1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 /* TOP_JID_LEN based on max of 999999 */ 71 #define TOP_JID_LEN 7 72 #define TOP_SWAP_LEN 6 73 static int jidlength; 74 static int swaplength; 75 static int cmdlengthdelta; 76 77 /* Prototypes for top internals */ 78 void quit(int); 79 80 /* get_process_info passes back a handle. This is what it looks like: */ 81 82 struct handle { 83 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 84 int remaining; /* number of pointers remaining */ 85 }; 86 87 /* declarations for load_avg */ 88 #include "loadavg.h" 89 90 /* define what weighted cpu is. */ 91 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 92 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 93 94 /* what we consider to be process size: */ 95 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 96 97 #define RU(pp) (&(pp)->ki_rusage) 98 #define RUTOT(pp) \ 99 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 100 101 #define PCTCPU(pp) (pcpu[pp - pbase]) 102 103 /* definitions for indices in the nlist array */ 104 105 /* 106 * These definitions control the format of the per-process area 107 */ 108 109 static char io_header[] = 110 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 111 112 #define io_Proc_format \ 113 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 114 115 static char smp_header_thr[] = 116 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 117 static char smp_header[] = 118 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 119 120 #define smp_Proc_format \ 121 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s" 122 123 static char up_header_thr[] = 124 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 125 static char up_header[] = 126 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 127 128 #define up_Proc_format \ 129 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s" 130 131 132 /* process state names for the "STATE" column of the display */ 133 /* the extra nulls in the string "run" are for adding a slash and 134 the processor number when needed */ 135 136 char *state_abbrev[] = { 137 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 138 }; 139 140 141 static kvm_t *kd; 142 143 /* values that we stash away in _init and use in later routines */ 144 145 static double logcpu; 146 147 /* these are retrieved from the kernel in _init */ 148 149 static load_avg ccpu; 150 151 /* these are used in the get_ functions */ 152 153 static int lastpid; 154 155 /* these are for calculating cpu state percentages */ 156 157 static long cp_time[CPUSTATES]; 158 static long cp_old[CPUSTATES]; 159 static long cp_diff[CPUSTATES]; 160 161 /* these are for detailing the process states */ 162 163 int process_states[8]; 164 char *procstatenames[] = { 165 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 166 " zombie, ", " waiting, ", " lock, ", 167 NULL 168 }; 169 170 /* these are for detailing the cpu states */ 171 172 int cpu_states[CPUSTATES]; 173 char *cpustatenames[] = { 174 "user", "nice", "system", "interrupt", "idle", NULL 175 }; 176 177 /* these are for detailing the memory statistics */ 178 179 int memory_stats[7]; 180 char *memorynames[] = { 181 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 182 "K Free", NULL 183 }; 184 185 int arc_stats[7]; 186 char *arcnames[] = { 187 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 188 NULL 189 }; 190 191 int swap_stats[7]; 192 char *swapnames[] = { 193 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 194 NULL 195 }; 196 197 198 /* these are for keeping track of the proc array */ 199 200 static int nproc; 201 static int onproc = -1; 202 static int pref_len; 203 static struct kinfo_proc *pbase; 204 static struct kinfo_proc **pref; 205 static struct kinfo_proc *previous_procs; 206 static struct kinfo_proc **previous_pref; 207 static int previous_proc_count = 0; 208 static int previous_proc_count_max = 0; 209 static int previous_thread; 210 211 /* data used for recalculating pctcpu */ 212 static double *pcpu; 213 static struct timespec proc_uptime; 214 static struct timeval proc_wall_time; 215 static struct timeval previous_wall_time; 216 static uint64_t previous_interval = 0; 217 218 /* total number of io operations */ 219 static long total_inblock; 220 static long total_oublock; 221 static long total_majflt; 222 223 /* these are for getting the memory statistics */ 224 225 static int arc_enabled; 226 static int pageshift; /* log base 2 of the pagesize */ 227 228 /* define pagetok in terms of pageshift */ 229 230 #define pagetok(size) ((size) << pageshift) 231 232 /* swap usage */ 233 #define ki_swap(kip) \ 234 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 235 236 /* useful externals */ 237 long percentages(); 238 239 #ifdef ORDER 240 /* 241 * Sorting orders. The first element is the default. 242 */ 243 char *ordernames[] = { 244 "cpu", "size", "res", "time", "pri", "threads", 245 "total", "read", "write", "fault", "vcsw", "ivcsw", 246 "jid", "swap", "pid", NULL 247 }; 248 #endif 249 250 /* Per-cpu time states */ 251 static int maxcpu; 252 static int maxid; 253 static int ncpus; 254 static u_long cpumask; 255 static long *times; 256 static long *pcpu_cp_time; 257 static long *pcpu_cp_old; 258 static long *pcpu_cp_diff; 259 static int *pcpu_cpu_states; 260 261 static int compare_swap(const void *a, const void *b); 262 static int compare_jid(const void *a, const void *b); 263 static int compare_pid(const void *a, const void *b); 264 static int compare_tid(const void *a, const void *b); 265 static const char *format_nice(const struct kinfo_proc *pp); 266 static void getsysctl(const char *name, void *ptr, size_t len); 267 static int swapmode(int *retavail, int *retfree); 268 static void update_layout(void); 269 270 void 271 toggle_pcpustats(void) 272 { 273 274 if (ncpus == 1) 275 return; 276 update_layout(); 277 } 278 279 /* Adjust display based on ncpus and the ARC state. */ 280 static void 281 update_layout(void) 282 { 283 284 y_mem = 3; 285 y_arc = 4; 286 y_swap = 4 + arc_enabled; 287 y_idlecursor = 5 + arc_enabled; 288 y_message = 5 + arc_enabled; 289 y_header = 6 + arc_enabled; 290 y_procs = 7 + arc_enabled; 291 Header_lines = 7 + arc_enabled; 292 293 if (pcpu_stats) { 294 y_mem += ncpus - 1; 295 y_arc += ncpus - 1; 296 y_swap += ncpus - 1; 297 y_idlecursor += ncpus - 1; 298 y_message += ncpus - 1; 299 y_header += ncpus - 1; 300 y_procs += ncpus - 1; 301 Header_lines += ncpus - 1; 302 } 303 } 304 305 int 306 machine_init(struct statics *statics, char do_unames) 307 { 308 int i, j, empty, pagesize; 309 uint64_t arc_size; 310 size_t size; 311 struct passwd *pw; 312 313 size = sizeof(smpmode); 314 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 315 NULL, 0) != 0 && 316 sysctlbyname("kern.smp.active", &smpmode, &size, 317 NULL, 0) != 0) || 318 size != sizeof(smpmode)) 319 smpmode = 0; 320 321 size = sizeof(arc_size); 322 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 323 NULL, 0) == 0 && arc_size != 0) 324 arc_enabled = 1; 325 326 if (do_unames) { 327 while ((pw = getpwent()) != NULL) { 328 if (strlen(pw->pw_name) > namelength) 329 namelength = strlen(pw->pw_name); 330 } 331 } 332 if (smpmode && namelength > SMPUNAMELEN) 333 namelength = SMPUNAMELEN; 334 else if (namelength > UPUNAMELEN) 335 namelength = UPUNAMELEN; 336 337 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 338 if (kd == NULL) 339 return (-1); 340 341 GETSYSCTL("kern.ccpu", ccpu); 342 343 /* this is used in calculating WCPU -- calculate it ahead of time */ 344 logcpu = log(loaddouble(ccpu)); 345 346 pbase = NULL; 347 pref = NULL; 348 pcpu = NULL; 349 nproc = 0; 350 onproc = -1; 351 352 /* get the page size and calculate pageshift from it */ 353 pagesize = getpagesize(); 354 pageshift = 0; 355 while (pagesize > 1) { 356 pageshift++; 357 pagesize >>= 1; 358 } 359 360 /* we only need the amount of log(2)1024 for our conversion */ 361 pageshift -= LOG1024; 362 363 /* fill in the statics information */ 364 statics->procstate_names = procstatenames; 365 statics->cpustate_names = cpustatenames; 366 statics->memory_names = memorynames; 367 if (arc_enabled) 368 statics->arc_names = arcnames; 369 else 370 statics->arc_names = NULL; 371 statics->swap_names = swapnames; 372 #ifdef ORDER 373 statics->order_names = ordernames; 374 #endif 375 376 /* Allocate state for per-CPU stats. */ 377 cpumask = 0; 378 ncpus = 0; 379 GETSYSCTL("kern.smp.maxcpus", maxcpu); 380 size = sizeof(long) * maxcpu * CPUSTATES; 381 times = malloc(size); 382 if (times == NULL) 383 err(1, "malloc %zu bytes", size); 384 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 385 err(1, "sysctlbyname kern.cp_times"); 386 pcpu_cp_time = calloc(1, size); 387 maxid = (size / CPUSTATES / sizeof(long)) - 1; 388 for (i = 0; i <= maxid; i++) { 389 empty = 1; 390 for (j = 0; empty && j < CPUSTATES; j++) { 391 if (times[i * CPUSTATES + j] != 0) 392 empty = 0; 393 } 394 if (!empty) { 395 cpumask |= (1ul << i); 396 ncpus++; 397 } 398 } 399 size = sizeof(long) * ncpus * CPUSTATES; 400 pcpu_cp_old = calloc(1, size); 401 pcpu_cp_diff = calloc(1, size); 402 pcpu_cpu_states = calloc(1, size); 403 statics->ncpus = ncpus; 404 405 update_layout(); 406 407 /* all done! */ 408 return (0); 409 } 410 411 char * 412 format_header(char *uname_field) 413 { 414 static char Header[128]; 415 const char *prehead; 416 417 if (ps.jail) 418 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 419 else 420 jidlength = 0; 421 422 if (ps.swap) 423 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 424 else 425 swaplength = 0; 426 427 switch (displaymode) { 428 case DISP_CPU: 429 /* 430 * The logic of picking the right header format seems reverse 431 * here because we only want to display a THR column when 432 * "thread mode" is off (and threads are not listed as 433 * separate lines). 434 */ 435 prehead = smpmode ? 436 (ps.thread ? smp_header : smp_header_thr) : 437 (ps.thread ? up_header : up_header_thr); 438 snprintf(Header, sizeof(Header), prehead, 439 jidlength, ps.jail ? " JID" : "", 440 namelength, namelength, uname_field, 441 swaplength, ps.swap ? " SWAP" : "", 442 ps.wcpu ? "WCPU" : "CPU"); 443 break; 444 case DISP_IO: 445 prehead = io_header; 446 snprintf(Header, sizeof(Header), prehead, 447 jidlength, ps.jail ? " JID" : "", 448 namelength, namelength, uname_field); 449 break; 450 } 451 cmdlengthdelta = strlen(Header) - 7; 452 return (Header); 453 } 454 455 static int swappgsin = -1; 456 static int swappgsout = -1; 457 extern struct timeval timeout; 458 459 460 void 461 get_system_info(struct system_info *si) 462 { 463 long total; 464 struct loadavg sysload; 465 int mib[2]; 466 struct timeval boottime; 467 uint64_t arc_stat, arc_stat2; 468 int i, j; 469 size_t size; 470 471 /* get the CPU stats */ 472 size = (maxid + 1) * CPUSTATES * sizeof(long); 473 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 474 err(1, "sysctlbyname kern.cp_times"); 475 GETSYSCTL("kern.cp_time", cp_time); 476 GETSYSCTL("vm.loadavg", sysload); 477 GETSYSCTL("kern.lastpid", lastpid); 478 479 /* convert load averages to doubles */ 480 for (i = 0; i < 3; i++) 481 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 482 483 /* convert cp_time counts to percentages */ 484 for (i = j = 0; i <= maxid; i++) { 485 if ((cpumask & (1ul << i)) == 0) 486 continue; 487 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 488 &pcpu_cp_time[j * CPUSTATES], 489 &pcpu_cp_old[j * CPUSTATES], 490 &pcpu_cp_diff[j * CPUSTATES]); 491 j++; 492 } 493 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 494 495 /* sum memory & swap statistics */ 496 { 497 static unsigned int swap_delay = 0; 498 static int swapavail = 0; 499 static int swapfree = 0; 500 static long bufspace = 0; 501 static int nspgsin, nspgsout; 502 503 GETSYSCTL("vfs.bufspace", bufspace); 504 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 505 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 506 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 507 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 508 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 509 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 510 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 511 /* convert memory stats to Kbytes */ 512 memory_stats[0] = pagetok(memory_stats[0]); 513 memory_stats[1] = pagetok(memory_stats[1]); 514 memory_stats[2] = pagetok(memory_stats[2]); 515 memory_stats[3] = pagetok(memory_stats[3]); 516 memory_stats[4] = bufspace / 1024; 517 memory_stats[5] = pagetok(memory_stats[5]); 518 memory_stats[6] = -1; 519 520 /* first interval */ 521 if (swappgsin < 0) { 522 swap_stats[4] = 0; 523 swap_stats[5] = 0; 524 } 525 526 /* compute differences between old and new swap statistic */ 527 else { 528 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 529 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 530 } 531 532 swappgsin = nspgsin; 533 swappgsout = nspgsout; 534 535 /* call CPU heavy swapmode() only for changes */ 536 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 537 swap_stats[3] = swapmode(&swapavail, &swapfree); 538 swap_stats[0] = swapavail; 539 swap_stats[1] = swapavail - swapfree; 540 swap_stats[2] = swapfree; 541 } 542 swap_delay = 1; 543 swap_stats[6] = -1; 544 } 545 546 if (arc_enabled) { 547 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 548 arc_stats[0] = arc_stat >> 10; 549 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 550 arc_stats[1] = arc_stat >> 10; 551 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 552 arc_stats[2] = arc_stat >> 10; 553 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 554 arc_stats[3] = arc_stat >> 10; 555 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 556 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 557 arc_stats[4] = arc_stat + arc_stat2 >> 10; 558 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 559 arc_stats[5] = arc_stat >> 10; 560 si->arc = arc_stats; 561 } 562 563 /* set arrays and strings */ 564 if (pcpu_stats) { 565 si->cpustates = pcpu_cpu_states; 566 si->ncpus = ncpus; 567 } else { 568 si->cpustates = cpu_states; 569 si->ncpus = 1; 570 } 571 si->memory = memory_stats; 572 si->swap = swap_stats; 573 574 575 if (lastpid > 0) { 576 si->last_pid = lastpid; 577 } else { 578 si->last_pid = -1; 579 } 580 581 /* 582 * Print how long system has been up. 583 * (Found by looking getting "boottime" from the kernel) 584 */ 585 mib[0] = CTL_KERN; 586 mib[1] = KERN_BOOTTIME; 587 size = sizeof(boottime); 588 if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && 589 boottime.tv_sec != 0) { 590 si->boottime = boottime; 591 } else { 592 si->boottime.tv_sec = -1; 593 } 594 } 595 596 #define NOPROC ((void *)-1) 597 598 /* 599 * We need to compare data from the old process entry with the new 600 * process entry. 601 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 602 * structure to cache the mapping. We also use a negative cache pointer 603 * of NOPROC to avoid duplicate lookups. 604 * XXX: this could be done when the actual processes are fetched, we do 605 * it here out of laziness. 606 */ 607 const struct kinfo_proc * 608 get_old_proc(struct kinfo_proc *pp) 609 { 610 struct kinfo_proc **oldpp, *oldp; 611 612 /* 613 * If this is the first fetch of the kinfo_procs then we don't have 614 * any previous entries. 615 */ 616 if (previous_proc_count == 0) 617 return (NULL); 618 /* negative cache? */ 619 if (pp->ki_udata == NOPROC) 620 return (NULL); 621 /* cached? */ 622 if (pp->ki_udata != NULL) 623 return (pp->ki_udata); 624 /* 625 * Not cached, 626 * 1) look up based on pid. 627 * 2) compare process start. 628 * If we fail here, then setup a negative cache entry, otherwise 629 * cache it. 630 */ 631 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 632 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 633 if (oldpp == NULL) { 634 pp->ki_udata = NOPROC; 635 return (NULL); 636 } 637 oldp = *oldpp; 638 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 639 pp->ki_udata = NOPROC; 640 return (NULL); 641 } 642 pp->ki_udata = oldp; 643 return (oldp); 644 } 645 646 /* 647 * Return the total amount of IO done in blocks in/out and faults. 648 * store the values individually in the pointers passed in. 649 */ 650 long 651 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 652 long *vcsw, long *ivcsw) 653 { 654 const struct kinfo_proc *oldp; 655 static struct kinfo_proc dummy; 656 long ret; 657 658 oldp = get_old_proc(pp); 659 if (oldp == NULL) { 660 bzero(&dummy, sizeof(dummy)); 661 oldp = &dummy; 662 } 663 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 664 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 665 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 666 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 667 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 668 ret = 669 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 670 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 671 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 672 return (ret); 673 } 674 675 /* 676 * If there was a previous update, use the delta in ki_runtime over 677 * the previous interval to calculate pctcpu. Otherwise, fall back 678 * to using the kernel's ki_pctcpu. 679 */ 680 static double 681 proc_calc_pctcpu(struct kinfo_proc *pp) 682 { 683 const struct kinfo_proc *oldp; 684 685 if (previous_interval != 0) { 686 oldp = get_old_proc(pp); 687 if (oldp != NULL) 688 return ((double)(pp->ki_runtime - oldp->ki_runtime) 689 / previous_interval); 690 691 /* 692 * If this process/thread was created during the previous 693 * interval, charge it's total runtime to the previous 694 * interval. 695 */ 696 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 697 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 698 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 699 return ((double)pp->ki_runtime / previous_interval); 700 } 701 return (pctdouble(pp->ki_pctcpu)); 702 } 703 704 /* 705 * Return true if this process has used any CPU time since the 706 * previous update. 707 */ 708 static int 709 proc_used_cpu(struct kinfo_proc *pp) 710 { 711 const struct kinfo_proc *oldp; 712 713 oldp = get_old_proc(pp); 714 if (oldp == NULL) 715 return (PCTCPU(pp) != 0); 716 return (pp->ki_runtime != oldp->ki_runtime || 717 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 718 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 719 } 720 721 /* 722 * Return the total number of block in/out and faults by a process. 723 */ 724 long 725 get_io_total(struct kinfo_proc *pp) 726 { 727 long dummy; 728 729 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 730 } 731 732 static struct handle handle; 733 734 caddr_t 735 get_process_info(struct system_info *si, struct process_select *sel, 736 int (*compare)(const void *, const void *)) 737 { 738 int i; 739 int total_procs; 740 long p_io; 741 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 742 long nsec; 743 int active_procs; 744 struct kinfo_proc **prefp; 745 struct kinfo_proc *pp; 746 struct timespec previous_proc_uptime; 747 748 /* these are copied out of sel for speed */ 749 int show_idle; 750 int show_jid; 751 int show_self; 752 int show_system; 753 int show_uid; 754 int show_command; 755 int show_kidle; 756 757 /* 758 * If thread state was toggled, don't cache the previous processes. 759 */ 760 if (previous_thread != sel->thread) 761 nproc = 0; 762 previous_thread = sel->thread; 763 764 /* 765 * Save the previous process info. 766 */ 767 if (previous_proc_count_max < nproc) { 768 free(previous_procs); 769 previous_procs = malloc(nproc * sizeof(*previous_procs)); 770 free(previous_pref); 771 previous_pref = malloc(nproc * sizeof(*previous_pref)); 772 if (previous_procs == NULL || previous_pref == NULL) { 773 (void) fprintf(stderr, "top: Out of memory.\n"); 774 quit(23); 775 } 776 previous_proc_count_max = nproc; 777 } 778 if (nproc) { 779 for (i = 0; i < nproc; i++) 780 previous_pref[i] = &previous_procs[i]; 781 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 782 qsort(previous_pref, nproc, sizeof(*previous_pref), 783 ps.thread ? compare_tid : compare_pid); 784 } 785 previous_proc_count = nproc; 786 previous_proc_uptime = proc_uptime; 787 previous_wall_time = proc_wall_time; 788 previous_interval = 0; 789 790 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 791 0, &nproc); 792 (void)gettimeofday(&proc_wall_time, NULL); 793 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 794 memset(&proc_uptime, 0, sizeof(proc_uptime)); 795 else if (previous_proc_uptime.tv_sec != 0 && 796 previous_proc_uptime.tv_nsec != 0) { 797 previous_interval = (proc_uptime.tv_sec - 798 previous_proc_uptime.tv_sec) * 1000000; 799 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 800 if (nsec < 0) { 801 previous_interval -= 1000000; 802 nsec += 1000000000; 803 } 804 previous_interval += nsec / 1000; 805 } 806 if (nproc > onproc) { 807 pref = realloc(pref, sizeof(*pref) * nproc); 808 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 809 onproc = nproc; 810 } 811 if (pref == NULL || pbase == NULL || pcpu == NULL) { 812 (void) fprintf(stderr, "top: Out of memory.\n"); 813 quit(23); 814 } 815 /* get a pointer to the states summary array */ 816 si->procstates = process_states; 817 818 /* set up flags which define what we are going to select */ 819 show_idle = sel->idle; 820 show_jid = sel->jid != -1; 821 show_self = sel->self == -1; 822 show_system = sel->system; 823 show_uid = sel->uid != -1; 824 show_command = sel->command != NULL; 825 show_kidle = sel->kidle; 826 827 /* count up process states and get pointers to interesting procs */ 828 total_procs = 0; 829 active_procs = 0; 830 total_inblock = 0; 831 total_oublock = 0; 832 total_majflt = 0; 833 memset((char *)process_states, 0, sizeof(process_states)); 834 prefp = pref; 835 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 836 837 if (pp->ki_stat == 0) 838 /* not in use */ 839 continue; 840 841 if (!show_self && pp->ki_pid == sel->self) 842 /* skip self */ 843 continue; 844 845 if (!show_system && (pp->ki_flag & P_SYSTEM)) 846 /* skip system process */ 847 continue; 848 849 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 850 &p_vcsw, &p_ivcsw); 851 total_inblock += p_inblock; 852 total_oublock += p_oublock; 853 total_majflt += p_majflt; 854 total_procs++; 855 process_states[pp->ki_stat]++; 856 857 if (pp->ki_stat == SZOMB) 858 /* skip zombies */ 859 continue; 860 861 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 862 /* skip kernel idle process */ 863 continue; 864 865 PCTCPU(pp) = proc_calc_pctcpu(pp); 866 if (sel->thread && PCTCPU(pp) > 1.0) 867 PCTCPU(pp) = 1.0; 868 if (displaymode == DISP_CPU && !show_idle && 869 (!proc_used_cpu(pp) || 870 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 871 /* skip idle or non-running processes */ 872 continue; 873 874 if (displaymode == DISP_IO && !show_idle && p_io == 0) 875 /* skip processes that aren't doing I/O */ 876 continue; 877 878 if (show_jid && pp->ki_jid != sel->jid) 879 /* skip proc. that don't belong to the selected JID */ 880 continue; 881 882 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 883 /* skip proc. that don't belong to the selected UID */ 884 continue; 885 886 *prefp++ = pp; 887 active_procs++; 888 } 889 890 /* if requested, sort the "interesting" processes */ 891 if (compare != NULL) 892 qsort(pref, active_procs, sizeof(*pref), compare); 893 894 /* remember active and total counts */ 895 si->p_total = total_procs; 896 si->p_active = pref_len = active_procs; 897 898 /* pass back a handle */ 899 handle.next_proc = pref; 900 handle.remaining = active_procs; 901 return ((caddr_t)&handle); 902 } 903 904 static char fmt[512]; /* static area where result is built */ 905 906 char * 907 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 908 { 909 struct kinfo_proc *pp; 910 const struct kinfo_proc *oldp; 911 long cputime; 912 double pct; 913 struct handle *hp; 914 char status[16]; 915 int cpu, state; 916 struct rusage ru, *rup; 917 long p_tot, s_tot; 918 char *proc_fmt, thr_buf[6]; 919 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 920 char *cmdbuf = NULL; 921 char **args; 922 const int cmdlen = 128; 923 924 /* find and remember the next proc structure */ 925 hp = (struct handle *)handle; 926 pp = *(hp->next_proc++); 927 hp->remaining--; 928 929 /* get the process's command name */ 930 if ((pp->ki_flag & P_INMEM) == 0) { 931 /* 932 * Print swapped processes as <pname> 933 */ 934 size_t len; 935 936 len = strlen(pp->ki_comm); 937 if (len > sizeof(pp->ki_comm) - 3) 938 len = sizeof(pp->ki_comm) - 3; 939 memmove(pp->ki_comm + 1, pp->ki_comm, len); 940 pp->ki_comm[0] = '<'; 941 pp->ki_comm[len + 1] = '>'; 942 pp->ki_comm[len + 2] = '\0'; 943 } 944 945 /* 946 * Convert the process's runtime from microseconds to seconds. This 947 * time includes the interrupt time although that is not wanted here. 948 * ps(1) is similarly sloppy. 949 */ 950 cputime = (pp->ki_runtime + 500000) / 1000000; 951 952 /* calculate the base for cpu percentages */ 953 pct = PCTCPU(pp); 954 955 /* generate "STATE" field */ 956 switch (state = pp->ki_stat) { 957 case SRUN: 958 if (smpmode && pp->ki_oncpu != NOCPU) 959 sprintf(status, "CPU%d", pp->ki_oncpu); 960 else 961 strcpy(status, "RUN"); 962 break; 963 case SLOCK: 964 if (pp->ki_kiflag & KI_LOCKBLOCK) { 965 sprintf(status, "*%.6s", pp->ki_lockname); 966 break; 967 } 968 /* fall through */ 969 case SSLEEP: 970 if (pp->ki_wmesg != NULL) { 971 sprintf(status, "%.6s", pp->ki_wmesg); 972 break; 973 } 974 /* FALLTHROUGH */ 975 default: 976 977 if (state >= 0 && 978 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 979 sprintf(status, "%.6s", state_abbrev[state]); 980 else 981 sprintf(status, "?%5d", state); 982 break; 983 } 984 985 cmdbuf = (char *)malloc(cmdlen + 1); 986 if (cmdbuf == NULL) { 987 warn("malloc(%d)", cmdlen + 1); 988 return NULL; 989 } 990 991 if (!(flags & FMT_SHOWARGS)) { 992 if (ps.thread && pp->ki_flag & P_HADTHREADS && 993 pp->ki_tdname[0]) { 994 snprintf(cmdbuf, cmdlen, "%s{%s}", pp->ki_comm, 995 pp->ki_tdname); 996 } else { 997 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 998 } 999 } else { 1000 if (pp->ki_flag & P_SYSTEM || 1001 pp->ki_args == NULL || 1002 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1003 !(*args)) { 1004 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1005 pp->ki_tdname[0]) { 1006 snprintf(cmdbuf, cmdlen, 1007 "[%s{%s}]", pp->ki_comm, pp->ki_tdname); 1008 } else { 1009 snprintf(cmdbuf, cmdlen, 1010 "[%s]", pp->ki_comm); 1011 } 1012 } else { 1013 char *src, *dst, *argbuf; 1014 char *cmd; 1015 size_t argbuflen; 1016 size_t len; 1017 1018 argbuflen = cmdlen * 4; 1019 argbuf = (char *)malloc(argbuflen + 1); 1020 if (argbuf == NULL) { 1021 warn("malloc(%zu)", argbuflen + 1); 1022 free(cmdbuf); 1023 return NULL; 1024 } 1025 1026 dst = argbuf; 1027 1028 /* Extract cmd name from argv */ 1029 cmd = strrchr(*args, '/'); 1030 if (cmd == NULL) 1031 cmd = *args; 1032 else 1033 cmd++; 1034 1035 for (; (src = *args++) != NULL; ) { 1036 if (*src == '\0') 1037 continue; 1038 len = (argbuflen - (dst - argbuf) - 1) / 4; 1039 strvisx(dst, src, 1040 MIN(strlen(src), len), 1041 VIS_NL | VIS_CSTYLE); 1042 while (*dst != '\0') 1043 dst++; 1044 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1045 *dst++ = ' '; /* add delimiting space */ 1046 } 1047 if (dst != argbuf && dst[-1] == ' ') 1048 dst--; 1049 *dst = '\0'; 1050 1051 if (strcmp(cmd, pp->ki_comm) != 0) { 1052 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1053 pp->ki_tdname[0]) 1054 snprintf(cmdbuf, cmdlen, 1055 "%s (%s){%s}", argbuf, pp->ki_comm, 1056 pp->ki_tdname); 1057 else 1058 snprintf(cmdbuf, cmdlen, 1059 "%s (%s)", argbuf, pp->ki_comm); 1060 } else { 1061 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1062 pp->ki_tdname[0]) 1063 snprintf(cmdbuf, cmdlen, 1064 "%s{%s}", argbuf, pp->ki_tdname); 1065 else 1066 strlcpy(cmdbuf, argbuf, cmdlen); 1067 } 1068 free(argbuf); 1069 } 1070 } 1071 1072 if (ps.jail == 0) 1073 jid_buf[0] = '\0'; 1074 else 1075 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1076 jidlength - 1, pp->ki_jid); 1077 1078 if (ps.swap == 0) 1079 swap_buf[0] = '\0'; 1080 else 1081 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1082 swaplength - 1, 1083 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1084 1085 if (displaymode == DISP_IO) { 1086 oldp = get_old_proc(pp); 1087 if (oldp != NULL) { 1088 ru.ru_inblock = RU(pp)->ru_inblock - 1089 RU(oldp)->ru_inblock; 1090 ru.ru_oublock = RU(pp)->ru_oublock - 1091 RU(oldp)->ru_oublock; 1092 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1093 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1094 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1095 rup = &ru; 1096 } else { 1097 rup = RU(pp); 1098 } 1099 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1100 s_tot = total_inblock + total_oublock + total_majflt; 1101 1102 snprintf(fmt, sizeof(fmt), io_Proc_format, 1103 pp->ki_pid, 1104 jidlength, jid_buf, 1105 namelength, namelength, (*get_userid)(pp->ki_ruid), 1106 rup->ru_nvcsw, 1107 rup->ru_nivcsw, 1108 rup->ru_inblock, 1109 rup->ru_oublock, 1110 rup->ru_majflt, 1111 p_tot, 1112 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1113 screen_width > cmdlengthdelta ? 1114 screen_width - cmdlengthdelta : 0, 1115 printable(cmdbuf)); 1116 1117 free(cmdbuf); 1118 1119 return (fmt); 1120 } 1121 1122 /* format this entry */ 1123 if (smpmode) { 1124 if (state == SRUN && pp->ki_oncpu != NOCPU) 1125 cpu = pp->ki_oncpu; 1126 else 1127 cpu = pp->ki_lastcpu; 1128 } else 1129 cpu = 0; 1130 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1131 if (ps.thread != 0) 1132 thr_buf[0] = '\0'; 1133 else 1134 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1135 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1136 1137 snprintf(fmt, sizeof(fmt), proc_fmt, 1138 pp->ki_pid, 1139 jidlength, jid_buf, 1140 namelength, namelength, (*get_userid)(pp->ki_ruid), 1141 thr_buf, 1142 pp->ki_pri.pri_level - PZERO, 1143 format_nice(pp), 1144 format_k2(PROCSIZE(pp)), 1145 format_k2(pagetok(pp->ki_rssize)), 1146 swaplength, swaplength, swap_buf, 1147 status, 1148 cpu, 1149 format_time(cputime), 1150 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1151 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1152 printable(cmdbuf)); 1153 1154 free(cmdbuf); 1155 1156 /* return the result */ 1157 return (fmt); 1158 } 1159 1160 static void 1161 getsysctl(const char *name, void *ptr, size_t len) 1162 { 1163 size_t nlen = len; 1164 1165 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1166 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1167 strerror(errno)); 1168 quit(23); 1169 } 1170 if (nlen != len) { 1171 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1172 name, (unsigned long)len, (unsigned long)nlen); 1173 quit(23); 1174 } 1175 } 1176 1177 static const char * 1178 format_nice(const struct kinfo_proc *pp) 1179 { 1180 const char *fifo, *kproc; 1181 int rtpri; 1182 static char nicebuf[4 + 1]; 1183 1184 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1185 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1186 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1187 case PRI_ITHD: 1188 return ("-"); 1189 case PRI_REALTIME: 1190 /* 1191 * XXX: the kernel doesn't tell us the original rtprio and 1192 * doesn't really know what it was, so to recover it we 1193 * must be more chummy with the implementation than the 1194 * implementation is with itself. pri_user gives a 1195 * constant "base" priority, but is only initialized 1196 * properly for user threads. pri_native gives what the 1197 * kernel calls the "base" priority, but it isn't constant 1198 * since it is changed by priority propagation. pri_native 1199 * also isn't properly initialized for all threads, but it 1200 * is properly initialized for kernel realtime and idletime 1201 * threads. Thus we use pri_user for the base priority of 1202 * user threads (it is always correct) and pri_native for 1203 * the base priority of kernel realtime and idletime threads 1204 * (there is nothing better, and it is usually correct). 1205 * 1206 * The field width and thus the buffer are too small for 1207 * values like "kr31F", but such values shouldn't occur, 1208 * and if they do then the tailing "F" is not displayed. 1209 */ 1210 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1211 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1212 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1213 kproc, rtpri, fifo); 1214 break; 1215 case PRI_TIMESHARE: 1216 if (pp->ki_flag & P_KPROC) 1217 return ("-"); 1218 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1219 break; 1220 case PRI_IDLE: 1221 /* XXX: as above. */ 1222 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1223 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1224 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1225 kproc, rtpri, fifo); 1226 break; 1227 default: 1228 return ("?"); 1229 } 1230 return (nicebuf); 1231 } 1232 1233 /* comparison routines for qsort */ 1234 1235 static int 1236 compare_pid(const void *p1, const void *p2) 1237 { 1238 const struct kinfo_proc * const *pp1 = p1; 1239 const struct kinfo_proc * const *pp2 = p2; 1240 1241 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1242 abort(); 1243 1244 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1245 } 1246 1247 static int 1248 compare_tid(const void *p1, const void *p2) 1249 { 1250 const struct kinfo_proc * const *pp1 = p1; 1251 const struct kinfo_proc * const *pp2 = p2; 1252 1253 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1254 abort(); 1255 1256 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1257 } 1258 1259 /* 1260 * proc_compare - comparison function for "qsort" 1261 * Compares the resource consumption of two processes using five 1262 * distinct keys. The keys (in descending order of importance) are: 1263 * percent cpu, cpu ticks, state, resident set size, total virtual 1264 * memory usage. The process states are ordered as follows (from least 1265 * to most important): WAIT, zombie, sleep, stop, start, run. The 1266 * array declaration below maps a process state index into a number 1267 * that reflects this ordering. 1268 */ 1269 1270 static int sorted_state[] = { 1271 0, /* not used */ 1272 3, /* sleep */ 1273 1, /* ABANDONED (WAIT) */ 1274 6, /* run */ 1275 5, /* start */ 1276 2, /* zombie */ 1277 4 /* stop */ 1278 }; 1279 1280 1281 #define ORDERKEY_PCTCPU(a, b) do { \ 1282 double diff; \ 1283 if (ps.wcpu) \ 1284 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1285 weighted_cpu(PCTCPU((a)), (a)); \ 1286 else \ 1287 diff = PCTCPU((b)) - PCTCPU((a)); \ 1288 if (diff != 0) \ 1289 return (diff > 0 ? 1 : -1); \ 1290 } while (0) 1291 1292 #define ORDERKEY_CPTICKS(a, b) do { \ 1293 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1294 if (diff != 0) \ 1295 return (diff > 0 ? 1 : -1); \ 1296 } while (0) 1297 1298 #define ORDERKEY_STATE(a, b) do { \ 1299 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1300 if (diff != 0) \ 1301 return (diff > 0 ? 1 : -1); \ 1302 } while (0) 1303 1304 #define ORDERKEY_PRIO(a, b) do { \ 1305 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1306 if (diff != 0) \ 1307 return (diff > 0 ? 1 : -1); \ 1308 } while (0) 1309 1310 #define ORDERKEY_THREADS(a, b) do { \ 1311 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1312 if (diff != 0) \ 1313 return (diff > 0 ? 1 : -1); \ 1314 } while (0) 1315 1316 #define ORDERKEY_RSSIZE(a, b) do { \ 1317 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1318 if (diff != 0) \ 1319 return (diff > 0 ? 1 : -1); \ 1320 } while (0) 1321 1322 #define ORDERKEY_MEM(a, b) do { \ 1323 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1324 if (diff != 0) \ 1325 return (diff > 0 ? 1 : -1); \ 1326 } while (0) 1327 1328 #define ORDERKEY_JID(a, b) do { \ 1329 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 #define ORDERKEY_SWAP(a, b) do { \ 1335 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1336 if (diff != 0) \ 1337 return (diff > 0 ? 1 : -1); \ 1338 } while (0) 1339 1340 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1341 1342 int 1343 #ifdef ORDER 1344 compare_cpu(void *arg1, void *arg2) 1345 #else 1346 proc_compare(void *arg1, void *arg2) 1347 #endif 1348 { 1349 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1350 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1351 1352 ORDERKEY_PCTCPU(p1, p2); 1353 ORDERKEY_CPTICKS(p1, p2); 1354 ORDERKEY_STATE(p1, p2); 1355 ORDERKEY_PRIO(p1, p2); 1356 ORDERKEY_RSSIZE(p1, p2); 1357 ORDERKEY_MEM(p1, p2); 1358 1359 return (0); 1360 } 1361 1362 #ifdef ORDER 1363 /* "cpu" compare routines */ 1364 int compare_size(), compare_res(), compare_time(), compare_prio(), 1365 compare_threads(); 1366 1367 /* 1368 * "io" compare routines. Context switches aren't i/o, but are displayed 1369 * on the "io" display. 1370 */ 1371 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1372 compare_vcsw(), compare_ivcsw(); 1373 1374 int (*compares[])() = { 1375 compare_cpu, 1376 compare_size, 1377 compare_res, 1378 compare_time, 1379 compare_prio, 1380 compare_threads, 1381 compare_iototal, 1382 compare_ioread, 1383 compare_iowrite, 1384 compare_iofault, 1385 compare_vcsw, 1386 compare_ivcsw, 1387 compare_jid, 1388 compare_swap, 1389 NULL 1390 }; 1391 1392 /* compare_size - the comparison function for sorting by total memory usage */ 1393 1394 int 1395 compare_size(void *arg1, void *arg2) 1396 { 1397 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1398 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1399 1400 ORDERKEY_MEM(p1, p2); 1401 ORDERKEY_RSSIZE(p1, p2); 1402 ORDERKEY_PCTCPU(p1, p2); 1403 ORDERKEY_CPTICKS(p1, p2); 1404 ORDERKEY_STATE(p1, p2); 1405 ORDERKEY_PRIO(p1, p2); 1406 1407 return (0); 1408 } 1409 1410 /* compare_res - the comparison function for sorting by resident set size */ 1411 1412 int 1413 compare_res(void *arg1, void *arg2) 1414 { 1415 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1416 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1417 1418 ORDERKEY_RSSIZE(p1, p2); 1419 ORDERKEY_MEM(p1, p2); 1420 ORDERKEY_PCTCPU(p1, p2); 1421 ORDERKEY_CPTICKS(p1, p2); 1422 ORDERKEY_STATE(p1, p2); 1423 ORDERKEY_PRIO(p1, p2); 1424 1425 return (0); 1426 } 1427 1428 /* compare_time - the comparison function for sorting by total cpu time */ 1429 1430 int 1431 compare_time(void *arg1, void *arg2) 1432 { 1433 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1434 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1435 1436 ORDERKEY_CPTICKS(p1, p2); 1437 ORDERKEY_PCTCPU(p1, p2); 1438 ORDERKEY_STATE(p1, p2); 1439 ORDERKEY_PRIO(p1, p2); 1440 ORDERKEY_RSSIZE(p1, p2); 1441 ORDERKEY_MEM(p1, p2); 1442 1443 return (0); 1444 } 1445 1446 /* compare_prio - the comparison function for sorting by priority */ 1447 1448 int 1449 compare_prio(void *arg1, void *arg2) 1450 { 1451 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1452 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1453 1454 ORDERKEY_PRIO(p1, p2); 1455 ORDERKEY_CPTICKS(p1, p2); 1456 ORDERKEY_PCTCPU(p1, p2); 1457 ORDERKEY_STATE(p1, p2); 1458 ORDERKEY_RSSIZE(p1, p2); 1459 ORDERKEY_MEM(p1, p2); 1460 1461 return (0); 1462 } 1463 1464 /* compare_threads - the comparison function for sorting by threads */ 1465 int 1466 compare_threads(void *arg1, void *arg2) 1467 { 1468 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1469 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1470 1471 ORDERKEY_THREADS(p1, p2); 1472 ORDERKEY_PCTCPU(p1, p2); 1473 ORDERKEY_CPTICKS(p1, p2); 1474 ORDERKEY_STATE(p1, p2); 1475 ORDERKEY_PRIO(p1, p2); 1476 ORDERKEY_RSSIZE(p1, p2); 1477 ORDERKEY_MEM(p1, p2); 1478 1479 return (0); 1480 } 1481 1482 /* compare_jid - the comparison function for sorting by jid */ 1483 static int 1484 compare_jid(const void *arg1, const void *arg2) 1485 { 1486 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1487 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1488 1489 ORDERKEY_JID(p1, p2); 1490 ORDERKEY_PCTCPU(p1, p2); 1491 ORDERKEY_CPTICKS(p1, p2); 1492 ORDERKEY_STATE(p1, p2); 1493 ORDERKEY_PRIO(p1, p2); 1494 ORDERKEY_RSSIZE(p1, p2); 1495 ORDERKEY_MEM(p1, p2); 1496 1497 return (0); 1498 } 1499 1500 /* compare_swap - the comparison function for sorting by swap */ 1501 static int 1502 compare_swap(const void *arg1, const void *arg2) 1503 { 1504 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1505 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1506 1507 ORDERKEY_SWAP(p1, p2); 1508 ORDERKEY_PCTCPU(p1, p2); 1509 ORDERKEY_CPTICKS(p1, p2); 1510 ORDERKEY_STATE(p1, p2); 1511 ORDERKEY_PRIO(p1, p2); 1512 ORDERKEY_RSSIZE(p1, p2); 1513 ORDERKEY_MEM(p1, p2); 1514 1515 return (0); 1516 } 1517 #endif /* ORDER */ 1518 1519 /* assorted comparison functions for sorting by i/o */ 1520 1521 int 1522 #ifdef ORDER 1523 compare_iototal(void *arg1, void *arg2) 1524 #else 1525 io_compare(void *arg1, void *arg2) 1526 #endif 1527 { 1528 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1529 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1530 1531 return (get_io_total(p2) - get_io_total(p1)); 1532 } 1533 1534 #ifdef ORDER 1535 int 1536 compare_ioread(void *arg1, void *arg2) 1537 { 1538 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1539 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1540 long dummy, inp1, inp2; 1541 1542 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1543 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1544 1545 return (inp2 - inp1); 1546 } 1547 1548 int 1549 compare_iowrite(void *arg1, void *arg2) 1550 { 1551 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1552 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1553 long dummy, oup1, oup2; 1554 1555 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1556 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1557 1558 return (oup2 - oup1); 1559 } 1560 1561 int 1562 compare_iofault(void *arg1, void *arg2) 1563 { 1564 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1565 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1566 long dummy, flp1, flp2; 1567 1568 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1569 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1570 1571 return (flp2 - flp1); 1572 } 1573 1574 int 1575 compare_vcsw(void *arg1, void *arg2) 1576 { 1577 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1578 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1579 long dummy, flp1, flp2; 1580 1581 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1582 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1583 1584 return (flp2 - flp1); 1585 } 1586 1587 int 1588 compare_ivcsw(void *arg1, void *arg2) 1589 { 1590 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1591 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1592 long dummy, flp1, flp2; 1593 1594 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1595 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1596 1597 return (flp2 - flp1); 1598 } 1599 #endif /* ORDER */ 1600 1601 /* 1602 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1603 * the process does not exist. 1604 * It is EXTREMELY IMPORTANT that this function work correctly. 1605 * If top runs setuid root (as in SVR4), then this function 1606 * is the only thing that stands in the way of a serious 1607 * security problem. It validates requests for the "kill" 1608 * and "renice" commands. 1609 */ 1610 1611 int 1612 proc_owner(int pid) 1613 { 1614 int cnt; 1615 struct kinfo_proc **prefp; 1616 struct kinfo_proc *pp; 1617 1618 prefp = pref; 1619 cnt = pref_len; 1620 while (--cnt >= 0) { 1621 pp = *prefp++; 1622 if (pp->ki_pid == (pid_t)pid) 1623 return ((int)pp->ki_ruid); 1624 } 1625 return (-1); 1626 } 1627 1628 static int 1629 swapmode(int *retavail, int *retfree) 1630 { 1631 int n; 1632 int pagesize = getpagesize(); 1633 struct kvm_swap swapary[1]; 1634 1635 *retavail = 0; 1636 *retfree = 0; 1637 1638 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1639 1640 n = kvm_getswapinfo(kd, swapary, 1, 0); 1641 if (n < 0 || swapary[0].ksw_total == 0) 1642 return (0); 1643 1644 *retavail = CONVERT(swapary[0].ksw_total); 1645 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1646 1647 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1648 return (n); 1649 } 1650