struct kinfo_proc dummy; 683 long ret; 684 685 oldp = get_old_proc(pp); 686 if (oldp == NULL) { 687 bzero(&dummy, sizeof(dummy)); 688 oldp = &dummy; 689 } 690 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 691 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 692 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 693 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 694 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 695 ret = 696 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 697 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 698 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 699 return (ret); 700 } 701 702 /* 703 * If there was a previous update, use the delta in ki_runtime over 704 * the previous interval to calculate pctcpu. Otherwise, fall back 705 * to using the kernel's ki_pctcpu. 706 */ 707 static double 708 proc_calc_pctcpu(struct kinfo_proc *pp) 709 { 710 const struct kinfo_proc *oldp; 711 712 if (previous_interval != 0) { 713 oldp = get_old_proc(pp); 714 if (oldp != NULL) 715 return ((double)(pp->ki_runtime - oldp->ki_runtime) 716 / previous_interval); 717 718 /* 719 * If this process/thread was created during the previous 720 * interval, charge it's total runtime to the previous 721 * interval. 722 */ 723 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 724 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 725 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 726 return ((double)pp->ki_runtime / previous_interval); 727 } 728 return (pctdouble(pp->ki_pctcpu)); 729 } 730 731 /* 732 * Return true if this process has used any CPU time since the 733 * previous update. 734 */ 735 static int 736 proc_used_cpu(struct kinfo_proc *pp) 737 { 738 const struct kinfo_proc *oldp; 739 740 oldp = get_old_proc(pp); 741 if (oldp == NULL) 742 return (PCTCPU(pp) != 0); 743 return (pp->ki_runtime != oldp->ki_runtime || 744 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 745 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 746 } 747 748 /* 749 * Return the total number of block in/out and faults by a process. 750 */ 751 long 752 get_io_total(struct kinfo_proc *pp) 753 { 754 long dummy; 755 756 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 757 } 758 759 static struct handle handle; 760 761 caddr_t 762 get_process_info(struct system_info *si, struct process_select *sel, 763 int (*compare)(const void *, const void *)) 764 { 765 int i; 766 int total_procs; 767 long p_io; 768 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 769 long nsec; 770 int active_procs; 771 struct kinfo_proc **prefp; 772 struct kinfo_proc *pp; 773 struct timespec previous_proc_uptime; 774 775 /* these are copied out of sel for speed */ 776 int show_idle; 777 int show_jid; 778 int show_self; 779 int show_system; 780 int show_uid; 781 int show_command; 782 int show_kidle; 783 784 /* 785 * If thread state was toggled, don't cache the previous processes. 786 */ 787 if (previous_thread != sel->thread) 788 nproc = 0; 789 previous_thread = sel->thread; 790 791 /* 792 * Save the previous process info. 793 */ 794 if (previous_proc_count_max < nproc) { 795 free(previous_procs); 796 previous_procs = malloc(nproc * sizeof(*previous_procs)); 797 free(previous_pref); 798 previous_pref = malloc(nproc * sizeof(*previous_pref)); 799 if (previous_procs == NULL || previous_pref == NULL) { 800 (void) fprintf(stderr, "top: Out of memory.\n"); 801 quit(23); 802 } 803 previous_proc_count_max = nproc; 804 } 805 if (nproc) { 806 for (i = 0; i < nproc; i++) 807 previous_pref[i] = &previous_procs[i]; 808 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 809 qsort(previous_pref, nproc, sizeof(*previous_pref), 810 ps.thread ? compare_tid : compare_pid); 811 } 812 previous_proc_count = nproc; 813 previous_proc_uptime = proc_uptime; 814 previous_wall_time = proc_wall_time; 815 previous_interval = 0; 816 817 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 818 0, &nproc); 819 (void)gettimeofday(&proc_wall_time, NULL); 820 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 821 memset(&proc_uptime, 0, sizeof(proc_uptime)); 822 else if (previous_proc_uptime.tv_sec != 0 && 823 previous_proc_uptime.tv_nsec != 0) { 824 previous_interval = (proc_uptime.tv_sec - 825 previous_proc_uptime.tv_sec) * 1000000; 826 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 827 if (nsec < 0) { 828 previous_interval -= 1000000; 829 nsec += 1000000000; 830 } 831 previous_interval += nsec / 1000; 832 } 833 if (nproc > onproc) { 834 pref = realloc(pref, sizeof(*pref) * nproc); 835 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 836 onproc = nproc; 837 } 838 if (pref == NULL || pbase == NULL || pcpu == NULL) { 839 (void) fprintf(stderr, "top: Out of memory.\n"); 840 quit(23); 841 } 842 /* get a pointer to the states summary array */ 843 si->procstates = process_states; 844 845 /* set up flags which define what we are going to select */ 846 show_idle = sel->idle; 847 show_jid = sel->jid != -1; 848 show_self = sel->self == -1; 849 show_system = sel->system; 850 show_uid = sel->uid != -1; 851 show_command = sel->command != NULL; 852 show_kidle = sel->kidle; 853 854 /* count up process states and get pointers to interesting procs */ 855 total_procs = 0; 856 active_procs = 0; 857 total_inblock = 0; 858 total_oublock = 0; 859 total_majflt = 0; 860 memset((char *)process_states, 0, sizeof(process_states)); 861 prefp = pref; 862 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 863 864 if (pp->ki_stat == 0) 865 /* not in use */ 866 continue; 867 868 if (!show_self && pp->ki_pid == sel->self) 869 /* skip self */ 870 continue; 871 872 if (!show_system && (pp->ki_flag & P_SYSTEM)) 873 /* skip system process */ 874 continue; 875 876 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 877 &p_vcsw, &p_ivcsw); 878 total_inblock += p_inblock; 879 total_oublock += p_oublock; 880 total_majflt += p_majflt; 881 total_procs++; 882 process_states[pp->ki_stat]++; 883 884 if (pp->ki_stat == SZOMB) 885 /* skip zombies */ 886 continue; 887 888 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 889 /* skip kernel idle process */ 890 continue; 891 892 PCTCPU(pp) = proc_calc_pctcpu(pp); 893 if (sel->thread && PCTCPU(pp) > 1.0) 894 PCTCPU(pp) = 1.0; 895 if (displaymode == DISP_CPU && !show_idle && 896 (!proc_used_cpu(pp) || 897 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 898 /* skip idle or non-running processes */ 899 continue; 900 901 if (displaymode == DISP_IO && !show_idle && p_io == 0) 902 /* skip processes that aren't doing I/O */ 903 continue; 904 905 if (show_jid && pp->ki_jid != sel->jid) 906 /* skip proc. that don't belong to the selected JID */ 907 continue; 908 909 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 910 /* skip proc. that don't belong to the selected UID */ 911 continue; 912 913 *prefp++ = pp; 914 active_procs++; 915 } 916 917 /* if requested, sort the "interesting" processes */ 918 if (compare != NULL) 919 qsort(pref, active_procs, sizeof(*pref), compare); 920 921 /* remember active and total counts */ 922 si->p_total = total_procs; 923 si->p_active = pref_len = active_procs; 924 925 /* pass back a handle */ 926 handle.next_proc = pref; 927 handle.remaining = active_procs; 928 return ((caddr_t)&handle); 929 } 930 931 static char fmt[512]; /* static area where result is built */ 932 933 char * 934 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 935 { 936 struct kinfo_proc *pp; 937 const struct kinfo_proc *oldp; 938 long cputime; 939 double pct; 940 struct handle *hp; 941 char status[16]; 942 int cpu, state; 943 struct rusage ru, *rup; 944 long p_tot, s_tot; 945 char *proc_fmt, thr_buf[6]; 946 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 947 char *cmdbuf = NULL; 948 char **args; 949 const int cmdlen = 128; 950 951 /* find and remember the next proc structure */ 952 hp = (struct handle *)handle; 953 pp = *(hp->next_proc++); 954 hp->remaining--; 955 956 /* get the process's command name */ 957 if ((pp->ki_flag & P_INMEM) == 0) { 958 /* 959 * Print swapped processes as <pname> 960 */ 961 size_t len; 962 963 len = strlen(pp->ki_comm); 964 if (len > sizeof(pp->ki_comm) - 3) 965 len = sizeof(pp->ki_comm) - 3; 966 memmove(pp->ki_comm + 1, pp->ki_comm, len); 967 pp->ki_comm[0] = '<'; 968 pp->ki_comm[len + 1] = '>'; 969 pp->ki_comm[len + 2] = '\0'; 970 } 971 972 /* 973 * Convert the process's runtime from microseconds to seconds. This 974 * time includes the interrupt time although that is not wanted here. 975 * ps(1) is similarly sloppy. 976 */ 977 cputime = (pp->ki_runtime + 500000) / 1000000; 978 979 /* calculate the base for cpu percentages */ 980 pct = PCTCPU(pp); 981 982 /* generate "STATE" field */ 983 switch (state = pp->ki_stat) { 984 case SRUN: 985 if (smpmode && pp->ki_oncpu != NOCPU) 986 sprintf(status, "CPU%d", pp->ki_oncpu); 987 else 988 strcpy(status, "RUN"); 989 break; 990 case SLOCK: 991 if (pp->ki_kiflag & KI_LOCKBLOCK) { 992 sprintf(status, "*%.6s", pp->ki_lockname); 993 break; 994 } 995 /* fall through */ 996 case SSLEEP: 997 if (pp->ki_wmesg != NULL) { 998 sprintf(status, "%.6s", pp->ki_wmesg); 999 break; 1000 } 1001 /* FALLTHROUGH */ 1002 default: 1003 1004 if (state >= 0 && 1005 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 1006 sprintf(status, "%.6s", state_abbrev[state]); 1007 else 1008 sprintf(status, "?%5d", state); 1009 break; 1010 } 1011 1012 cmdbuf = (char *)malloc(cmdlen + 1); 1013 if (cmdbuf == NULL) { 1014 warn("malloc(%d)", cmdlen + 1); 1015 return NULL; 1016 } 1017 1018 if (!(flags & FMT_SHOWARGS)) { 1019 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1020 pp->ki_tdname[0]) { 1021 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1022 pp->ki_tdname, pp->ki_moretdname); 1023 } else { 1024 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1025 } 1026 } else { 1027 if (pp->ki_flag & P_SYSTEM || 1028 pp->ki_args == NULL || 1029 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1030 !(*args)) { 1031 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1032 pp->ki_tdname[0]) { 1033 snprintf(cmdbuf, cmdlen, 1034 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1035 pp->ki_moretdname); 1036 } else { 1037 snprintf(cmdbuf, cmdlen, 1038 "[%s]", pp->ki_comm); 1039 } 1040 } else { 1041 char *src, *dst, *argbuf; 1042 char *cmd; 1043 size_t argbuflen; 1044 size_t len; 1045 1046 argbuflen = cmdlen * 4; 1047 argbuf = (char *)malloc(argbuflen + 1); 1048 if (argbuf == NULL) { 1049 warn("malloc(%zu)", argbuflen + 1); 1050 free(cmdbuf); 1051 return NULL; 1052 } 1053 1054 dst = argbuf; 1055 1056 /* Extract cmd name from argv */ 1057 cmd = strrchr(*args, '/'); 1058 if (cmd == NULL) 1059 cmd = *args; 1060 else 1061 cmd++; 1062 1063 for (; (src = *args++) != NULL; ) { 1064 if (*src == '\0') 1065 continue; 1066 len = (argbuflen - (dst - argbuf) - 1) / 4; 1067 strvisx(dst, src, 1068 MIN(strlen(src), len), 1069 VIS_NL | VIS_CSTYLE); 1070 while (*dst != '\0') 1071 dst++; 1072 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1073 *dst++ = ' '; /* add delimiting space */ 1074 } 1075 if (dst != argbuf && dst[-1] == ' ') 1076 dst--; 1077 *dst = '\0'; 1078 1079 if (strcmp(cmd, pp->ki_comm) != 0) { 1080 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1081 pp->ki_tdname[0]) 1082 snprintf(cmdbuf, cmdlen, 1083 "%s (%s){%s%s}", argbuf, 1084 pp->ki_comm, pp->ki_tdname, 1085 pp->ki_moretdname); 1086 else 1087 snprintf(cmdbuf, cmdlen, 1088 "%s (%s)", argbuf, pp->ki_comm); 1089 } else { 1090 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1091 pp->ki_tdname[0]) 1092 snprintf(cmdbuf, cmdlen, 1093 "%s{%s%s}", argbuf, pp->ki_tdname, 1094 pp->ki_moretdname); 1095 else 1096 strlcpy(cmdbuf, argbuf, cmdlen); 1097 } 1098 free(argbuf); 1099 } 1100 } 1101 1102 if (ps.jail == 0) 1103 jid_buf[0] = '\0'; 1104 else 1105 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1106 jidlength - 1, pp->ki_jid); 1107 1108 if (ps.swap == 0) 1109 swap_buf[0] = '\0'; 1110 else 1111 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1112 swaplength - 1, 1113 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1114 1115 if (displaymode == DISP_IO) { 1116 oldp = get_old_proc(pp); 1117 if (oldp != NULL) { 1118 ru.ru_inblock = RU(pp)->ru_inblock - 1119 RU(oldp)->ru_inblock; 1120 ru.ru_oublock = RU(pp)->ru_oublock - 1121 RU(oldp)->ru_oublock; 1122 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1123 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1124 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1125 rup = &ru; 1126 } else { 1127 rup = RU(pp); 1128 } 1129 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1130 s_tot = total_inblock + total_oublock + total_majflt; 1131 1132 snprintf(fmt, sizeof(fmt), io_Proc_format, 1133 pp->ki_pid, 1134 jidlength, jid_buf, 1135 namelength, namelength, (*get_userid)(pp->ki_ruid), 1136 rup->ru_nvcsw, 1137 rup->ru_nivcsw, 1138 rup->ru_inblock, 1139 rup->ru_oublock, 1140 rup->ru_majflt, 1141 p_tot, 1142 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1143 screen_width > cmdlengthdelta ? 1144 screen_width - cmdlengthdelta : 0, 1145 printable(cmdbuf)); 1146 1147 free(cmdbuf); 1148 1149 return (fmt); 1150 } 1151 1152 /* format this entry */ 1153 if (smpmode) { 1154 if (state == SRUN && pp->ki_oncpu != NOCPU) 1155 cpu = pp->ki_oncpu; 1156 else 1157 cpu = pp->ki_lastcpu; 1158 } else 1159 cpu = 0; 1160 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1161 if (ps.thread != 0) 1162 thr_buf[0] = '\0'; 1163 else 1164 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1165 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1166 1167 snprintf(fmt, sizeof(fmt), proc_fmt, 1168 pp->ki_pid, 1169 jidlength, jid_buf, 1170 namelength, namelength, (*get_userid)(pp->ki_ruid), 1171 thr_buf, 1172 pp->ki_pri.pri_level - PZERO, 1173 format_nice(pp), 1174 format_k2(PROCSIZE(pp)), 1175 format_k2(pagetok(pp->ki_rssize)), 1176 swaplength, swaplength, swap_buf, 1177 status, 1178 cpu, 1179 format_time(cputime), 1180 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1181 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1182 printable(cmdbuf)); 1183 1184 free(cmdbuf); 1185 1186 /* return the result */ 1187 return (fmt); 1188 } 1189 1190 static void 1191 getsysctl(const char *name, void *ptr, size_t len) 1192 { 1193 size_t nlen = len; 1194 1195 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1196 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1197 strerror(errno)); 1198 quit(23); 1199 } 1200 if (nlen != len) { 1201 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1202 name, (unsigned long)len, (unsigned long)nlen); 1203 quit(23); 1204 } 1205 } 1206 1207 static const char * 1208 format_nice(const struct kinfo_proc *pp) 1209 { 1210 const char *fifo, *kproc; 1211 int rtpri; 1212 static char nicebuf[4 + 1]; 1213 1214 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1215 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1216 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1217 case PRI_ITHD: 1218 return ("-"); 1219 case PRI_REALTIME: 1220 /* 1221 * XXX: the kernel doesn't tell us the original rtprio and 1222 * doesn't really know what it was, so to recover it we 1223 * must be more chummy with the implementation than the 1224 * implementation is with itself. pri_user gives a 1225 * constant "base" priority, but is only initialized 1226 * properly for user threads. pri_native gives what the 1227 * kernel calls the "base" priority, but it isn't constant 1228 * since it is changed by priority propagation. pri_native 1229 * also isn't properly initialized for all threads, but it 1230 * is properly initialized for kernel realtime and idletime 1231 * threads. Thus we use pri_user for the base priority of 1232 * user threads (it is always correct) and pri_native for 1233 * the base priority of kernel realtime and idletime threads 1234 * (there is nothing better, and it is usually correct). 1235 * 1236 * The field width and thus the buffer are too small for 1237 * values like "kr31F", but such values shouldn't occur, 1238 * and if they do then the tailing "F" is not displayed. 1239 */ 1240 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1241 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1242 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1243 kproc, rtpri, fifo); 1244 break; 1245 case PRI_TIMESHARE: 1246 if (pp->ki_flag & P_KPROC) 1247 return ("-"); 1248 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1249 break; 1250 case PRI_IDLE: 1251 /* XXX: as above. */ 1252 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1253 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1254 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1255 kproc, rtpri, fifo); 1256 break; 1257 default: 1258 return ("?"); 1259 } 1260 return (nicebuf); 1261 } 1262 1263 /* comparison routines for qsort */ 1264 1265 static int 1266 compare_pid(const void *p1, const void *p2) 1267 { 1268 const struct kinfo_proc * const *pp1 = p1; 1269 const struct kinfo_proc * const *pp2 = p2; 1270 1271 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1272 abort(); 1273 1274 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1275 } 1276 1277 static int 1278 compare_tid(const void *p1, const void *p2) 1279 { 1280 const struct kinfo_proc * const *pp1 = p1; 1281 const struct kinfo_proc * const *pp2 = p2; 1282 1283 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1284 abort(); 1285 1286 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1287 } 1288 1289 /* 1290 * proc_compare - comparison function for "qsort" 1291 * Compares the resource consumption of two processes using five 1292 * distinct keys. The keys (in descending order of importance) are: 1293 * percent cpu, cpu ticks, state, resident set size, total virtual 1294 * memory usage. The process states are ordered as follows (from least 1295 * to most important): WAIT, zombie, sleep, stop, start, run. The 1296 * array declaration below maps a process state index into a number 1297 * that reflects this ordering. 1298 */ 1299 1300 static int sorted_state[] = { 1301 0, /* not used */ 1302 3, /* sleep */ 1303 1, /* ABANDONED (WAIT) */ 1304 6, /* run */ 1305 5, /* start */ 1306 2, /* zombie */ 1307 4 /* stop */ 1308 }; 1309 1310 1311 #define ORDERKEY_PCTCPU(a, b) do { \ 1312 double diff; \ 1313 if (ps.wcpu) \ 1314 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1315 weighted_cpu(PCTCPU((a)), (a)); \ 1316 else \ 1317 diff = PCTCPU((b)) - PCTCPU((a)); \ 1318 if (diff != 0) \ 1319 return (diff > 0 ? 1 : -1); \ 1320 } while (0) 1321 1322 #define ORDERKEY_CPTICKS(a, b) do { \ 1323 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1324 if (diff != 0) \ 1325 return (diff > 0 ? 1 : -1); \ 1326 } while (0) 1327 1328 #define ORDERKEY_STATE(a, b) do { \ 1329 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 #define ORDERKEY_PRIO(a, b) do { \ 1335 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1336 if (diff != 0) \ 1337 return (diff > 0 ? 1 : -1); \ 1338 } while (0) 1339 1340 #define ORDERKEY_THREADS(a, b) do { \ 1341 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1342 if (diff != 0) \ 1343 return (diff > 0 ? 1 : -1); \ 1344 } while (0) 1345 1346 #define ORDERKEY_RSSIZE(a, b) do { \ 1347 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1348 if (diff != 0) \ 1349 return (diff > 0 ? 1 : -1); \ 1350 } while (0) 1351 1352 #define ORDERKEY_MEM(a, b) do { \ 1353 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1354 if (diff != 0) \ 1355 return (diff > 0 ? 1 : -1); \ 1356 } while (0) 1357 1358 #define ORDERKEY_JID(a, b) do { \ 1359 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1360 if (diff != 0) \ 1361 return (diff > 0 ? 1 : -1); \ 1362 } while (0) 1363 1364 #define ORDERKEY_SWAP(a, b) do { \ 1365 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1366 if (diff != 0) \ 1367 return (diff > 0 ? 1 : -1); \ 1368 } while (0) 1369 1370 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1371 1372 int 1373 #ifdef ORDER 1374 compare_cpu(void *arg1, void *arg2) 1375 #else 1376 proc_compare(void *arg1, void *arg2) 1377 #endif 1378 { 1379 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1380 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1381 1382 ORDERKEY_PCTCPU(p1, p2); 1383 ORDERKEY_CPTICKS(p1, p2); 1384 ORDERKEY_STATE(p1, p2); 1385 ORDERKEY_PRIO(p1, p2); 1386 ORDERKEY_RSSIZE(p1, p2); 1387 ORDERKEY_MEM(p1, p2); 1388 1389 return (0); 1390 } 1391 1392 #ifdef ORDER 1393 /* "cpu" compare routines */ 1394 int compare_size(), compare_res(), compare_time(), compare_prio(), 1395 compare_threads(); 1396 1397 /* 1398 * "io" compare routines. Context switches aren't i/o, but are displayed 1399 * on the "io" display. 1400 */ 1401 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1402 compare_vcsw(), compare_ivcsw(); 1403 1404 int (*compares[])() = { 1405 compare_cpu, 1406 compare_size, 1407 compare_res, 1408 compare_time, 1409 compare_prio, 1410 compare_threads, 1411 compare_iototal, 1412 compare_ioread, 1413 compare_iowrite, 1414 compare_iofault, 1415 compare_vcsw, 1416 compare_ivcsw, 1417 compare_jid, 1418 compare_swap, 1419 NULL 1420 }; 1421 1422 /* compare_size - the comparison function for sorting by total memory usage */ 1423 1424 int 1425 compare_size(void *arg1, void *arg2) 1426 { 1427 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1428 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1429 1430 ORDERKEY_MEM(p1, p2); 1431 ORDERKEY_RSSIZE(p1, p2); 1432 ORDERKEY_PCTCPU(p1, p2); 1433 ORDERKEY_CPTICKS(p1, p2); 1434 ORDERKEY_STATE(p1, p2); 1435 ORDERKEY_PRIO(p1, p2); 1436 1437 return (0); 1438 } 1439 1440 /* compare_res - the comparison function for sorting by resident set size */ 1441 1442 int 1443 compare_res(void *arg1, void *arg2) 1444 { 1445 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1446 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1447 1448 ORDERKEY_RSSIZE(p1, p2); 1449 ORDERKEY_MEM(p1, p2); 1450 ORDERKEY_PCTCPU(p1, p2); 1451 ORDERKEY_CPTICKS(p1, p2); 1452 ORDERKEY_STATE(p1, p2); 1453 ORDERKEY_PRIO(p1, p2); 1454 1455 return (0); 1456 } 1457 1458 /* compare_time - the comparison function for sorting by total cpu time */ 1459 1460 int 1461 compare_time(void *arg1, void *arg2) 1462 { 1463 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1464 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1465 1466 ORDERKEY_CPTICKS(p1, p2); 1467 ORDERKEY_PCTCPU(p1, p2); 1468 ORDERKEY_STATE(p1, p2); 1469 ORDERKEY_PRIO(p1, p2); 1470 ORDERKEY_RSSIZE(p1, p2); 1471 ORDERKEY_MEM(p1, p2); 1472 1473 return (0); 1474 } 1475 1476 /* compare_prio - the comparison function for sorting by priority */ 1477 1478 int 1479 compare_prio(void *arg1, void *arg2) 1480 { 1481 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1482 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1483 1484 ORDERKEY_PRIO(p1, p2); 1485 ORDERKEY_CPTICKS(p1, p2); 1486 ORDERKEY_PCTCPU(p1, p2); 1487 ORDERKEY_STATE(p1, p2); 1488 ORDERKEY_RSSIZE(p1, p2); 1489 ORDERKEY_MEM(p1, p2); 1490 1491 return (0); 1492 } 1493 1494 /* compare_threads - the comparison function for sorting by threads */ 1495 int 1496 compare_threads(void *arg1, void *arg2) 1497 { 1498 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1499 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1500 1501 ORDERKEY_THREADS(p1, p2); 1502 ORDERKEY_PCTCPU(p1, p2); 1503 ORDERKEY_CPTICKS(p1, p2); 1504 ORDERKEY_STATE(p1, p2); 1505 ORDERKEY_PRIO(p1, p2); 1506 ORDERKEY_RSSIZE(p1, p2); 1507 ORDERKEY_MEM(p1, p2); 1508 1509 return (0); 1510 } 1511 1512 /* compare_jid - the comparison function for sorting by jid */ 1513 static int 1514 compare_jid(const void *arg1, const void *arg2) 1515 { 1516 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1517 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1518 1519 ORDERKEY_JID(p1, p2); 1520 ORDERKEY_PCTCPU(p1, p2); 1521 ORDERKEY_CPTICKS(p1, p2); 1522 ORDERKEY_STATE(p1, p2); 1523 ORDERKEY_PRIO(p1, p2); 1524 ORDERKEY_RSSIZE(p1, p2); 1525 ORDERKEY_MEM(p1, p2); 1526 1527 return (0); 1528 } 1529 1530 /* compare_swap - the comparison function for sorting by swap */ 1531 static int 1532 compare_swap(const void *arg1, const void *arg2) 1533 { 1534 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1535 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1536 1537 ORDERKEY_SWAP(p1, p2); 1538 ORDERKEY_PCTCPU(p1, p2); 1539 ORDERKEY_CPTICKS(p1, p2); 1540 ORDERKEY_STATE(p1, p2); 1541 ORDERKEY_PRIO(p1, p2); 1542 ORDERKEY_RSSIZE(p1, p2); 1543 ORDERKEY_MEM(p1, p2); 1544 1545 return (0); 1546 } 1547 #endif /* ORDER */ 1548 1549 /* assorted comparison functions for sorting by i/o */ 1550 1551 int 1552 #ifdef ORDER 1553 compare_iototal(void *arg1, void *arg2) 1554 #else 1555 io_compare(void *arg1, void *arg2) 1556 #endif 1557 { 1558 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1559 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1560 1561 return (get_io_total(p2) - get_io_total(p1)); 1562 } 1563 1564 #ifdef ORDER 1565 int 1566 compare_ioread(void *arg1, void *arg2) 1567 { 1568 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1569 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1570 long dummy, inp1, inp2; 1571 1572 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1573 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1574 1575 return (inp2 - inp1); 1576 } 1577 1578 int 1579 compare_iowrite(void *arg1, void *arg2) 1580 { 1581 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1582 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1583 long dummy, oup1, oup2; 1584 1585 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1586 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1587 1588 return (oup2 - oup1); 1589 } 1590 1591 int 1592 compare_iofault(void *arg1, void *arg2) 1593 { 1594 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1595 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1596 long dummy, flp1, flp2; 1597 1598 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1599 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1600 1601 return (flp2 - flp1); 1602 } 1603 1604 int 1605 compare_vcsw(void *arg1, void *arg2) 1606 { 1607 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1608 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1609 long dummy, flp1, flp2; 1610 1611 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1612 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1613 1614 return (flp2 - flp1); 1615 } 1616 1617 int 1618 compare_ivcsw(void *arg1, void *arg2) 1619 { 1620 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1621 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1622 long dummy, flp1, flp2; 1623 1624 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1625 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1626 1627 return (flp2 - flp1); 1628 } 1629 #endif /* ORDER */ 1630 1631 /* 1632 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1633 * the process does not exist. 1634 * It is EXTREMELY IMPORTANT that this function work correctly. 1635 * If top runs setuid root (as in SVR4), then this function 1636 * is the only thing that stands in the way of a serious 1637 * security problem. It validates requests for the "kill" 1638 * and "renice" commands. 1639 */ 1640 1641 int 1642 proc_owner(int pid) 1643 { 1644 int cnt; 1645 struct kinfo_proc **prefp; 1646 struct kinfo_proc *pp; 1647 1648 prefp = pref; 1649 cnt = pref_len; 1650 while (--cnt >= 0) { 1651 pp = *prefp++; 1652 if (pp->ki_pid == (pid_t)pid) 1653 return ((int)pp->ki_ruid); 1654 } 1655 return (-1); 1656 } 1657 1658 static int 1659 swapmode(int *retavail, int *retfree) 1660 { 1661 int n; 1662 int pagesize = getpagesize(); 1663 struct kvm_swap swapary[1]; 1664 1665 *retavail = 0; 1666 *retfree = 0; 1667 1668 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1669 1670 n = kvm_getswapinfo(kd, swapary, 1, 0); 1671 if (n < 0 || swapary[0].ksw_total == 0) 1672 return (0); 1673 1674 *retavail = CONVERT(swapary[0].ksw_total); 1675 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1676 1677 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1678 return (n); 1679 } 1680