xref: /freebsd/usr.bin/top/machine.c (revision 2da199da53835ee2d9228a60717fd2d0fccf9e50)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x system
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for FreeBSD 2.2
13  * Works for:
14  *	FreeBSD 2.2, and probably FreeBSD 2.1.x
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19  *          Steven Wallace  <swallace@freebsd.org>
20  *          Wolfram Schneider <wosch@FreeBSD.org>
21  *
22  * $Id: machine.c,v 1.18 1999/01/09 20:25:02 obrien Exp $
23  */
24 
25 
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <stdio.h>
33 #include <nlist.h>
34 #include <math.h>
35 #include <kvm.h>
36 #include <pwd.h>
37 #include <sys/errno.h>
38 #include <sys/sysctl.h>
39 #include <sys/dkstat.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/proc.h>
43 #include <sys/user.h>
44 #include <sys/vmmeter.h>
45 #include <sys/resource.h>
46 #include <sys/rtprio.h>
47 
48 /* Swap */
49 #include <stdlib.h>
50 #include <sys/rlist.h>
51 #include <sys/conf.h>
52 
53 #include <osreldate.h> /* for changes in kernel structures */
54 
55 #include "top.h"
56 #include "machine.h"
57 
58 static int check_nlist __P((struct nlist *));
59 static int getkval __P((unsigned long, int *, int, char *));
60 extern char* printable __P((char *));
61 int swapmode __P((int *retavail, int *retfree));
62 static int smpmode;
63 static int namelength;
64 static int cmdlength;
65 
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle
70 {
71     struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
72     int remaining;		/* number of pointers remaining */
73 };
74 
75 /* declarations for load_avg */
76 #include "loadavg.h"
77 
78 #define PP(pp, field) ((pp)->kp_proc . field)
79 #define EP(pp, field) ((pp)->kp_eproc . field)
80 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
81 
82 /* define what weighted cpu is.  */
83 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
84 			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
85 
86 /* what we consider to be process size: */
87 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
88 
89 /* definitions for indices in the nlist array */
90 
91 static struct nlist nlst[] = {
92 #define X_CCPU		0
93     { "_ccpu" },
94 #define X_CP_TIME	1
95     { "_cp_time" },
96 #define X_AVENRUN	2
97     { "_averunnable" },
98 
99 #define X_BUFSPACE	3
100 	{ "_bufspace" },	/* K in buffer cache */
101 #define X_CNT           4
102     { "_cnt" },		        /* struct vmmeter cnt */
103 
104 /* Last pid */
105 #define X_LASTPID	5
106     { "_nextpid" },
107     { 0 }
108 };
109 
110 /*
111  *  These definitions control the format of the per-process area
112  */
113 
114 static char smp_header[] =
115   "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
116 
117 #define smp_Proc_format \
118 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
119 
120 static char up_header[] =
121   "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
122 
123 #define up_Proc_format \
124 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
125 
126 
127 
128 /* process state names for the "STATE" column of the display */
129 /* the extra nulls in the string "run" are for adding a slash and
130    the processor number when needed */
131 
132 char *state_abbrev[] =
133 {
134     "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
135 };
136 
137 
138 static kvm_t *kd;
139 
140 /* values that we stash away in _init and use in later routines */
141 
142 static double logcpu;
143 
144 /* these are retrieved from the kernel in _init */
145 
146 static load_avg  ccpu;
147 
148 /* these are offsets obtained via nlist and used in the get_ functions */
149 
150 static unsigned long cp_time_offset;
151 static unsigned long avenrun_offset;
152 static unsigned long lastpid_offset;
153 static long lastpid;
154 static unsigned long cnt_offset;
155 static unsigned long bufspace_offset;
156 static long cnt;
157 
158 /* these are for calculating cpu state percentages */
159 
160 static long cp_time[CPUSTATES];
161 static long cp_old[CPUSTATES];
162 static long cp_diff[CPUSTATES];
163 
164 /* these are for detailing the process states */
165 
166 int process_states[6];
167 char *procstatenames[] = {
168     "", " starting, ", " running, ", " sleeping, ", " stopped, ",
169     " zombie, ",
170     NULL
171 };
172 
173 /* these are for detailing the cpu states */
174 
175 int cpu_states[CPUSTATES];
176 char *cpustatenames[] = {
177     "user", "nice", "system", "interrupt", "idle", NULL
178 };
179 
180 /* these are for detailing the memory statistics */
181 
182 int memory_stats[7];
183 char *memorynames[] = {
184     "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
185     NULL
186 };
187 
188 int swap_stats[7];
189 char *swapnames[] = {
190 /*   0           1            2           3            4       5 */
191     "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
192     NULL
193 };
194 
195 
196 /* these are for keeping track of the proc array */
197 
198 static int nproc;
199 static int onproc = -1;
200 static int pref_len;
201 static struct kinfo_proc *pbase;
202 static struct kinfo_proc **pref;
203 
204 /* these are for getting the memory statistics */
205 
206 static int pageshift;		/* log base 2 of the pagesize */
207 
208 /* define pagetok in terms of pageshift */
209 
210 #define pagetok(size) ((size) << pageshift)
211 
212 /* useful externals */
213 long percentages();
214 
215 #ifdef ORDER
216 /* sorting orders. first is default */
217 char *ordernames[] = {
218     "cpu", "size", "res", "time", "pri", NULL
219 };
220 #endif
221 
222 int
223 machine_init(statics)
224 
225 struct statics *statics;
226 
227 {
228     register int i = 0;
229     register int pagesize;
230     int modelen;
231     struct passwd *pw;
232 
233     modelen = sizeof(smpmode);
234     if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
235          sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
236 	modelen != sizeof(smpmode))
237 	    smpmode = 0;
238 
239     while ((pw = getpwent()) != NULL) {
240 	if (strlen(pw->pw_name) > namelength)
241 	    namelength = strlen(pw->pw_name);
242     }
243     if (namelength < 8)
244 	namelength = 8;
245     if (namelength > 16)
246 	namelength = 16;
247 
248     if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
249 	return -1;
250 
251 
252     /* get the list of symbols we want to access in the kernel */
253     (void) kvm_nlist(kd, nlst);
254     if (nlst[0].n_type == 0)
255     {
256 	fprintf(stderr, "top: nlist failed\n");
257 	return(-1);
258     }
259 
260     /* make sure they were all found */
261     if (i > 0 && check_nlist(nlst) > 0)
262     {
263 	return(-1);
264     }
265 
266     (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
267 	    nlst[X_CCPU].n_name);
268 
269     /* stash away certain offsets for later use */
270     cp_time_offset = nlst[X_CP_TIME].n_value;
271     avenrun_offset = nlst[X_AVENRUN].n_value;
272     lastpid_offset =  nlst[X_LASTPID].n_value;
273     cnt_offset = nlst[X_CNT].n_value;
274     bufspace_offset = nlst[X_BUFSPACE].n_value;
275 
276     /* this is used in calculating WCPU -- calculate it ahead of time */
277     logcpu = log(loaddouble(ccpu));
278 
279     pbase = NULL;
280     pref = NULL;
281     nproc = 0;
282     onproc = -1;
283     /* get the page size with "getpagesize" and calculate pageshift from it */
284     pagesize = getpagesize();
285     pageshift = 0;
286     while (pagesize > 1)
287     {
288 	pageshift++;
289 	pagesize >>= 1;
290     }
291 
292     /* we only need the amount of log(2)1024 for our conversion */
293     pageshift -= LOG1024;
294 
295     /* fill in the statics information */
296     statics->procstate_names = procstatenames;
297     statics->cpustate_names = cpustatenames;
298     statics->memory_names = memorynames;
299     statics->swap_names = swapnames;
300 #ifdef ORDER
301     statics->order_names = ordernames;
302 #endif
303 
304     /* all done! */
305     return(0);
306 }
307 
308 char *format_header(uname_field)
309 
310 register char *uname_field;
311 
312 {
313     register char *ptr;
314     static char Header[128];
315 
316     snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
317 	     namelength, namelength, uname_field);
318 
319     cmdlength = 80 - strlen(Header) + 6;
320 
321     return Header;
322 }
323 
324 static int swappgsin = -1;
325 static int swappgsout = -1;
326 extern struct timeval timeout;
327 
328 void
329 get_system_info(si)
330 
331 struct system_info *si;
332 
333 {
334     long total;
335     load_avg avenrun[3];
336     int mib[2];
337     struct timeval boottime;
338     size_t bt_size;
339 
340     /* get the cp_time array */
341     (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
342 		   nlst[X_CP_TIME].n_name);
343     (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
344 		   nlst[X_AVENRUN].n_name);
345 
346     (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
347 		   "!");
348 
349     /* convert load averages to doubles */
350     {
351 	register int i;
352 	register double *infoloadp;
353 	load_avg *avenrunp;
354 
355 #ifdef notyet
356 	struct loadavg sysload;
357 	int size;
358 	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
359 #endif
360 
361 	infoloadp = si->load_avg;
362 	avenrunp = avenrun;
363 	for (i = 0; i < 3; i++)
364 	{
365 #ifdef notyet
366 	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
367 #endif
368 	    *infoloadp++ = loaddouble(*avenrunp++);
369 	}
370     }
371 
372     /* convert cp_time counts to percentages */
373     total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
374 
375     /* sum memory & swap statistics */
376     {
377 	struct vmmeter sum;
378 	static unsigned int swap_delay = 0;
379 	static int swapavail = 0;
380 	static int swapfree = 0;
381 	static int bufspace = 0;
382 
383         (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
384 		   "_cnt");
385         (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
386 		   "_bufspace");
387 
388 	/* convert memory stats to Kbytes */
389 	memory_stats[0] = pagetok(sum.v_active_count);
390 	memory_stats[1] = pagetok(sum.v_inactive_count);
391 	memory_stats[2] = pagetok(sum.v_wire_count);
392 	memory_stats[3] = pagetok(sum.v_cache_count);
393 	memory_stats[4] = bufspace / 1024;
394 	memory_stats[5] = pagetok(sum.v_free_count);
395 	memory_stats[6] = -1;
396 
397 	/* first interval */
398         if (swappgsin < 0) {
399 	    swap_stats[4] = 0;
400 	    swap_stats[5] = 0;
401 	}
402 
403 	/* compute differences between old and new swap statistic */
404 	else {
405 	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
406 	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
407 	}
408 
409         swappgsin = sum.v_swappgsin;
410 	swappgsout = sum.v_swappgsout;
411 
412 	/* call CPU heavy swapmode() only for changes */
413         if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
414 	    swap_stats[3] = swapmode(&swapavail, &swapfree);
415 	    swap_stats[0] = swapavail;
416 	    swap_stats[1] = swapavail - swapfree;
417 	    swap_stats[2] = swapfree;
418 	}
419         swap_delay = 1;
420 	swap_stats[6] = -1;
421     }
422 
423     /* set arrays and strings */
424     si->cpustates = cpu_states;
425     si->memory = memory_stats;
426     si->swap = swap_stats;
427 
428 
429     if(lastpid > 0) {
430 	si->last_pid = lastpid;
431     } else {
432 	si->last_pid = -1;
433     }
434 
435     /*
436      * Print how long system has been up.
437      * (Found by looking getting "boottime" from the kernel)
438      */
439     mib[0] = CTL_KERN;
440     mib[1] = KERN_BOOTTIME;
441     bt_size = sizeof(boottime);
442     if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
443 	boottime.tv_sec != 0) {
444 	si->boottime = boottime;
445     } else {
446 	si->boottime.tv_sec = -1;
447     }
448 }
449 
450 static struct handle handle;
451 
452 caddr_t get_process_info(si, sel, compare)
453 
454 struct system_info *si;
455 struct process_select *sel;
456 int (*compare)();
457 
458 {
459     register int i;
460     register int total_procs;
461     register int active_procs;
462     register struct kinfo_proc **prefp;
463     register struct kinfo_proc *pp;
464 
465     /* these are copied out of sel for speed */
466     int show_idle;
467     int show_self;
468     int show_system;
469     int show_uid;
470     int show_command;
471 
472 
473     pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
474     if (nproc > onproc)
475 	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
476 		* (onproc = nproc));
477     if (pref == NULL || pbase == NULL) {
478 	(void) fprintf(stderr, "top: Out of memory.\n");
479 	quit(23);
480     }
481     /* get a pointer to the states summary array */
482     si->procstates = process_states;
483 
484     /* set up flags which define what we are going to select */
485     show_idle = sel->idle;
486     show_self = sel->self;
487     show_system = sel->system;
488     show_uid = sel->uid != -1;
489     show_command = sel->command != NULL;
490 
491     /* count up process states and get pointers to interesting procs */
492     total_procs = 0;
493     active_procs = 0;
494     memset((char *)process_states, 0, sizeof(process_states));
495     prefp = pref;
496     for (pp = pbase, i = 0; i < nproc; pp++, i++)
497     {
498 	/*
499 	 *  Place pointers to each valid proc structure in pref[].
500 	 *  Process slots that are actually in use have a non-zero
501 	 *  status field.  Processes with P_SYSTEM set are system
502 	 *  processes---these get ignored unless show_sysprocs is set.
503 	 */
504 	if (PP(pp, p_stat) != 0 &&
505 	    (show_self != PP(pp, p_pid)) &&
506 	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
507 	{
508 	    total_procs++;
509 	    process_states[(unsigned char) PP(pp, p_stat)]++;
510 	    if ((PP(pp, p_stat) != SZOMB) &&
511 		(show_idle || (PP(pp, p_pctcpu) != 0) ||
512 		 (PP(pp, p_stat) == SRUN)) &&
513 		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
514 	    {
515 		*prefp++ = pp;
516 		active_procs++;
517 	    }
518 	}
519     }
520 
521     /* if requested, sort the "interesting" processes */
522     if (compare != NULL)
523     {
524 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
525     }
526 
527     /* remember active and total counts */
528     si->p_total = total_procs;
529     si->p_active = pref_len = active_procs;
530 
531     /* pass back a handle */
532     handle.next_proc = pref;
533     handle.remaining = active_procs;
534     return((caddr_t)&handle);
535 }
536 
537 char fmt[128];		/* static area where result is built */
538 
539 char *format_next_process(handle, get_userid)
540 
541 caddr_t handle;
542 char *(*get_userid)();
543 
544 {
545     register struct kinfo_proc *pp;
546     register long cputime;
547     register double pct;
548     struct handle *hp;
549     char status[16];
550 
551     /* find and remember the next proc structure */
552     hp = (struct handle *)handle;
553     pp = *(hp->next_proc++);
554     hp->remaining--;
555 
556 
557     /* get the process's user struct and set cputime */
558     if ((PP(pp, p_flag) & P_INMEM) == 0) {
559 	/*
560 	 * Print swapped processes as <pname>
561 	 */
562 	char *comm = PP(pp, p_comm);
563 #define COMSIZ sizeof(PP(pp, p_comm))
564 	char buf[COMSIZ];
565 	(void) strncpy(buf, comm, COMSIZ);
566 	comm[0] = '<';
567 	(void) strncpy(&comm[1], buf, COMSIZ - 2);
568 	comm[COMSIZ - 2] = '\0';
569 	(void) strncat(comm, ">", COMSIZ - 1);
570 	comm[COMSIZ - 1] = '\0';
571     }
572 
573 #if 0
574     /* This does not produce the correct results */
575     cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
576 #endif
577     /* This does not count interrupts */
578     cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
579 
580     /* calculate the base for cpu percentages */
581     pct = pctdouble(PP(pp, p_pctcpu));
582 
583     /* generate "STATE" field */
584     switch (PP(pp, p_stat)) {
585 	case SRUN:
586 	    if (smpmode && PP(pp, p_oncpu) >= 0)
587 		sprintf(status, "CPU%d", PP(pp, p_oncpu));
588 	    else
589 		strcpy(status, "RUN");
590 	    break;
591 	case SSLEEP:
592 	    if (PP(pp, p_wmesg) != NULL) {
593 		sprintf(status, "%.6s", EP(pp, e_wmesg));
594 		break;
595 	    }
596 	    /* fall through */
597 	default:
598 	    sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
599 	    break;
600     }
601 
602     /* format this entry */
603     sprintf(fmt,
604 	    smpmode ? smp_Proc_format : up_Proc_format,
605 	    PP(pp, p_pid),
606 	    namelength, namelength,
607 	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
608 	    PP(pp, p_priority) - PZERO,
609 
610 	    /*
611 	     * normal time      -> nice value -20 - +20
612 	     * real time 0 - 31 -> nice value -52 - -21
613 	     * idle time 0 - 31 -> nice value +21 - +52
614 	     */
615 	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
616 	    	PP(pp, p_nice) - NZERO :
617 	    	(PP(pp, p_rtprio.type) ==  RTP_PRIO_REALTIME ?
618 		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
619 		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
620 	    format_k2(PROCSIZE(pp)),
621 	    format_k2(pagetok(VP(pp, vm_rssize))),
622 	    status,
623 	    smpmode ? PP(pp, p_lastcpu) : 0,
624 	    format_time(cputime),
625 	    100.0 * weighted_cpu(pct, pp),
626 	    100.0 * pct,
627 	    cmdlength,
628 	    printable(PP(pp, p_comm)));
629 
630     /* return the result */
631     return(fmt);
632 }
633 
634 
635 /*
636  * check_nlist(nlst) - checks the nlist to see if any symbols were not
637  *		found.  For every symbol that was not found, a one-line
638  *		message is printed to stderr.  The routine returns the
639  *		number of symbols NOT found.
640  */
641 
642 static int check_nlist(nlst)
643 
644 register struct nlist *nlst;
645 
646 {
647     register int i;
648 
649     /* check to see if we got ALL the symbols we requested */
650     /* this will write one line to stderr for every symbol not found */
651 
652     i = 0;
653     while (nlst->n_name != NULL)
654     {
655 	if (nlst->n_type == 0)
656 	{
657 	    /* this one wasn't found */
658 	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
659 			   nlst->n_name);
660 	    i = 1;
661 	}
662 	nlst++;
663     }
664 
665     return(i);
666 }
667 
668 
669 /*
670  *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
671  *	"offset" is the byte offset into the kernel for the desired value,
672  *  	"ptr" points to a buffer into which the value is retrieved,
673  *  	"size" is the size of the buffer (and the object to retrieve),
674  *  	"refstr" is a reference string used when printing error meessages,
675  *	    if "refstr" starts with a '!', then a failure on read will not
676  *  	    be fatal (this may seem like a silly way to do things, but I
677  *  	    really didn't want the overhead of another argument).
678  *
679  */
680 
681 static int getkval(offset, ptr, size, refstr)
682 
683 unsigned long offset;
684 int *ptr;
685 int size;
686 char *refstr;
687 
688 {
689     if (kvm_read(kd, offset, (char *) ptr, size) != size)
690     {
691 	if (*refstr == '!')
692 	{
693 	    return(0);
694 	}
695 	else
696 	{
697 	    fprintf(stderr, "top: kvm_read for %s: %s\n",
698 		refstr, strerror(errno));
699 	    quit(23);
700 	}
701     }
702     return(1);
703 }
704 
705 /* comparison routines for qsort */
706 
707 /*
708  *  proc_compare - comparison function for "qsort"
709  *	Compares the resource consumption of two processes using five
710  *  	distinct keys.  The keys (in descending order of importance) are:
711  *  	percent cpu, cpu ticks, state, resident set size, total virtual
712  *  	memory usage.  The process states are ordered as follows (from least
713  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
714  *  	array declaration below maps a process state index into a number
715  *  	that reflects this ordering.
716  */
717 
718 static unsigned char sorted_state[] =
719 {
720     0,	/* not used		*/
721     3,	/* sleep		*/
722     1,	/* ABANDONED (WAIT)	*/
723     6,	/* run			*/
724     5,	/* start		*/
725     2,	/* zombie		*/
726     4	/* stop			*/
727 };
728 
729 
730 #define ORDERKEY_PCTCPU \
731   if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \
732      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
733 
734 #define ORDERKEY_CPTICKS \
735   if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
736 
737 #define ORDERKEY_STATE \
738   if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
739                 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
740 
741 #define ORDERKEY_PRIO \
742   if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
743 
744 #define ORDERKEY_RSSIZE \
745   if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
746 
747 #define ORDERKEY_MEM \
748   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
749 
750 /* compare_cpu - the comparison function for sorting by cpu percentage */
751 
752 int
753 #ifdef ORDER
754 compare_cpu(pp1, pp2)
755 #else
756 proc_compare(pp1, pp2)
757 #endif
758 
759 struct proc **pp1;
760 struct proc **pp2;
761 
762 {
763     register struct kinfo_proc *p1;
764     register struct kinfo_proc *p2;
765     register int result;
766     register pctcpu lresult;
767 
768     /* remove one level of indirection */
769     p1 = *(struct kinfo_proc **) pp1;
770     p2 = *(struct kinfo_proc **) pp2;
771 
772     ORDERKEY_PCTCPU
773     ORDERKEY_CPTICKS
774     ORDERKEY_STATE
775     ORDERKEY_PRIO
776     ORDERKEY_RSSIZE
777     ORDERKEY_MEM
778     ;
779 
780     return(result);
781 }
782 
783 #ifdef ORDER
784 /* compare routines */
785 int compare_size(), compare_res(), compare_time(), compare_prio();
786 
787 int (*proc_compares[])() = {
788     compare_cpu,
789     compare_size,
790     compare_res,
791     compare_time,
792     compare_prio,
793     NULL
794 };
795 
796 /* compare_size - the comparison function for sorting by total memory usage */
797 
798 int
799 compare_size(pp1, pp2)
800 
801 struct proc **pp1;
802 struct proc **pp2;
803 
804 {
805     register struct kinfo_proc *p1;
806     register struct kinfo_proc *p2;
807     register int result;
808     register pctcpu lresult;
809 
810     /* remove one level of indirection */
811     p1 = *(struct kinfo_proc **) pp1;
812     p2 = *(struct kinfo_proc **) pp2;
813 
814     ORDERKEY_MEM
815     ORDERKEY_RSSIZE
816     ORDERKEY_PCTCPU
817     ORDERKEY_CPTICKS
818     ORDERKEY_STATE
819     ORDERKEY_PRIO
820     ;
821 
822     return(result);
823 }
824 
825 /* compare_res - the comparison function for sorting by resident set size */
826 
827 int
828 compare_res(pp1, pp2)
829 
830 struct proc **pp1;
831 struct proc **pp2;
832 
833 {
834     register struct kinfo_proc *p1;
835     register struct kinfo_proc *p2;
836     register int result;
837     register pctcpu lresult;
838 
839     /* remove one level of indirection */
840     p1 = *(struct kinfo_proc **) pp1;
841     p2 = *(struct kinfo_proc **) pp2;
842 
843     ORDERKEY_RSSIZE
844     ORDERKEY_MEM
845     ORDERKEY_PCTCPU
846     ORDERKEY_CPTICKS
847     ORDERKEY_STATE
848     ORDERKEY_PRIO
849     ;
850 
851     return(result);
852 }
853 
854 /* compare_time - the comparison function for sorting by total cpu time */
855 
856 int
857 compare_time(pp1, pp2)
858 
859 struct proc **pp1;
860 struct proc **pp2;
861 
862 {
863     register struct kinfo_proc *p1;
864     register struct kinfo_proc *p2;
865     register int result;
866     register pctcpu lresult;
867 
868     /* remove one level of indirection */
869     p1 = *(struct kinfo_proc **) pp1;
870     p2 = *(struct kinfo_proc **) pp2;
871 
872     ORDERKEY_CPTICKS
873     ORDERKEY_PCTCPU
874     ORDERKEY_STATE
875     ORDERKEY_PRIO
876     ORDERKEY_RSSIZE
877     ORDERKEY_MEM
878     ;
879 
880       return(result);
881   }
882 
883 /* compare_prio - the comparison function for sorting by cpu percentage */
884 
885 int
886 compare_prio(pp1, pp2)
887 
888 struct proc **pp1;
889 struct proc **pp2;
890 
891 {
892     register struct kinfo_proc *p1;
893     register struct kinfo_proc *p2;
894     register int result;
895     register pctcpu lresult;
896 
897     /* remove one level of indirection */
898     p1 = *(struct kinfo_proc **) pp1;
899     p2 = *(struct kinfo_proc **) pp2;
900 
901     ORDERKEY_PRIO
902     ORDERKEY_CPTICKS
903     ORDERKEY_PCTCPU
904     ORDERKEY_STATE
905     ORDERKEY_RSSIZE
906     ORDERKEY_MEM
907     ;
908 
909     return(result);
910 }
911 #endif
912 
913 /*
914  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
915  *		the process does not exist.
916  *		It is EXTREMLY IMPORTANT that this function work correctly.
917  *		If top runs setuid root (as in SVR4), then this function
918  *		is the only thing that stands in the way of a serious
919  *		security problem.  It validates requests for the "kill"
920  *		and "renice" commands.
921  */
922 
923 int proc_owner(pid)
924 
925 int pid;
926 
927 {
928     register int cnt;
929     register struct kinfo_proc **prefp;
930     register struct kinfo_proc *pp;
931 
932     prefp = pref;
933     cnt = pref_len;
934     while (--cnt >= 0)
935     {
936 	pp = *prefp++;
937 	if (PP(pp, p_pid) == (pid_t)pid)
938 	{
939 	    return((int)EP(pp, e_pcred.p_ruid));
940 	}
941     }
942     return(-1);
943 }
944 
945 
946 /*
947  * swapmode is based on a program called swapinfo written
948  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
949  */
950 
951 #define	SVAR(var) __STRING(var)	/* to force expansion */
952 #define	KGET(idx, var)							\
953 	KGET1(idx, &var, sizeof(var), SVAR(var))
954 #define	KGET1(idx, p, s, msg)						\
955 	KGET2(nlst[idx].n_value, p, s, msg)
956 #define	KGET2(addr, p, s, msg)						\
957 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
958 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
959 		return (0);                                             \
960        }
961 #define	KGETRET(addr, p, s, msg)					\
962 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
963 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
964 		return (0);						\
965 	}
966 
967 
968 int
969 swapmode(retavail, retfree)
970 	int *retavail;
971 	int *retfree;
972 {
973 	int n;
974 	int pagesize = getpagesize();
975 	struct kvm_swap swapary[1];
976 
977 	*retavail = 0;
978 	*retfree = 0;
979 
980 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
981 
982 	n = kvm_getswapinfo(kd, swapary, 1, 0);
983 	if (n < 0)
984 		return(0);
985 
986 	*retavail = CONVERT(swapary[0].ksw_total);
987 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
988 
989 	n = (int)((double)swapary[0].ksw_used * 100.0 /
990 	    (double)swapary[0].ksw_total);
991 	return(n);
992 }
993 
994