1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 */ 16 17 #include <sys/param.h> 18 #include <sys/cpuset.h> 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/priority.h> 22 #include <sys/proc.h> 23 #include <sys/resource.h> 24 #include <sys/sbuf.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <libgen.h> 32 #include <kvm.h> 33 #include <math.h> 34 #include <paths.h> 35 #include <stdio.h> 36 #include <stdbool.h> 37 #include <stdint.h> 38 #include <stdlib.h> 39 #include <string.h> 40 #include <time.h> 41 #include <unistd.h> 42 #include <vis.h> 43 44 #include "top.h" 45 #include "display.h" 46 #include "machine.h" 47 #include "loadavg.h" 48 #include "screen.h" 49 #include "utils.h" 50 #include "layout.h" 51 52 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 53 54 extern struct timeval timeout; 55 static int smpmode; 56 enum displaymodes displaymode; 57 static const int namelength = 10; 58 /* TOP_JID_LEN based on max of 999999 */ 59 #define TOP_JID_LEN 6 60 #define TOP_SWAP_LEN 5 61 62 /* get_process_info passes back a handle. This is what it looks like: */ 63 64 struct handle { 65 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 66 int remaining; /* number of pointers remaining */ 67 }; 68 69 70 /* define what weighted cpu is. */ 71 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 72 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 73 74 /* what we consider to be process size: */ 75 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 76 77 #define RU(pp) (&(pp)->ki_rusage) 78 79 #define PCTCPU(pp) (pcpu[pp - pbase]) 80 81 /* process state names for the "STATE" column of the display */ 82 /* the extra nulls in the string "run" are for adding a slash and 83 the processor number when needed */ 84 85 static const char *state_abbrev[] = { 86 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 87 }; 88 89 90 static kvm_t *kd; 91 92 /* values that we stash away in _init and use in later routines */ 93 94 static double logcpu; 95 96 /* these are retrieved from the kernel in _init */ 97 98 static load_avg ccpu; 99 100 /* these are used in the get_ functions */ 101 102 static int lastpid; 103 104 /* these are for calculating cpu state percentages */ 105 106 static long cp_time[CPUSTATES]; 107 static long cp_old[CPUSTATES]; 108 static long cp_diff[CPUSTATES]; 109 110 /* these are for detailing the process states */ 111 112 static const char *procstatenames[] = { 113 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 114 " zombie, ", " waiting, ", " lock, ", 115 NULL 116 }; 117 static int process_states[nitems(procstatenames)]; 118 119 /* these are for detailing the cpu states */ 120 121 static int cpu_states[CPUSTATES]; 122 static const char *cpustatenames[] = { 123 "user", "nice", "system", "interrupt", "idle", NULL 124 }; 125 126 /* these are for detailing the memory statistics */ 127 128 static const char *memorynames[] = { 129 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 130 "K Free", NULL 131 }; 132 static int memory_stats[nitems(memorynames)]; 133 134 static const char *arcnames[] = { 135 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 136 NULL 137 }; 138 static int arc_stats[nitems(arcnames)]; 139 140 static const char *carcnames[] = { 141 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 142 NULL 143 }; 144 static int carc_stats[nitems(carcnames)]; 145 146 static const char *swapnames[] = { 147 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 148 NULL 149 }; 150 static int swap_stats[nitems(swapnames)]; 151 152 static int has_swap; 153 154 /* these are for keeping track of the proc array */ 155 156 static int nproc; 157 static int onproc = -1; 158 static int pref_len; 159 static struct kinfo_proc *pbase; 160 static struct kinfo_proc **pref; 161 static struct kinfo_proc *previous_procs; 162 static struct kinfo_proc **previous_pref; 163 static int previous_proc_count = 0; 164 static int previous_proc_count_max = 0; 165 static int previous_thread; 166 167 /* data used for recalculating pctcpu */ 168 static double *pcpu; 169 static struct timespec proc_uptime; 170 static struct timeval proc_wall_time; 171 static struct timeval previous_wall_time; 172 static uint64_t previous_interval = 0; 173 174 /* total number of io operations */ 175 static long total_inblock; 176 static long total_oublock; 177 static long total_majflt; 178 179 /* these are for getting the memory statistics */ 180 181 static int arc_enabled; 182 static int carc_enabled; 183 static int pageshift; /* log base 2 of the pagesize */ 184 185 /* define pagetok in terms of pageshift */ 186 187 #define pagetok(size) ((size) << pageshift) 188 189 /* swap usage */ 190 #define ki_swap(kip) \ 191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 192 193 /* 194 * Sorting orders. The first element is the default. 195 */ 196 static const char *ordernames[] = { 197 "cpu", "size", "res", "time", "pri", "threads", 198 "total", "read", "write", "fault", "vcsw", "ivcsw", 199 "jid", "swap", "pid", NULL 200 }; 201 202 /* Per-cpu time states */ 203 static int maxcpu; 204 static int maxid; 205 static int ncpus; 206 static cpuset_t cpumask; 207 static long *times; 208 static long *pcpu_cp_time; 209 static long *pcpu_cp_old; 210 static long *pcpu_cp_diff; 211 static int *pcpu_cpu_states; 212 213 /* Battery units and states */ 214 static int battery_units; 215 static int battery_life; 216 217 static int compare_swap(const void *a, const void *b); 218 static int compare_jid(const void *a, const void *b); 219 static int compare_pid(const void *a, const void *b); 220 static int compare_tid(const void *a, const void *b); 221 static const char *format_nice(const struct kinfo_proc *pp); 222 static void getsysctl(const char *name, void *ptr, size_t len); 223 static int swapmode(int *retavail, int *retfree); 224 static void update_layout(void); 225 static int find_uid(uid_t needle, int *haystack); 226 static int cmd_matches(struct kinfo_proc *, const char *); 227 228 static int 229 find_uid(uid_t needle, int *haystack) 230 { 231 size_t i = 0; 232 233 for (; i < TOP_MAX_UIDS; ++i) 234 if ((uid_t)haystack[i] == needle) 235 return 1; 236 return (0); 237 } 238 239 void 240 toggle_pcpustats(void) 241 { 242 243 if (ncpus == 1) 244 return; 245 update_layout(); 246 } 247 248 /* Adjust display based on ncpus and the ARC state. */ 249 static void 250 update_layout(void) 251 { 252 253 y_mem = 3; 254 y_arc = 4; 255 y_carc = 5; 256 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 257 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 258 y_message = 4 + arc_enabled + carc_enabled + has_swap; 259 y_header = 5 + arc_enabled + carc_enabled + has_swap; 260 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 261 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 262 263 if (pcpu_stats) { 264 y_mem += ncpus - 1; 265 y_arc += ncpus - 1; 266 y_carc += ncpus - 1; 267 y_swap += ncpus - 1; 268 y_idlecursor += ncpus - 1; 269 y_message += ncpus - 1; 270 y_header += ncpus - 1; 271 y_procs += ncpus - 1; 272 Header_lines += ncpus - 1; 273 } 274 } 275 276 int 277 machine_init(struct statics *statics) 278 { 279 int i, j, empty, pagesize; 280 uint64_t arc_size; 281 int carc_en, nswapdev; 282 size_t size; 283 284 size = sizeof(smpmode); 285 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 286 size != sizeof(smpmode)) 287 smpmode = 0; 288 289 size = sizeof(arc_size); 290 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 291 NULL, 0) == 0 && arc_size != 0) 292 arc_enabled = 1; 293 size = sizeof(carc_en); 294 if (arc_enabled && 295 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 296 NULL, 0) == 0 && carc_en == 1) 297 carc_enabled = 1; 298 299 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 300 if (kd == NULL) 301 return (-1); 302 303 size = sizeof(nswapdev); 304 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 305 0) == 0 && nswapdev != 0) 306 has_swap = 1; 307 308 GETSYSCTL("kern.ccpu", ccpu); 309 310 /* this is used in calculating WCPU -- calculate it ahead of time */ 311 logcpu = log(loaddouble(ccpu)); 312 313 pbase = NULL; 314 pref = NULL; 315 pcpu = NULL; 316 nproc = 0; 317 onproc = -1; 318 319 /* get the page size and calculate pageshift from it */ 320 pagesize = getpagesize(); 321 pageshift = 0; 322 while (pagesize > 1) { 323 pageshift++; 324 pagesize >>= 1; 325 } 326 327 /* we only need the amount of log(2)1024 for our conversion */ 328 pageshift -= LOG1024; 329 330 /* fill in the statics information */ 331 statics->procstate_names = procstatenames; 332 statics->cpustate_names = cpustatenames; 333 statics->memory_names = memorynames; 334 if (arc_enabled) 335 statics->arc_names = arcnames; 336 else 337 statics->arc_names = NULL; 338 if (carc_enabled) 339 statics->carc_names = carcnames; 340 else 341 statics->carc_names = NULL; 342 if (has_swap) 343 statics->swap_names = swapnames; 344 else 345 statics->swap_names = NULL; 346 statics->order_names = ordernames; 347 348 /* Allocate state for per-CPU stats. */ 349 GETSYSCTL("kern.smp.maxcpus", maxcpu); 350 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 351 if (times == NULL) 352 err(1, "calloc for kern.smp.maxcpus"); 353 size = sizeof(long) * maxcpu * CPUSTATES; 354 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 355 err(1, "sysctlbyname kern.cp_times"); 356 pcpu_cp_time = calloc(1, size); 357 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1); 358 CPU_ZERO(&cpumask); 359 for (i = 0; i <= maxid; i++) { 360 empty = 1; 361 for (j = 0; empty && j < CPUSTATES; j++) { 362 if (times[i * CPUSTATES + j] != 0) 363 empty = 0; 364 } 365 if (!empty) 366 CPU_SET(i, &cpumask); 367 } 368 ncpus = CPU_COUNT(&cpumask); 369 assert(ncpus > 0); 370 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 371 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 372 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 373 statics->ncpus = ncpus; 374 375 /* Allocate state of battery units reported via ACPI. */ 376 battery_units = 0; 377 size = sizeof(int); 378 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 379 statics->nbatteries = battery_units; 380 381 update_layout(); 382 383 /* all done! */ 384 return (0); 385 } 386 387 char * 388 format_header(const char *uname_field) 389 { 390 static struct sbuf* header = NULL; 391 392 /* clean up from last time. */ 393 if (header != NULL) { 394 sbuf_clear(header); 395 } else { 396 header = sbuf_new_auto(); 397 } 398 399 switch (displaymode) { 400 case DISP_CPU: { 401 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 402 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 403 ps.jail ? " JID" : ""); 404 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 405 if (!ps.thread) { 406 sbuf_cat(header, "THR "); 407 } 408 sbuf_cat(header, "PRI NICE SIZE RES "); 409 if (ps.swap) { 410 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 411 } 412 sbuf_cat(header, "STATE "); 413 if (smpmode) { 414 sbuf_cat(header, "C "); 415 } 416 sbuf_cat(header, "TIME "); 417 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 418 sbuf_cat(header, "COMMAND"); 419 sbuf_finish(header); 420 break; 421 } 422 case DISP_IO: { 423 sbuf_printf(header, " %s%*s %-*.*s", 424 ps.thread_id ? " THR" : "PID", 425 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 426 namelength, namelength, uname_field); 427 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 428 sbuf_finish(header); 429 break; 430 } 431 case DISP_MAX: 432 assert("displaymode must not be set to DISP_MAX"); 433 } 434 435 return sbuf_data(header); 436 } 437 438 static int swappgsin = -1; 439 static int swappgsout = -1; 440 441 442 void 443 get_system_info(struct system_info *si) 444 { 445 struct loadavg sysload; 446 int mib[2]; 447 struct timeval boottime; 448 uint64_t arc_stat, arc_stat2; 449 int i, j; 450 size_t size; 451 452 /* get the CPU stats */ 453 size = (maxid + 1) * CPUSTATES * sizeof(long); 454 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 455 err(1, "sysctlbyname kern.cp_times"); 456 GETSYSCTL("kern.cp_time", cp_time); 457 GETSYSCTL("vm.loadavg", sysload); 458 GETSYSCTL("kern.lastpid", lastpid); 459 460 /* convert load averages to doubles */ 461 for (i = 0; i < 3; i++) 462 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 463 464 /* convert cp_time counts to percentages */ 465 for (i = j = 0; i <= maxid; i++) { 466 if (!CPU_ISSET(i, &cpumask)) 467 continue; 468 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 469 &pcpu_cp_time[j * CPUSTATES], 470 &pcpu_cp_old[j * CPUSTATES], 471 &pcpu_cp_diff[j * CPUSTATES]); 472 j++; 473 } 474 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 475 476 /* sum memory & swap statistics */ 477 { 478 static unsigned int swap_delay = 0; 479 static int swapavail = 0; 480 static int swapfree = 0; 481 static long bufspace = 0; 482 static uint64_t nspgsin, nspgsout; 483 484 GETSYSCTL("vfs.bufspace", bufspace); 485 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 486 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 487 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 488 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 489 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 490 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 491 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 492 /* convert memory stats to Kbytes */ 493 memory_stats[0] = pagetok(memory_stats[0]); 494 memory_stats[1] = pagetok(memory_stats[1]); 495 memory_stats[2] = pagetok(memory_stats[2]); 496 memory_stats[3] = pagetok(memory_stats[3]); 497 memory_stats[4] = bufspace / 1024; 498 memory_stats[5] = pagetok(memory_stats[5]); 499 memory_stats[6] = -1; 500 501 /* first interval */ 502 if (swappgsin < 0) { 503 swap_stats[4] = 0; 504 swap_stats[5] = 0; 505 } 506 507 /* compute differences between old and new swap statistic */ 508 else { 509 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 510 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 511 } 512 513 swappgsin = nspgsin; 514 swappgsout = nspgsout; 515 516 /* call CPU heavy swapmode() only for changes */ 517 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 518 swap_stats[3] = swapmode(&swapavail, &swapfree); 519 swap_stats[0] = swapavail; 520 swap_stats[1] = swapavail - swapfree; 521 swap_stats[2] = swapfree; 522 } 523 swap_delay = 1; 524 swap_stats[6] = -1; 525 } 526 527 if (arc_enabled) { 528 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 529 arc_stats[0] = arc_stat >> 10; 530 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 531 arc_stats[1] = arc_stat >> 10; 532 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 533 arc_stats[2] = arc_stat >> 10; 534 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 535 arc_stats[3] = arc_stat >> 10; 536 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 537 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 538 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 539 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 540 arc_stats[5] = arc_stat >> 10; 541 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 542 arc_stats[5] += arc_stat >> 10; 543 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 544 arc_stats[5] += arc_stat >> 10; 545 si->arc = arc_stats; 546 } 547 if (carc_enabled) { 548 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 549 carc_stats[0] = arc_stat >> 10; 550 carc_stats[2] = arc_stat >> 10; /* For ratio */ 551 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 552 carc_stats[1] = arc_stat >> 10; 553 si->carc = carc_stats; 554 } 555 556 /* set arrays and strings */ 557 if (pcpu_stats) { 558 si->cpustates = pcpu_cpu_states; 559 si->ncpus = ncpus; 560 } else { 561 si->cpustates = cpu_states; 562 si->ncpus = 1; 563 } 564 si->memory = memory_stats; 565 si->swap = swap_stats; 566 567 568 if (lastpid > 0) { 569 si->last_pid = lastpid; 570 } else { 571 si->last_pid = -1; 572 } 573 574 /* 575 * Print how long system has been up. 576 * (Found by looking getting "boottime" from the kernel) 577 */ 578 mib[0] = CTL_KERN; 579 mib[1] = KERN_BOOTTIME; 580 size = sizeof(boottime); 581 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 582 boottime.tv_sec != 0) { 583 si->boottime = boottime; 584 } else { 585 si->boottime.tv_sec = -1; 586 } 587 588 battery_life = 0; 589 if (battery_units > 0) { 590 GETSYSCTL("hw.acpi.battery.life", battery_life); 591 } 592 si->battery = battery_life; 593 } 594 595 #define NOPROC ((void *)-1) 596 597 /* 598 * We need to compare data from the old process entry with the new 599 * process entry. 600 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 601 * structure to cache the mapping. We also use a negative cache pointer 602 * of NOPROC to avoid duplicate lookups. 603 * XXX: this could be done when the actual processes are fetched, we do 604 * it here out of laziness. 605 */ 606 static const struct kinfo_proc * 607 get_old_proc(struct kinfo_proc *pp) 608 { 609 const struct kinfo_proc * const *oldpp, *oldp; 610 611 /* 612 * If this is the first fetch of the kinfo_procs then we don't have 613 * any previous entries. 614 */ 615 if (previous_proc_count == 0) 616 return (NULL); 617 /* negative cache? */ 618 if (pp->ki_udata == NOPROC) 619 return (NULL); 620 /* cached? */ 621 if (pp->ki_udata != NULL) 622 return (pp->ki_udata); 623 /* 624 * Not cached, 625 * 1) look up based on pid. 626 * 2) compare process start. 627 * If we fail here, then setup a negative cache entry, otherwise 628 * cache it. 629 */ 630 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 631 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 632 if (oldpp == NULL) { 633 pp->ki_udata = NOPROC; 634 return (NULL); 635 } 636 oldp = *oldpp; 637 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 638 pp->ki_udata = NOPROC; 639 return (NULL); 640 } 641 pp->ki_udata = __DECONST(void *, oldp); 642 return (oldp); 643 } 644 645 /* 646 * Return the total amount of IO done in blocks in/out and faults. 647 * store the values individually in the pointers passed in. 648 */ 649 static long 650 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 651 long *vcsw, long *ivcsw) 652 { 653 const struct kinfo_proc *oldp; 654 static struct kinfo_proc dummy; 655 long ret; 656 657 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 658 if (oldp == NULL) { 659 memset(&dummy, 0, sizeof(dummy)); 660 oldp = &dummy; 661 } 662 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 663 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 664 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 665 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 666 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 667 ret = 668 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 669 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 670 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 671 return (ret); 672 } 673 674 /* 675 * If there was a previous update, use the delta in ki_runtime over 676 * the previous interval to calculate pctcpu. Otherwise, fall back 677 * to using the kernel's ki_pctcpu. 678 */ 679 static double 680 proc_calc_pctcpu(struct kinfo_proc *pp) 681 { 682 const struct kinfo_proc *oldp; 683 684 if (previous_interval != 0) { 685 oldp = get_old_proc(pp); 686 if (oldp != NULL) 687 return ((double)(pp->ki_runtime - oldp->ki_runtime) 688 / previous_interval); 689 690 /* 691 * If this process/thread was created during the previous 692 * interval, charge it's total runtime to the previous 693 * interval. 694 */ 695 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 696 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 697 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 698 return ((double)pp->ki_runtime / previous_interval); 699 } 700 return (pctdouble(pp->ki_pctcpu)); 701 } 702 703 /* 704 * Return true if this process has used any CPU time since the 705 * previous update. 706 */ 707 static int 708 proc_used_cpu(struct kinfo_proc *pp) 709 { 710 const struct kinfo_proc *oldp; 711 712 oldp = get_old_proc(pp); 713 if (oldp == NULL) 714 return (PCTCPU(pp) != 0); 715 return (pp->ki_runtime != oldp->ki_runtime || 716 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 717 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 718 } 719 720 /* 721 * Return the total number of block in/out and faults by a process. 722 */ 723 static long 724 get_io_total(const struct kinfo_proc *pp) 725 { 726 long dummy; 727 728 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 729 } 730 731 static struct handle handle; 732 733 void * 734 get_process_info(struct system_info *si, struct process_select *sel, 735 int (*compare)(const void *, const void *)) 736 { 737 int i; 738 int total_procs; 739 long p_io; 740 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 741 long nsec; 742 int active_procs; 743 struct kinfo_proc **prefp; 744 struct kinfo_proc *pp; 745 struct timespec previous_proc_uptime; 746 747 /* 748 * If thread state was toggled, don't cache the previous processes. 749 */ 750 if (previous_thread != sel->thread) 751 nproc = 0; 752 previous_thread = sel->thread; 753 754 /* 755 * Save the previous process info. 756 */ 757 if (previous_proc_count_max < nproc) { 758 free(previous_procs); 759 previous_procs = calloc(nproc, sizeof(*previous_procs)); 760 free(previous_pref); 761 previous_pref = calloc(nproc, sizeof(*previous_pref)); 762 if (previous_procs == NULL || previous_pref == NULL) { 763 fprintf(stderr, "top: Out of memory.\n"); 764 quit(TOP_EX_SYS_ERROR); 765 } 766 previous_proc_count_max = nproc; 767 } 768 if (nproc) { 769 for (i = 0; i < nproc; i++) 770 previous_pref[i] = &previous_procs[i]; 771 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 772 qsort(previous_pref, nproc, sizeof(*previous_pref), 773 ps.thread ? compare_tid : compare_pid); 774 } 775 previous_proc_count = nproc; 776 previous_proc_uptime = proc_uptime; 777 previous_wall_time = proc_wall_time; 778 previous_interval = 0; 779 780 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 781 0, &nproc); 782 gettimeofday(&proc_wall_time, NULL); 783 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 784 memset(&proc_uptime, 0, sizeof(proc_uptime)); 785 else if (previous_proc_uptime.tv_sec != 0 && 786 previous_proc_uptime.tv_nsec != 0) { 787 previous_interval = (proc_uptime.tv_sec - 788 previous_proc_uptime.tv_sec) * 1000000; 789 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 790 if (nsec < 0) { 791 previous_interval -= 1000000; 792 nsec += 1000000000; 793 } 794 previous_interval += nsec / 1000; 795 } 796 if (nproc > onproc) { 797 pref = realloc(pref, sizeof(*pref) * nproc); 798 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 799 onproc = nproc; 800 } 801 if (pref == NULL || pbase == NULL || pcpu == NULL) { 802 fprintf(stderr, "top: Out of memory.\n"); 803 quit(TOP_EX_SYS_ERROR); 804 } 805 /* get a pointer to the states summary array */ 806 si->procstates = process_states; 807 808 /* count up process states and get pointers to interesting procs */ 809 total_procs = 0; 810 active_procs = 0; 811 total_inblock = 0; 812 total_oublock = 0; 813 total_majflt = 0; 814 memset(process_states, 0, sizeof(process_states)); 815 prefp = pref; 816 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 817 818 if (pp->ki_stat == 0) 819 /* not in use */ 820 continue; 821 822 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 823 /* skip self */ 824 continue; 825 826 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 827 /* skip system process */ 828 continue; 829 830 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 831 &p_vcsw, &p_ivcsw); 832 total_inblock += p_inblock; 833 total_oublock += p_oublock; 834 total_majflt += p_majflt; 835 total_procs++; 836 process_states[(unsigned char)pp->ki_stat]++; 837 838 if (pp->ki_stat == SZOMB) 839 /* skip zombies */ 840 continue; 841 842 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 843 /* skip kernel idle process */ 844 continue; 845 846 PCTCPU(pp) = proc_calc_pctcpu(pp); 847 if (sel->thread && PCTCPU(pp) > 1.0) 848 PCTCPU(pp) = 1.0; 849 if (displaymode == DISP_CPU && !sel->idle && 850 (!proc_used_cpu(pp) || 851 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 852 /* skip idle or non-running processes */ 853 continue; 854 855 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 856 /* skip processes that aren't doing I/O */ 857 continue; 858 859 if (sel->jid != -1 && pp->ki_jid != sel->jid) 860 /* skip proc. that don't belong to the selected JID */ 861 continue; 862 863 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 864 /* skip proc. that don't belong to the selected UID */ 865 continue; 866 867 if (sel->pid != -1 && pp->ki_pid != sel->pid) 868 continue; 869 870 if (!cmd_matches(pp, sel->command)) 871 /* skip proc. that doesn't match grep string */ 872 continue; 873 874 *prefp++ = pp; 875 active_procs++; 876 } 877 878 /* if requested, sort the "interesting" processes */ 879 if (compare != NULL) 880 qsort(pref, active_procs, sizeof(*pref), compare); 881 882 /* remember active and total counts */ 883 si->p_total = total_procs; 884 si->p_pactive = pref_len = active_procs; 885 886 /* pass back a handle */ 887 handle.next_proc = pref; 888 handle.remaining = active_procs; 889 return (&handle); 890 } 891 892 static int 893 cmd_matches(struct kinfo_proc *proc, const char *term) 894 { 895 char **args = NULL; 896 897 if (!term) { 898 /* No command filter set */ 899 return 1; 900 } else { 901 /* Filter set, does process name contain term? */ 902 if (strstr(proc->ki_comm, term)) 903 return 1; 904 /* Search arguments only if arguments are displayed */ 905 if (show_args) { 906 args = kvm_getargv(kd, proc, 1024); 907 if (args == NULL) { 908 /* Failed to get arguments so can't search them */ 909 return 0; 910 } 911 while (*args != NULL) { 912 if (strstr(*args, term)) 913 return 1; 914 args++; 915 } 916 } 917 } 918 return 0; 919 } 920 921 char * 922 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 923 { 924 struct kinfo_proc *pp; 925 const struct kinfo_proc *oldp; 926 long cputime; 927 char status[22]; 928 size_t state; 929 struct rusage ru, *rup; 930 long p_tot, s_tot; 931 char *cmdbuf = NULL; 932 char **args; 933 static struct sbuf* procbuf = NULL; 934 935 /* clean up from last time. */ 936 if (procbuf != NULL) { 937 sbuf_clear(procbuf); 938 } else { 939 procbuf = sbuf_new_auto(); 940 } 941 942 943 /* find and remember the next proc structure */ 944 pp = *(xhandle->next_proc++); 945 xhandle->remaining--; 946 947 /* get the process's command name */ 948 if ((pp->ki_flag & P_INMEM) == 0) { 949 /* 950 * Print swapped processes as <pname> 951 */ 952 size_t len; 953 954 len = strlen(pp->ki_comm); 955 if (len > sizeof(pp->ki_comm) - 3) 956 len = sizeof(pp->ki_comm) - 3; 957 memmove(pp->ki_comm + 1, pp->ki_comm, len); 958 pp->ki_comm[0] = '<'; 959 pp->ki_comm[len + 1] = '>'; 960 pp->ki_comm[len + 2] = '\0'; 961 } 962 963 /* 964 * Convert the process's runtime from microseconds to seconds. This 965 * time includes the interrupt time although that is not wanted here. 966 * ps(1) is similarly sloppy. 967 */ 968 cputime = (pp->ki_runtime + 500000) / 1000000; 969 970 /* generate "STATE" field */ 971 switch (state = pp->ki_stat) { 972 case SRUN: 973 if (smpmode && pp->ki_oncpu != NOCPU) 974 sprintf(status, "CPU%d", pp->ki_oncpu); 975 else 976 strcpy(status, "RUN"); 977 break; 978 case SLOCK: 979 if (pp->ki_kiflag & KI_LOCKBLOCK) { 980 sprintf(status, "*%.6s", pp->ki_lockname); 981 break; 982 } 983 /* fall through */ 984 case SSLEEP: 985 sprintf(status, "%.6s", pp->ki_wmesg); 986 break; 987 default: 988 989 if (state < nitems(state_abbrev)) { 990 sprintf(status, "%.6s", state_abbrev[state]); 991 } else { 992 sprintf(status, "?%5zu", state); 993 } 994 break; 995 } 996 997 cmdbuf = calloc(screen_width + 1, 1); 998 if (cmdbuf == NULL) { 999 warn("calloc(%d)", screen_width + 1); 1000 return NULL; 1001 } 1002 1003 if (!(flags & FMT_SHOWARGS)) { 1004 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1005 pp->ki_tdname[0]) { 1006 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 1007 pp->ki_tdname, pp->ki_moretdname); 1008 } else { 1009 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 1010 } 1011 } else { 1012 if (pp->ki_flag & P_SYSTEM || 1013 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 1014 !(*args)) { 1015 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1016 pp->ki_tdname[0]) { 1017 snprintf(cmdbuf, screen_width, 1018 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1019 pp->ki_moretdname); 1020 } else { 1021 snprintf(cmdbuf, screen_width, 1022 "[%s]", pp->ki_comm); 1023 } 1024 } else { 1025 const char *src; 1026 char *dst, *argbuf; 1027 const char *cmd; 1028 size_t argbuflen; 1029 size_t len; 1030 1031 argbuflen = screen_width * 4; 1032 argbuf = calloc(argbuflen + 1, 1); 1033 if (argbuf == NULL) { 1034 warn("calloc(%zu)", argbuflen + 1); 1035 free(cmdbuf); 1036 return NULL; 1037 } 1038 1039 dst = argbuf; 1040 1041 /* Extract cmd name from argv */ 1042 cmd = basename(*args); 1043 1044 for (; (src = *args++) != NULL; ) { 1045 if (*src == '\0') 1046 continue; 1047 len = (argbuflen - (dst - argbuf) - 1) / 4; 1048 strvisx(dst, src, 1049 MIN(strlen(src), len), 1050 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); 1051 while (*dst != '\0') 1052 dst++; 1053 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1054 *dst++ = ' '; /* add delimiting space */ 1055 } 1056 if (dst != argbuf && dst[-1] == ' ') 1057 dst--; 1058 *dst = '\0'; 1059 1060 if (strcmp(cmd, pp->ki_comm) != 0) { 1061 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1062 pp->ki_tdname[0]) 1063 snprintf(cmdbuf, screen_width, 1064 "%s (%s){%s%s}", argbuf, 1065 pp->ki_comm, pp->ki_tdname, 1066 pp->ki_moretdname); 1067 else 1068 snprintf(cmdbuf, screen_width, 1069 "%s (%s)", argbuf, pp->ki_comm); 1070 } else { 1071 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1072 pp->ki_tdname[0]) 1073 snprintf(cmdbuf, screen_width, 1074 "%s{%s%s}", argbuf, pp->ki_tdname, 1075 pp->ki_moretdname); 1076 else 1077 strlcpy(cmdbuf, argbuf, screen_width); 1078 } 1079 free(argbuf); 1080 } 1081 } 1082 1083 if (displaymode == DISP_IO) { 1084 oldp = get_old_proc(pp); 1085 if (oldp != NULL) { 1086 ru.ru_inblock = RU(pp)->ru_inblock - 1087 RU(oldp)->ru_inblock; 1088 ru.ru_oublock = RU(pp)->ru_oublock - 1089 RU(oldp)->ru_oublock; 1090 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1091 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1092 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1093 rup = &ru; 1094 } else { 1095 rup = RU(pp); 1096 } 1097 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1098 s_tot = total_inblock + total_oublock + total_majflt; 1099 1100 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1101 1102 if (ps.jail) { 1103 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1104 } 1105 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1106 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1107 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1108 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1109 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1110 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1111 sbuf_printf(procbuf, "%6ld ", p_tot); 1112 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1113 1114 } else { 1115 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1116 if (ps.jail) { 1117 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1118 } 1119 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1120 1121 if (!ps.thread) { 1122 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1123 } else { 1124 sbuf_printf(procbuf, " "); 1125 } 1126 1127 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1128 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1129 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1130 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1131 if (ps.swap) { 1132 sbuf_printf(procbuf, "%*s ", 1133 TOP_SWAP_LEN - 1, 1134 format_k(pagetok(ki_swap(pp)))); 1135 } 1136 sbuf_printf(procbuf, "%-6.6s ", status); 1137 if (smpmode) { 1138 int cpu; 1139 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1140 cpu = pp->ki_oncpu; 1141 } else { 1142 cpu = pp->ki_lastcpu; 1143 } 1144 sbuf_printf(procbuf, "%3d ", cpu); 1145 } 1146 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1147 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1148 } 1149 sbuf_printf(procbuf, "%s", cmdbuf); 1150 free(cmdbuf); 1151 return (sbuf_data(procbuf)); 1152 } 1153 1154 static void 1155 getsysctl(const char *name, void *ptr, size_t len) 1156 { 1157 size_t nlen = len; 1158 1159 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1160 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1161 strerror(errno)); 1162 quit(TOP_EX_SYS_ERROR); 1163 } 1164 if (nlen != len) { 1165 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1166 name, (unsigned long)len, (unsigned long)nlen); 1167 quit(TOP_EX_SYS_ERROR); 1168 } 1169 } 1170 1171 static const char * 1172 format_nice(const struct kinfo_proc *pp) 1173 { 1174 const char *fifo, *kproc; 1175 int rtpri; 1176 static char nicebuf[4 + 1]; 1177 1178 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1179 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1180 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1181 case PRI_ITHD: 1182 return ("-"); 1183 case PRI_REALTIME: 1184 /* 1185 * XXX: the kernel doesn't tell us the original rtprio and 1186 * doesn't really know what it was, so to recover it we 1187 * must be more chummy with the implementation than the 1188 * implementation is with itself. pri_user gives a 1189 * constant "base" priority, but is only initialized 1190 * properly for user threads. pri_native gives what the 1191 * kernel calls the "base" priority, but it isn't constant 1192 * since it is changed by priority propagation. pri_native 1193 * also isn't properly initialized for all threads, but it 1194 * is properly initialized for kernel realtime and idletime 1195 * threads. Thus we use pri_user for the base priority of 1196 * user threads (it is always correct) and pri_native for 1197 * the base priority of kernel realtime and idletime threads 1198 * (there is nothing better, and it is usually correct). 1199 * 1200 * The field width and thus the buffer are too small for 1201 * values like "kr31F", but such values shouldn't occur, 1202 * and if they do then the tailing "F" is not displayed. 1203 */ 1204 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1205 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1206 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1207 kproc, rtpri, fifo); 1208 break; 1209 case PRI_TIMESHARE: 1210 if (pp->ki_flag & P_KPROC) 1211 return ("-"); 1212 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1213 break; 1214 case PRI_IDLE: 1215 /* XXX: as above. */ 1216 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1217 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1218 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1219 kproc, rtpri, fifo); 1220 break; 1221 default: 1222 return ("?"); 1223 } 1224 return (nicebuf); 1225 } 1226 1227 /* comparison routines for qsort */ 1228 1229 static int 1230 compare_pid(const void *p1, const void *p2) 1231 { 1232 const struct kinfo_proc * const *pp1 = p1; 1233 const struct kinfo_proc * const *pp2 = p2; 1234 1235 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1236 1237 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1238 } 1239 1240 static int 1241 compare_tid(const void *p1, const void *p2) 1242 { 1243 const struct kinfo_proc * const *pp1 = p1; 1244 const struct kinfo_proc * const *pp2 = p2; 1245 1246 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1247 1248 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1249 } 1250 1251 /* 1252 * proc_compare - comparison function for "qsort" 1253 * Compares the resource consumption of two processes using five 1254 * distinct keys. The keys (in descending order of importance) are: 1255 * percent cpu, cpu ticks, state, resident set size, total virtual 1256 * memory usage. The process states are ordered as follows (from least 1257 * to most important): run, zombie, idle, interrupt wait, stop, sleep. 1258 * The array declaration below maps a process state index into a 1259 * number that reflects this ordering. 1260 */ 1261 1262 static const int sorted_state[] = { 1263 [SIDL] = 3, /* being created */ 1264 [SRUN] = 1, /* running/runnable */ 1265 [SSLEEP] = 6, /* sleeping */ 1266 [SSTOP] = 5, /* stopped/suspended */ 1267 [SZOMB] = 2, /* zombie */ 1268 [SWAIT] = 4, /* intr */ 1269 [SLOCK] = 7, /* blocked on lock */ 1270 }; 1271 1272 1273 #define ORDERKEY_PCTCPU(a, b) do { \ 1274 double diff; \ 1275 if (ps.wcpu) \ 1276 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1277 weighted_cpu(PCTCPU((a)), (a)); \ 1278 else \ 1279 diff = PCTCPU((b)) - PCTCPU((a)); \ 1280 if (diff != 0) \ 1281 return (diff > 0 ? 1 : -1); \ 1282 } while (0) 1283 1284 #define ORDERKEY_CPTICKS(a, b) do { \ 1285 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1286 if (diff != 0) \ 1287 return (diff > 0 ? 1 : -1); \ 1288 } while (0) 1289 1290 #define ORDERKEY_STATE(a, b) do { \ 1291 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1292 if (diff != 0) \ 1293 return (diff > 0 ? 1 : -1); \ 1294 } while (0) 1295 1296 #define ORDERKEY_PRIO(a, b) do { \ 1297 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1298 if (diff != 0) \ 1299 return (diff > 0 ? 1 : -1); \ 1300 } while (0) 1301 1302 #define ORDERKEY_THREADS(a, b) do { \ 1303 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1304 if (diff != 0) \ 1305 return (diff > 0 ? 1 : -1); \ 1306 } while (0) 1307 1308 #define ORDERKEY_RSSIZE(a, b) do { \ 1309 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1310 if (diff != 0) \ 1311 return (diff > 0 ? 1 : -1); \ 1312 } while (0) 1313 1314 #define ORDERKEY_MEM(a, b) do { \ 1315 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1316 if (diff != 0) \ 1317 return (diff > 0 ? 1 : -1); \ 1318 } while (0) 1319 1320 #define ORDERKEY_JID(a, b) do { \ 1321 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1322 if (diff != 0) \ 1323 return (diff > 0 ? 1 : -1); \ 1324 } while (0) 1325 1326 #define ORDERKEY_SWAP(a, b) do { \ 1327 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1328 if (diff != 0) \ 1329 return (diff > 0 ? 1 : -1); \ 1330 } while (0) 1331 1332 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1333 1334 static int 1335 compare_cpu(const void *arg1, const void *arg2) 1336 { 1337 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1338 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1339 1340 ORDERKEY_PCTCPU(p1, p2); 1341 ORDERKEY_CPTICKS(p1, p2); 1342 ORDERKEY_STATE(p1, p2); 1343 ORDERKEY_PRIO(p1, p2); 1344 ORDERKEY_RSSIZE(p1, p2); 1345 ORDERKEY_MEM(p1, p2); 1346 1347 return (0); 1348 } 1349 1350 /* compare_size - the comparison function for sorting by total memory usage */ 1351 1352 static int 1353 compare_size(const void *arg1, const void *arg2) 1354 { 1355 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1356 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1357 1358 ORDERKEY_MEM(p1, p2); 1359 ORDERKEY_RSSIZE(p1, p2); 1360 ORDERKEY_PCTCPU(p1, p2); 1361 ORDERKEY_CPTICKS(p1, p2); 1362 ORDERKEY_STATE(p1, p2); 1363 ORDERKEY_PRIO(p1, p2); 1364 1365 return (0); 1366 } 1367 1368 /* compare_res - the comparison function for sorting by resident set size */ 1369 1370 static int 1371 compare_res(const void *arg1, const void *arg2) 1372 { 1373 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1374 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1375 1376 ORDERKEY_RSSIZE(p1, p2); 1377 ORDERKEY_MEM(p1, p2); 1378 ORDERKEY_PCTCPU(p1, p2); 1379 ORDERKEY_CPTICKS(p1, p2); 1380 ORDERKEY_STATE(p1, p2); 1381 ORDERKEY_PRIO(p1, p2); 1382 1383 return (0); 1384 } 1385 1386 /* compare_time - the comparison function for sorting by total cpu time */ 1387 1388 static int 1389 compare_time(const void *arg1, const void *arg2) 1390 { 1391 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1392 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1393 1394 ORDERKEY_CPTICKS(p1, p2); 1395 ORDERKEY_PCTCPU(p1, p2); 1396 ORDERKEY_STATE(p1, p2); 1397 ORDERKEY_PRIO(p1, p2); 1398 ORDERKEY_RSSIZE(p1, p2); 1399 ORDERKEY_MEM(p1, p2); 1400 1401 return (0); 1402 } 1403 1404 /* compare_prio - the comparison function for sorting by priority */ 1405 1406 static int 1407 compare_prio(const void *arg1, const void *arg2) 1408 { 1409 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1410 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1411 1412 ORDERKEY_PRIO(p1, p2); 1413 ORDERKEY_CPTICKS(p1, p2); 1414 ORDERKEY_PCTCPU(p1, p2); 1415 ORDERKEY_STATE(p1, p2); 1416 ORDERKEY_RSSIZE(p1, p2); 1417 ORDERKEY_MEM(p1, p2); 1418 1419 return (0); 1420 } 1421 1422 /* compare_threads - the comparison function for sorting by threads */ 1423 static int 1424 compare_threads(const void *arg1, const void *arg2) 1425 { 1426 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1427 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1428 1429 ORDERKEY_THREADS(p1, p2); 1430 ORDERKEY_PCTCPU(p1, p2); 1431 ORDERKEY_CPTICKS(p1, p2); 1432 ORDERKEY_STATE(p1, p2); 1433 ORDERKEY_PRIO(p1, p2); 1434 ORDERKEY_RSSIZE(p1, p2); 1435 ORDERKEY_MEM(p1, p2); 1436 1437 return (0); 1438 } 1439 1440 /* compare_jid - the comparison function for sorting by jid */ 1441 static int 1442 compare_jid(const void *arg1, const void *arg2) 1443 { 1444 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1445 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1446 1447 ORDERKEY_JID(p1, p2); 1448 ORDERKEY_PCTCPU(p1, p2); 1449 ORDERKEY_CPTICKS(p1, p2); 1450 ORDERKEY_STATE(p1, p2); 1451 ORDERKEY_PRIO(p1, p2); 1452 ORDERKEY_RSSIZE(p1, p2); 1453 ORDERKEY_MEM(p1, p2); 1454 1455 return (0); 1456 } 1457 1458 /* compare_swap - the comparison function for sorting by swap */ 1459 static int 1460 compare_swap(const void *arg1, const void *arg2) 1461 { 1462 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1463 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1464 1465 ORDERKEY_SWAP(p1, p2); 1466 ORDERKEY_PCTCPU(p1, p2); 1467 ORDERKEY_CPTICKS(p1, p2); 1468 ORDERKEY_STATE(p1, p2); 1469 ORDERKEY_PRIO(p1, p2); 1470 ORDERKEY_RSSIZE(p1, p2); 1471 ORDERKEY_MEM(p1, p2); 1472 1473 return (0); 1474 } 1475 1476 /* assorted comparison functions for sorting by i/o */ 1477 1478 static int 1479 compare_iototal(const void *arg1, const void *arg2) 1480 { 1481 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1482 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1483 1484 return (get_io_total(p2) - get_io_total(p1)); 1485 } 1486 1487 static int 1488 compare_ioread(const void *arg1, const void *arg2) 1489 { 1490 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1491 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1492 long dummy, inp1, inp2; 1493 1494 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1495 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1496 1497 return (inp2 - inp1); 1498 } 1499 1500 static int 1501 compare_iowrite(const void *arg1, const void *arg2) 1502 { 1503 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1504 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1505 long dummy, oup1, oup2; 1506 1507 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1508 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1509 1510 return (oup2 - oup1); 1511 } 1512 1513 static int 1514 compare_iofault(const void *arg1, const void *arg2) 1515 { 1516 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1517 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1518 long dummy, flp1, flp2; 1519 1520 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1521 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1522 1523 return (flp2 - flp1); 1524 } 1525 1526 static int 1527 compare_vcsw(const void *arg1, const void *arg2) 1528 { 1529 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1530 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1531 long dummy, flp1, flp2; 1532 1533 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1534 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1535 1536 return (flp2 - flp1); 1537 } 1538 1539 static int 1540 compare_ivcsw(const void *arg1, const void *arg2) 1541 { 1542 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1543 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1544 long dummy, flp1, flp2; 1545 1546 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1547 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1548 1549 return (flp2 - flp1); 1550 } 1551 1552 int (*compares[])(const void *arg1, const void *arg2) = { 1553 compare_cpu, 1554 compare_size, 1555 compare_res, 1556 compare_time, 1557 compare_prio, 1558 compare_threads, 1559 compare_iototal, 1560 compare_ioread, 1561 compare_iowrite, 1562 compare_iofault, 1563 compare_vcsw, 1564 compare_ivcsw, 1565 compare_jid, 1566 compare_swap, 1567 compare_pid, 1568 NULL 1569 }; 1570 1571 1572 static int 1573 swapmode(int *retavail, int *retfree) 1574 { 1575 int n; 1576 struct kvm_swap swapary[1]; 1577 static int pagesize = 0; 1578 static unsigned long swap_maxpages = 0; 1579 1580 *retavail = 0; 1581 *retfree = 0; 1582 1583 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1584 1585 n = kvm_getswapinfo(kd, swapary, 1, 0); 1586 if (n < 0 || swapary[0].ksw_total == 0) 1587 return (0); 1588 1589 if (pagesize == 0) 1590 pagesize = getpagesize(); 1591 if (swap_maxpages == 0) 1592 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1593 1594 /* ksw_total contains the total size of swap all devices which may 1595 exceed the maximum swap size allocatable in the system */ 1596 if ( swapary[0].ksw_total > swap_maxpages ) 1597 swapary[0].ksw_total = swap_maxpages; 1598 1599 *retavail = CONVERT(swapary[0].ksw_total); 1600 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1601 1602 #undef CONVERT 1603 1604 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1605 return (n); 1606 } 1607