1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 static int cmdlengthdelta; 63 64 /* get_process_info passes back a handle. This is what it looks like: */ 65 66 struct handle { 67 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 68 int remaining; /* number of pointers remaining */ 69 }; 70 71 72 /* define what weighted cpu is. */ 73 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 74 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 75 76 /* what we consider to be process size: */ 77 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 78 79 #define RU(pp) (&(pp)->ki_rusage) 80 81 #define PCTCPU(pp) (pcpu[pp - pbase]) 82 83 /* process state names for the "STATE" column of the display */ 84 /* the extra nulls in the string "run" are for adding a slash and 85 the processor number when needed */ 86 87 static const char *state_abbrev[] = { 88 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 89 }; 90 91 92 static kvm_t *kd; 93 94 /* values that we stash away in _init and use in later routines */ 95 96 static double logcpu; 97 98 /* these are retrieved from the kernel in _init */ 99 100 static load_avg ccpu; 101 102 /* these are used in the get_ functions */ 103 104 static int lastpid; 105 106 /* these are for calculating cpu state percentages */ 107 108 static long cp_time[CPUSTATES]; 109 static long cp_old[CPUSTATES]; 110 static long cp_diff[CPUSTATES]; 111 112 /* these are for detailing the process states */ 113 114 static const char *procstatenames[] = { 115 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 116 " zombie, ", " waiting, ", " lock, ", 117 NULL 118 }; 119 static int process_states[nitems(procstatenames)]; 120 121 /* these are for detailing the cpu states */ 122 123 static int cpu_states[CPUSTATES]; 124 static const char *cpustatenames[] = { 125 "user", "nice", "system", "interrupt", "idle", NULL 126 }; 127 128 /* these are for detailing the memory statistics */ 129 130 static const char *memorynames[] = { 131 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 132 "K Free", NULL 133 }; 134 static int memory_stats[nitems(memorynames)]; 135 136 static const char *arcnames[] = { 137 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 138 NULL 139 }; 140 static int arc_stats[nitems(arcnames)]; 141 142 static const char *carcnames[] = { 143 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 144 NULL 145 }; 146 static int carc_stats[nitems(carcnames)]; 147 148 static const char *swapnames[] = { 149 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 150 NULL 151 }; 152 static int swap_stats[nitems(swapnames)]; 153 154 155 /* these are for keeping track of the proc array */ 156 157 static int nproc; 158 static int onproc = -1; 159 static int pref_len; 160 static struct kinfo_proc *pbase; 161 static struct kinfo_proc **pref; 162 static struct kinfo_proc *previous_procs; 163 static struct kinfo_proc **previous_pref; 164 static int previous_proc_count = 0; 165 static int previous_proc_count_max = 0; 166 static int previous_thread; 167 168 /* data used for recalculating pctcpu */ 169 static double *pcpu; 170 static struct timespec proc_uptime; 171 static struct timeval proc_wall_time; 172 static struct timeval previous_wall_time; 173 static uint64_t previous_interval = 0; 174 175 /* total number of io operations */ 176 static long total_inblock; 177 static long total_oublock; 178 static long total_majflt; 179 180 /* these are for getting the memory statistics */ 181 182 static int arc_enabled; 183 static int carc_enabled; 184 static int pageshift; /* log base 2 of the pagesize */ 185 186 /* define pagetok in terms of pageshift */ 187 188 #define pagetok(size) ((size) << pageshift) 189 190 /* swap usage */ 191 #define ki_swap(kip) \ 192 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 193 194 /* 195 * Sorting orders. The first element is the default. 196 */ 197 static const char *ordernames[] = { 198 "cpu", "size", "res", "time", "pri", "threads", 199 "total", "read", "write", "fault", "vcsw", "ivcsw", 200 "jid", "swap", "pid", NULL 201 }; 202 203 /* Per-cpu time states */ 204 static int maxcpu; 205 static int maxid; 206 static int ncpus; 207 static unsigned long cpumask; 208 static long *times; 209 static long *pcpu_cp_time; 210 static long *pcpu_cp_old; 211 static long *pcpu_cp_diff; 212 static int *pcpu_cpu_states; 213 214 static int compare_swap(const void *a, const void *b); 215 static int compare_jid(const void *a, const void *b); 216 static int compare_pid(const void *a, const void *b); 217 static int compare_tid(const void *a, const void *b); 218 static const char *format_nice(const struct kinfo_proc *pp); 219 static void getsysctl(const char *name, void *ptr, size_t len); 220 static int swapmode(int *retavail, int *retfree); 221 static void update_layout(void); 222 static int find_uid(uid_t needle, int *haystack); 223 224 static int 225 find_uid(uid_t needle, int *haystack) 226 { 227 size_t i = 0; 228 229 for (; i < TOP_MAX_UIDS; ++i) 230 if ((uid_t)haystack[i] == needle) 231 return 1; 232 return (0); 233 } 234 235 void 236 toggle_pcpustats(void) 237 { 238 239 if (ncpus == 1) 240 return; 241 update_layout(); 242 } 243 244 /* Adjust display based on ncpus and the ARC state. */ 245 static void 246 update_layout(void) 247 { 248 249 y_mem = 3; 250 y_arc = 4; 251 y_carc = 5; 252 y_swap = 4 + arc_enabled + carc_enabled; 253 y_idlecursor = 5 + arc_enabled + carc_enabled; 254 y_message = 5 + arc_enabled + carc_enabled; 255 y_header = 6 + arc_enabled + carc_enabled; 256 y_procs = 7 + arc_enabled + carc_enabled; 257 Header_lines = 7 + arc_enabled + carc_enabled; 258 259 if (pcpu_stats) { 260 y_mem += ncpus - 1; 261 y_arc += ncpus - 1; 262 y_carc += ncpus - 1; 263 y_swap += ncpus - 1; 264 y_idlecursor += ncpus - 1; 265 y_message += ncpus - 1; 266 y_header += ncpus - 1; 267 y_procs += ncpus - 1; 268 Header_lines += ncpus - 1; 269 } 270 } 271 272 int 273 machine_init(struct statics *statics) 274 { 275 int i, j, empty, pagesize; 276 uint64_t arc_size; 277 int carc_en; 278 size_t size; 279 280 size = sizeof(smpmode); 281 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 282 NULL, 0) != 0 && 283 sysctlbyname("kern.smp.active", &smpmode, &size, 284 NULL, 0) != 0) || 285 size != sizeof(smpmode)) 286 smpmode = 0; 287 288 size = sizeof(arc_size); 289 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 290 NULL, 0) == 0 && arc_size != 0) 291 arc_enabled = 1; 292 size = sizeof(carc_en); 293 if (arc_enabled && 294 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 295 NULL, 0) == 0 && carc_en == 1) 296 carc_enabled = 1; 297 298 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 299 if (kd == NULL) 300 return (-1); 301 302 GETSYSCTL("kern.ccpu", ccpu); 303 304 /* this is used in calculating WCPU -- calculate it ahead of time */ 305 logcpu = log(loaddouble(ccpu)); 306 307 pbase = NULL; 308 pref = NULL; 309 pcpu = NULL; 310 nproc = 0; 311 onproc = -1; 312 313 /* get the page size and calculate pageshift from it */ 314 pagesize = getpagesize(); 315 pageshift = 0; 316 while (pagesize > 1) { 317 pageshift++; 318 pagesize >>= 1; 319 } 320 321 /* we only need the amount of log(2)1024 for our conversion */ 322 pageshift -= LOG1024; 323 324 /* fill in the statics information */ 325 statics->procstate_names = procstatenames; 326 statics->cpustate_names = cpustatenames; 327 statics->memory_names = memorynames; 328 if (arc_enabled) 329 statics->arc_names = arcnames; 330 else 331 statics->arc_names = NULL; 332 if (carc_enabled) 333 statics->carc_names = carcnames; 334 else 335 statics->carc_names = NULL; 336 statics->swap_names = swapnames; 337 statics->order_names = ordernames; 338 339 /* Allocate state for per-CPU stats. */ 340 cpumask = 0; 341 ncpus = 0; 342 GETSYSCTL("kern.smp.maxcpus", maxcpu); 343 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 344 if (times == NULL) 345 err(1, "calloc for kern.smp.maxcpus"); 346 size = sizeof(long) * maxcpu * CPUSTATES; 347 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 348 err(1, "sysctlbyname kern.cp_times"); 349 pcpu_cp_time = calloc(1, size); 350 maxid = (size / CPUSTATES / sizeof(long)) - 1; 351 for (i = 0; i <= maxid; i++) { 352 empty = 1; 353 for (j = 0; empty && j < CPUSTATES; j++) { 354 if (times[i * CPUSTATES + j] != 0) 355 empty = 0; 356 } 357 if (!empty) { 358 cpumask |= (1ul << i); 359 ncpus++; 360 } 361 } 362 assert(ncpus > 0); 363 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 364 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 365 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 366 statics->ncpus = ncpus; 367 368 update_layout(); 369 370 /* all done! */ 371 return (0); 372 } 373 374 char * 375 format_header(const char *uname_field) 376 { 377 static struct sbuf* header = NULL; 378 379 /* clean up from last time. */ 380 if (header != NULL) { 381 sbuf_clear(header); 382 } else { 383 header = sbuf_new_auto(); 384 } 385 386 switch (displaymode) { 387 case DISP_CPU: { 388 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 389 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 390 ps.jail ? " JID" : ""); 391 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 392 sbuf_cat(header, "THR PRI NICE SIZE RES "); 393 if (ps.swap) { 394 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 395 } 396 sbuf_cat(header, "STATE "); 397 if (smpmode) { 398 sbuf_cat(header, "C "); 399 } 400 sbuf_cat(header, "TIME "); 401 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 402 sbuf_cat(header, "COMMAND"); 403 sbuf_finish(header); 404 break; 405 } 406 case DISP_IO: { 407 sbuf_printf(header, " %s%*s %-*.*s", 408 ps.thread_id ? " THR" : "PID", 409 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 410 namelength, namelength, uname_field); 411 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 412 break; 413 } 414 case DISP_MAX: 415 assert("displaymode must not be set to DISP_MAX"); 416 } 417 418 cmdlengthdelta = sbuf_len(header) - 7; 419 return sbuf_data(header); 420 } 421 422 static int swappgsin = -1; 423 static int swappgsout = -1; 424 425 426 void 427 get_system_info(struct system_info *si) 428 { 429 struct loadavg sysload; 430 int mib[2]; 431 struct timeval boottime; 432 uint64_t arc_stat, arc_stat2; 433 int i, j; 434 size_t size; 435 436 /* get the CPU stats */ 437 size = (maxid + 1) * CPUSTATES * sizeof(long); 438 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 439 err(1, "sysctlbyname kern.cp_times"); 440 GETSYSCTL("kern.cp_time", cp_time); 441 GETSYSCTL("vm.loadavg", sysload); 442 GETSYSCTL("kern.lastpid", lastpid); 443 444 /* convert load averages to doubles */ 445 for (i = 0; i < 3; i++) 446 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 447 448 /* convert cp_time counts to percentages */ 449 for (i = j = 0; i <= maxid; i++) { 450 if ((cpumask & (1ul << i)) == 0) 451 continue; 452 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 453 &pcpu_cp_time[j * CPUSTATES], 454 &pcpu_cp_old[j * CPUSTATES], 455 &pcpu_cp_diff[j * CPUSTATES]); 456 j++; 457 } 458 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 459 460 /* sum memory & swap statistics */ 461 { 462 static unsigned int swap_delay = 0; 463 static int swapavail = 0; 464 static int swapfree = 0; 465 static long bufspace = 0; 466 static uint64_t nspgsin, nspgsout; 467 468 GETSYSCTL("vfs.bufspace", bufspace); 469 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 470 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 471 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 472 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 473 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 474 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 475 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 476 /* convert memory stats to Kbytes */ 477 memory_stats[0] = pagetok(memory_stats[0]); 478 memory_stats[1] = pagetok(memory_stats[1]); 479 memory_stats[2] = pagetok(memory_stats[2]); 480 memory_stats[3] = pagetok(memory_stats[3]); 481 memory_stats[4] = bufspace / 1024; 482 memory_stats[5] = pagetok(memory_stats[5]); 483 memory_stats[6] = -1; 484 485 /* first interval */ 486 if (swappgsin < 0) { 487 swap_stats[4] = 0; 488 swap_stats[5] = 0; 489 } 490 491 /* compute differences between old and new swap statistic */ 492 else { 493 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 494 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 495 } 496 497 swappgsin = nspgsin; 498 swappgsout = nspgsout; 499 500 /* call CPU heavy swapmode() only for changes */ 501 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 502 swap_stats[3] = swapmode(&swapavail, &swapfree); 503 swap_stats[0] = swapavail; 504 swap_stats[1] = swapavail - swapfree; 505 swap_stats[2] = swapfree; 506 } 507 swap_delay = 1; 508 swap_stats[6] = -1; 509 } 510 511 if (arc_enabled) { 512 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 513 arc_stats[0] = arc_stat >> 10; 514 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 515 arc_stats[1] = arc_stat >> 10; 516 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 517 arc_stats[2] = arc_stat >> 10; 518 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 519 arc_stats[3] = arc_stat >> 10; 520 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 521 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 522 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 523 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 524 arc_stats[5] = arc_stat >> 10; 525 si->arc = arc_stats; 526 } 527 if (carc_enabled) { 528 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 529 carc_stats[0] = arc_stat >> 10; 530 carc_stats[2] = arc_stat >> 10; /* For ratio */ 531 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 532 carc_stats[1] = arc_stat >> 10; 533 si->carc = carc_stats; 534 } 535 536 /* set arrays and strings */ 537 if (pcpu_stats) { 538 si->cpustates = pcpu_cpu_states; 539 si->ncpus = ncpus; 540 } else { 541 si->cpustates = cpu_states; 542 si->ncpus = 1; 543 } 544 si->memory = memory_stats; 545 si->swap = swap_stats; 546 547 548 if (lastpid > 0) { 549 si->last_pid = lastpid; 550 } else { 551 si->last_pid = -1; 552 } 553 554 /* 555 * Print how long system has been up. 556 * (Found by looking getting "boottime" from the kernel) 557 */ 558 mib[0] = CTL_KERN; 559 mib[1] = KERN_BOOTTIME; 560 size = sizeof(boottime); 561 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 562 boottime.tv_sec != 0) { 563 si->boottime = boottime; 564 } else { 565 si->boottime.tv_sec = -1; 566 } 567 } 568 569 #define NOPROC ((void *)-1) 570 571 /* 572 * We need to compare data from the old process entry with the new 573 * process entry. 574 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 575 * structure to cache the mapping. We also use a negative cache pointer 576 * of NOPROC to avoid duplicate lookups. 577 * XXX: this could be done when the actual processes are fetched, we do 578 * it here out of laziness. 579 */ 580 static const struct kinfo_proc * 581 get_old_proc(struct kinfo_proc *pp) 582 { 583 const struct kinfo_proc * const *oldpp, *oldp; 584 585 /* 586 * If this is the first fetch of the kinfo_procs then we don't have 587 * any previous entries. 588 */ 589 if (previous_proc_count == 0) 590 return (NULL); 591 /* negative cache? */ 592 if (pp->ki_udata == NOPROC) 593 return (NULL); 594 /* cached? */ 595 if (pp->ki_udata != NULL) 596 return (pp->ki_udata); 597 /* 598 * Not cached, 599 * 1) look up based on pid. 600 * 2) compare process start. 601 * If we fail here, then setup a negative cache entry, otherwise 602 * cache it. 603 */ 604 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 605 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 606 if (oldpp == NULL) { 607 pp->ki_udata = NOPROC; 608 return (NULL); 609 } 610 oldp = *oldpp; 611 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 612 pp->ki_udata = NOPROC; 613 return (NULL); 614 } 615 pp->ki_udata = oldp; 616 return (oldp); 617 } 618 619 /* 620 * Return the total amount of IO done in blocks in/out and faults. 621 * store the values individually in the pointers passed in. 622 */ 623 static long 624 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 625 long *vcsw, long *ivcsw) 626 { 627 const struct kinfo_proc *oldp; 628 static struct kinfo_proc dummy; 629 long ret; 630 631 oldp = get_old_proc(pp); 632 if (oldp == NULL) { 633 memset(&dummy, 0, sizeof(dummy)); 634 oldp = &dummy; 635 } 636 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 637 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 638 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 639 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 640 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 641 ret = 642 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 643 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 644 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 645 return (ret); 646 } 647 648 /* 649 * If there was a previous update, use the delta in ki_runtime over 650 * the previous interval to calculate pctcpu. Otherwise, fall back 651 * to using the kernel's ki_pctcpu. 652 */ 653 static double 654 proc_calc_pctcpu(struct kinfo_proc *pp) 655 { 656 const struct kinfo_proc *oldp; 657 658 if (previous_interval != 0) { 659 oldp = get_old_proc(pp); 660 if (oldp != NULL) 661 return ((double)(pp->ki_runtime - oldp->ki_runtime) 662 / previous_interval); 663 664 /* 665 * If this process/thread was created during the previous 666 * interval, charge it's total runtime to the previous 667 * interval. 668 */ 669 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 670 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 671 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 672 return ((double)pp->ki_runtime / previous_interval); 673 } 674 return (pctdouble(pp->ki_pctcpu)); 675 } 676 677 /* 678 * Return true if this process has used any CPU time since the 679 * previous update. 680 */ 681 static int 682 proc_used_cpu(struct kinfo_proc *pp) 683 { 684 const struct kinfo_proc *oldp; 685 686 oldp = get_old_proc(pp); 687 if (oldp == NULL) 688 return (PCTCPU(pp) != 0); 689 return (pp->ki_runtime != oldp->ki_runtime || 690 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 691 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 692 } 693 694 /* 695 * Return the total number of block in/out and faults by a process. 696 */ 697 static long 698 get_io_total(const struct kinfo_proc *pp) 699 { 700 long dummy; 701 702 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 703 } 704 705 static struct handle handle; 706 707 void * 708 get_process_info(struct system_info *si, struct process_select *sel, 709 int (*compare)(const void *, const void *)) 710 { 711 int i; 712 int total_procs; 713 long p_io; 714 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 715 long nsec; 716 int active_procs; 717 struct kinfo_proc **prefp; 718 struct kinfo_proc *pp; 719 struct timespec previous_proc_uptime; 720 721 /* 722 * If thread state was toggled, don't cache the previous processes. 723 */ 724 if (previous_thread != sel->thread) 725 nproc = 0; 726 previous_thread = sel->thread; 727 728 /* 729 * Save the previous process info. 730 */ 731 if (previous_proc_count_max < nproc) { 732 free(previous_procs); 733 previous_procs = calloc(nproc, sizeof(*previous_procs)); 734 free(previous_pref); 735 previous_pref = calloc(nproc, sizeof(*previous_pref)); 736 if (previous_procs == NULL || previous_pref == NULL) { 737 fprintf(stderr, "top: Out of memory.\n"); 738 quit(TOP_EX_SYS_ERROR); 739 } 740 previous_proc_count_max = nproc; 741 } 742 if (nproc) { 743 for (i = 0; i < nproc; i++) 744 previous_pref[i] = &previous_procs[i]; 745 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 746 qsort(previous_pref, nproc, sizeof(*previous_pref), 747 ps.thread ? compare_tid : compare_pid); 748 } 749 previous_proc_count = nproc; 750 previous_proc_uptime = proc_uptime; 751 previous_wall_time = proc_wall_time; 752 previous_interval = 0; 753 754 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 755 0, &nproc); 756 gettimeofday(&proc_wall_time, NULL); 757 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 758 memset(&proc_uptime, 0, sizeof(proc_uptime)); 759 else if (previous_proc_uptime.tv_sec != 0 && 760 previous_proc_uptime.tv_nsec != 0) { 761 previous_interval = (proc_uptime.tv_sec - 762 previous_proc_uptime.tv_sec) * 1000000; 763 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 764 if (nsec < 0) { 765 previous_interval -= 1000000; 766 nsec += 1000000000; 767 } 768 previous_interval += nsec / 1000; 769 } 770 if (nproc > onproc) { 771 pref = realloc(pref, sizeof(*pref) * nproc); 772 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 773 onproc = nproc; 774 } 775 if (pref == NULL || pbase == NULL || pcpu == NULL) { 776 fprintf(stderr, "top: Out of memory.\n"); 777 quit(TOP_EX_SYS_ERROR); 778 } 779 /* get a pointer to the states summary array */ 780 si->procstates = process_states; 781 782 /* count up process states and get pointers to interesting procs */ 783 total_procs = 0; 784 active_procs = 0; 785 total_inblock = 0; 786 total_oublock = 0; 787 total_majflt = 0; 788 memset(process_states, 0, sizeof(process_states)); 789 prefp = pref; 790 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 791 792 if (pp->ki_stat == 0) 793 /* not in use */ 794 continue; 795 796 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 797 /* skip self */ 798 continue; 799 800 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 801 /* skip system process */ 802 continue; 803 804 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 805 &p_vcsw, &p_ivcsw); 806 total_inblock += p_inblock; 807 total_oublock += p_oublock; 808 total_majflt += p_majflt; 809 total_procs++; 810 process_states[(unsigned char)pp->ki_stat]++; 811 812 if (pp->ki_stat == SZOMB) 813 /* skip zombies */ 814 continue; 815 816 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 817 /* skip kernel idle process */ 818 continue; 819 820 PCTCPU(pp) = proc_calc_pctcpu(pp); 821 if (sel->thread && PCTCPU(pp) > 1.0) 822 PCTCPU(pp) = 1.0; 823 if (displaymode == DISP_CPU && !sel->idle && 824 (!proc_used_cpu(pp) || 825 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 826 /* skip idle or non-running processes */ 827 continue; 828 829 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 830 /* skip processes that aren't doing I/O */ 831 continue; 832 833 if (sel->jid != -1 && pp->ki_jid != sel->jid) 834 /* skip proc. that don't belong to the selected JID */ 835 continue; 836 837 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 838 /* skip proc. that don't belong to the selected UID */ 839 continue; 840 841 if (sel->pid != -1 && pp->ki_pid != sel->pid) 842 continue; 843 844 *prefp++ = pp; 845 active_procs++; 846 } 847 848 /* if requested, sort the "interesting" processes */ 849 if (compare != NULL) 850 qsort(pref, active_procs, sizeof(*pref), compare); 851 852 /* remember active and total counts */ 853 si->p_total = total_procs; 854 si->p_pactive = pref_len = active_procs; 855 856 /* pass back a handle */ 857 handle.next_proc = pref; 858 handle.remaining = active_procs; 859 return (&handle); 860 } 861 862 char * 863 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 864 { 865 struct kinfo_proc *pp; 866 const struct kinfo_proc *oldp; 867 long cputime; 868 char status[22]; 869 size_t state; 870 struct rusage ru, *rup; 871 long p_tot, s_tot; 872 char *cmdbuf = NULL; 873 char **args; 874 const int cmdlen = 256; 875 static struct sbuf* procbuf = NULL; 876 877 /* clean up from last time. */ 878 if (procbuf != NULL) { 879 sbuf_clear(procbuf); 880 } else { 881 procbuf = sbuf_new_auto(); 882 } 883 884 885 /* find and remember the next proc structure */ 886 pp = *(xhandle->next_proc++); 887 xhandle->remaining--; 888 889 /* get the process's command name */ 890 if ((pp->ki_flag & P_INMEM) == 0) { 891 /* 892 * Print swapped processes as <pname> 893 */ 894 size_t len; 895 896 len = strlen(pp->ki_comm); 897 if (len > sizeof(pp->ki_comm) - 3) 898 len = sizeof(pp->ki_comm) - 3; 899 memmove(pp->ki_comm + 1, pp->ki_comm, len); 900 pp->ki_comm[0] = '<'; 901 pp->ki_comm[len + 1] = '>'; 902 pp->ki_comm[len + 2] = '\0'; 903 } 904 905 /* 906 * Convert the process's runtime from microseconds to seconds. This 907 * time includes the interrupt time although that is not wanted here. 908 * ps(1) is similarly sloppy. 909 */ 910 cputime = (pp->ki_runtime + 500000) / 1000000; 911 912 /* generate "STATE" field */ 913 switch (state = pp->ki_stat) { 914 case SRUN: 915 if (smpmode && pp->ki_oncpu != NOCPU) 916 sprintf(status, "CPU%d", pp->ki_oncpu); 917 else 918 strcpy(status, "RUN"); 919 break; 920 case SLOCK: 921 if (pp->ki_kiflag & KI_LOCKBLOCK) { 922 sprintf(status, "*%.6s", pp->ki_lockname); 923 break; 924 } 925 /* fall through */ 926 case SSLEEP: 927 sprintf(status, "%.6s", pp->ki_wmesg); 928 break; 929 default: 930 931 if (state < nitems(state_abbrev)) { 932 sprintf(status, "%.6s", state_abbrev[state]); 933 } else { 934 sprintf(status, "?%5zu", state); 935 } 936 break; 937 } 938 939 cmdbuf = calloc(cmdlen + 1, 1); 940 if (cmdbuf == NULL) { 941 warn("calloc(%d)", cmdlen + 1); 942 return NULL; 943 } 944 945 if (!(flags & FMT_SHOWARGS)) { 946 if (ps.thread && pp->ki_flag & P_HADTHREADS && 947 pp->ki_tdname[0]) { 948 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 949 pp->ki_tdname, pp->ki_moretdname); 950 } else { 951 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 952 } 953 } else { 954 if (pp->ki_flag & P_SYSTEM || 955 pp->ki_args == NULL || 956 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 957 !(*args)) { 958 if (ps.thread && pp->ki_flag & P_HADTHREADS && 959 pp->ki_tdname[0]) { 960 snprintf(cmdbuf, cmdlen, 961 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 962 pp->ki_moretdname); 963 } else { 964 snprintf(cmdbuf, cmdlen, 965 "[%s]", pp->ki_comm); 966 } 967 } else { 968 const char *src; 969 char *dst, *argbuf; 970 const char *cmd; 971 size_t argbuflen; 972 size_t len; 973 974 argbuflen = cmdlen * 4; 975 argbuf = calloc(argbuflen + 1, 1); 976 if (argbuf == NULL) { 977 warn("calloc(%zu)", argbuflen + 1); 978 free(cmdbuf); 979 return NULL; 980 } 981 982 dst = argbuf; 983 984 /* Extract cmd name from argv */ 985 cmd = basename(*args); 986 987 for (; (src = *args++) != NULL; ) { 988 if (*src == '\0') 989 continue; 990 len = (argbuflen - (dst - argbuf) - 1) / 4; 991 if (utf8flag) { 992 utf8strvisx(dst, src, MIN(strlen(src), len)); 993 } else { 994 strvisx(dst, src, 995 MIN(strlen(src), len), 996 VIS_NL | VIS_CSTYLE); 997 } 998 while (*dst != '\0') 999 dst++; 1000 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1001 *dst++ = ' '; /* add delimiting space */ 1002 } 1003 if (dst != argbuf && dst[-1] == ' ') 1004 dst--; 1005 *dst = '\0'; 1006 1007 if (strcmp(cmd, pp->ki_comm) != 0) { 1008 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1009 pp->ki_tdname[0]) 1010 snprintf(cmdbuf, cmdlen, 1011 "%s (%s){%s%s}", argbuf, 1012 pp->ki_comm, pp->ki_tdname, 1013 pp->ki_moretdname); 1014 else 1015 snprintf(cmdbuf, cmdlen, 1016 "%s (%s)", argbuf, pp->ki_comm); 1017 } else { 1018 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1019 pp->ki_tdname[0]) 1020 snprintf(cmdbuf, cmdlen, 1021 "%s{%s%s}", argbuf, pp->ki_tdname, 1022 pp->ki_moretdname); 1023 else 1024 strlcpy(cmdbuf, argbuf, cmdlen); 1025 } 1026 free(argbuf); 1027 } 1028 } 1029 1030 if (displaymode == DISP_IO) { 1031 oldp = get_old_proc(pp); 1032 if (oldp != NULL) { 1033 ru.ru_inblock = RU(pp)->ru_inblock - 1034 RU(oldp)->ru_inblock; 1035 ru.ru_oublock = RU(pp)->ru_oublock - 1036 RU(oldp)->ru_oublock; 1037 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1038 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1039 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1040 rup = &ru; 1041 } else { 1042 rup = RU(pp); 1043 } 1044 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1045 s_tot = total_inblock + total_oublock + total_majflt; 1046 1047 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1048 1049 if (ps.jail) { 1050 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1051 } 1052 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1053 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1054 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1055 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1056 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1057 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1058 sbuf_printf(procbuf, "%6ld ", p_tot); 1059 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1060 1061 } else { 1062 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1063 if (ps.jail) { 1064 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1065 } 1066 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1067 1068 if (!ps.thread) { 1069 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1070 } 1071 1072 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1073 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1074 sbuf_printf(procbuf, "%6s ", format_k(PROCSIZE(pp))); 1075 sbuf_printf(procbuf, "%5s ", format_k(pagetok(pp->ki_rssize))); 1076 if (ps.swap) { 1077 sbuf_printf(procbuf, "%*s ", 1078 TOP_SWAP_LEN - 1, 1079 format_k(pagetok(ki_swap(pp)))); 1080 } 1081 sbuf_printf(procbuf, "%-6.6s ", status); 1082 if (smpmode) { 1083 int cpu; 1084 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1085 cpu = pp->ki_oncpu; 1086 } else { 1087 cpu = pp->ki_lastcpu; 1088 } 1089 sbuf_printf(procbuf, "%3d ", cpu); 1090 } 1091 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1092 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1093 } 1094 sbuf_printf(procbuf, "%.*s", 1095 screen_width > cmdlengthdelta ? 1096 screen_width - cmdlengthdelta : 0, 1097 printable(cmdbuf)); 1098 free(cmdbuf); 1099 return (sbuf_data(procbuf)); 1100 } 1101 1102 static void 1103 getsysctl(const char *name, void *ptr, size_t len) 1104 { 1105 size_t nlen = len; 1106 1107 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1108 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1109 strerror(errno)); 1110 quit(TOP_EX_SYS_ERROR); 1111 } 1112 if (nlen != len) { 1113 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1114 name, (unsigned long)len, (unsigned long)nlen); 1115 quit(TOP_EX_SYS_ERROR); 1116 } 1117 } 1118 1119 static const char * 1120 format_nice(const struct kinfo_proc *pp) 1121 { 1122 const char *fifo, *kproc; 1123 int rtpri; 1124 static char nicebuf[4 + 1]; 1125 1126 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1127 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1128 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1129 case PRI_ITHD: 1130 return ("-"); 1131 case PRI_REALTIME: 1132 /* 1133 * XXX: the kernel doesn't tell us the original rtprio and 1134 * doesn't really know what it was, so to recover it we 1135 * must be more chummy with the implementation than the 1136 * implementation is with itself. pri_user gives a 1137 * constant "base" priority, but is only initialized 1138 * properly for user threads. pri_native gives what the 1139 * kernel calls the "base" priority, but it isn't constant 1140 * since it is changed by priority propagation. pri_native 1141 * also isn't properly initialized for all threads, but it 1142 * is properly initialized for kernel realtime and idletime 1143 * threads. Thus we use pri_user for the base priority of 1144 * user threads (it is always correct) and pri_native for 1145 * the base priority of kernel realtime and idletime threads 1146 * (there is nothing better, and it is usually correct). 1147 * 1148 * The field width and thus the buffer are too small for 1149 * values like "kr31F", but such values shouldn't occur, 1150 * and if they do then the tailing "F" is not displayed. 1151 */ 1152 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1153 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1154 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1155 kproc, rtpri, fifo); 1156 break; 1157 case PRI_TIMESHARE: 1158 if (pp->ki_flag & P_KPROC) 1159 return ("-"); 1160 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1161 break; 1162 case PRI_IDLE: 1163 /* XXX: as above. */ 1164 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1165 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1166 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1167 kproc, rtpri, fifo); 1168 break; 1169 default: 1170 return ("?"); 1171 } 1172 return (nicebuf); 1173 } 1174 1175 /* comparison routines for qsort */ 1176 1177 static int 1178 compare_pid(const void *p1, const void *p2) 1179 { 1180 const struct kinfo_proc * const *pp1 = p1; 1181 const struct kinfo_proc * const *pp2 = p2; 1182 1183 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1184 1185 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1186 } 1187 1188 static int 1189 compare_tid(const void *p1, const void *p2) 1190 { 1191 const struct kinfo_proc * const *pp1 = p1; 1192 const struct kinfo_proc * const *pp2 = p2; 1193 1194 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1195 1196 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1197 } 1198 1199 /* 1200 * proc_compare - comparison function for "qsort" 1201 * Compares the resource consumption of two processes using five 1202 * distinct keys. The keys (in descending order of importance) are: 1203 * percent cpu, cpu ticks, state, resident set size, total virtual 1204 * memory usage. The process states are ordered as follows (from least 1205 * to most important): WAIT, zombie, sleep, stop, start, run. The 1206 * array declaration below maps a process state index into a number 1207 * that reflects this ordering. 1208 */ 1209 1210 static int sorted_state[] = { 1211 0, /* not used */ 1212 3, /* sleep */ 1213 1, /* ABANDONED (WAIT) */ 1214 6, /* run */ 1215 5, /* start */ 1216 2, /* zombie */ 1217 4 /* stop */ 1218 }; 1219 1220 1221 #define ORDERKEY_PCTCPU(a, b) do { \ 1222 double diff; \ 1223 if (ps.wcpu) \ 1224 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1225 weighted_cpu(PCTCPU((a)), (a)); \ 1226 else \ 1227 diff = PCTCPU((b)) - PCTCPU((a)); \ 1228 if (diff != 0) \ 1229 return (diff > 0 ? 1 : -1); \ 1230 } while (0) 1231 1232 #define ORDERKEY_CPTICKS(a, b) do { \ 1233 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1234 if (diff != 0) \ 1235 return (diff > 0 ? 1 : -1); \ 1236 } while (0) 1237 1238 #define ORDERKEY_STATE(a, b) do { \ 1239 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1240 if (diff != 0) \ 1241 return (diff > 0 ? 1 : -1); \ 1242 } while (0) 1243 1244 #define ORDERKEY_PRIO(a, b) do { \ 1245 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1246 if (diff != 0) \ 1247 return (diff > 0 ? 1 : -1); \ 1248 } while (0) 1249 1250 #define ORDERKEY_THREADS(a, b) do { \ 1251 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1252 if (diff != 0) \ 1253 return (diff > 0 ? 1 : -1); \ 1254 } while (0) 1255 1256 #define ORDERKEY_RSSIZE(a, b) do { \ 1257 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1258 if (diff != 0) \ 1259 return (diff > 0 ? 1 : -1); \ 1260 } while (0) 1261 1262 #define ORDERKEY_MEM(a, b) do { \ 1263 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1264 if (diff != 0) \ 1265 return (diff > 0 ? 1 : -1); \ 1266 } while (0) 1267 1268 #define ORDERKEY_JID(a, b) do { \ 1269 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1270 if (diff != 0) \ 1271 return (diff > 0 ? 1 : -1); \ 1272 } while (0) 1273 1274 #define ORDERKEY_SWAP(a, b) do { \ 1275 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1276 if (diff != 0) \ 1277 return (diff > 0 ? 1 : -1); \ 1278 } while (0) 1279 1280 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1281 1282 static int 1283 compare_cpu(const void *arg1, const void *arg2) 1284 { 1285 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1286 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1287 1288 ORDERKEY_PCTCPU(p1, p2); 1289 ORDERKEY_CPTICKS(p1, p2); 1290 ORDERKEY_STATE(p1, p2); 1291 ORDERKEY_PRIO(p1, p2); 1292 ORDERKEY_RSSIZE(p1, p2); 1293 ORDERKEY_MEM(p1, p2); 1294 1295 return (0); 1296 } 1297 1298 /* compare_size - the comparison function for sorting by total memory usage */ 1299 1300 static int 1301 compare_size(const void *arg1, const void *arg2) 1302 { 1303 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1304 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1305 1306 ORDERKEY_MEM(p1, p2); 1307 ORDERKEY_RSSIZE(p1, p2); 1308 ORDERKEY_PCTCPU(p1, p2); 1309 ORDERKEY_CPTICKS(p1, p2); 1310 ORDERKEY_STATE(p1, p2); 1311 ORDERKEY_PRIO(p1, p2); 1312 1313 return (0); 1314 } 1315 1316 /* compare_res - the comparison function for sorting by resident set size */ 1317 1318 static int 1319 compare_res(const void *arg1, const void *arg2) 1320 { 1321 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1322 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1323 1324 ORDERKEY_RSSIZE(p1, p2); 1325 ORDERKEY_MEM(p1, p2); 1326 ORDERKEY_PCTCPU(p1, p2); 1327 ORDERKEY_CPTICKS(p1, p2); 1328 ORDERKEY_STATE(p1, p2); 1329 ORDERKEY_PRIO(p1, p2); 1330 1331 return (0); 1332 } 1333 1334 /* compare_time - the comparison function for sorting by total cpu time */ 1335 1336 static int 1337 compare_time(const void *arg1, const void *arg2) 1338 { 1339 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1340 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1341 1342 ORDERKEY_CPTICKS(p1, p2); 1343 ORDERKEY_PCTCPU(p1, p2); 1344 ORDERKEY_STATE(p1, p2); 1345 ORDERKEY_PRIO(p1, p2); 1346 ORDERKEY_RSSIZE(p1, p2); 1347 ORDERKEY_MEM(p1, p2); 1348 1349 return (0); 1350 } 1351 1352 /* compare_prio - the comparison function for sorting by priority */ 1353 1354 static int 1355 compare_prio(const void *arg1, const void *arg2) 1356 { 1357 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1358 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1359 1360 ORDERKEY_PRIO(p1, p2); 1361 ORDERKEY_CPTICKS(p1, p2); 1362 ORDERKEY_PCTCPU(p1, p2); 1363 ORDERKEY_STATE(p1, p2); 1364 ORDERKEY_RSSIZE(p1, p2); 1365 ORDERKEY_MEM(p1, p2); 1366 1367 return (0); 1368 } 1369 1370 /* compare_threads - the comparison function for sorting by threads */ 1371 static int 1372 compare_threads(const void *arg1, const void *arg2) 1373 { 1374 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1375 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1376 1377 ORDERKEY_THREADS(p1, p2); 1378 ORDERKEY_PCTCPU(p1, p2); 1379 ORDERKEY_CPTICKS(p1, p2); 1380 ORDERKEY_STATE(p1, p2); 1381 ORDERKEY_PRIO(p1, p2); 1382 ORDERKEY_RSSIZE(p1, p2); 1383 ORDERKEY_MEM(p1, p2); 1384 1385 return (0); 1386 } 1387 1388 /* compare_jid - the comparison function for sorting by jid */ 1389 static int 1390 compare_jid(const void *arg1, const void *arg2) 1391 { 1392 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1393 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1394 1395 ORDERKEY_JID(p1, p2); 1396 ORDERKEY_PCTCPU(p1, p2); 1397 ORDERKEY_CPTICKS(p1, p2); 1398 ORDERKEY_STATE(p1, p2); 1399 ORDERKEY_PRIO(p1, p2); 1400 ORDERKEY_RSSIZE(p1, p2); 1401 ORDERKEY_MEM(p1, p2); 1402 1403 return (0); 1404 } 1405 1406 /* compare_swap - the comparison function for sorting by swap */ 1407 static int 1408 compare_swap(const void *arg1, const void *arg2) 1409 { 1410 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1411 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1412 1413 ORDERKEY_SWAP(p1, p2); 1414 ORDERKEY_PCTCPU(p1, p2); 1415 ORDERKEY_CPTICKS(p1, p2); 1416 ORDERKEY_STATE(p1, p2); 1417 ORDERKEY_PRIO(p1, p2); 1418 ORDERKEY_RSSIZE(p1, p2); 1419 ORDERKEY_MEM(p1, p2); 1420 1421 return (0); 1422 } 1423 1424 /* assorted comparison functions for sorting by i/o */ 1425 1426 static int 1427 compare_iototal(const void *arg1, const void *arg2) 1428 { 1429 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1430 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1431 1432 return (get_io_total(p2) - get_io_total(p1)); 1433 } 1434 1435 static int 1436 compare_ioread(const void *arg1, const void *arg2) 1437 { 1438 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1439 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1440 long dummy, inp1, inp2; 1441 1442 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1443 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1444 1445 return (inp2 - inp1); 1446 } 1447 1448 static int 1449 compare_iowrite(const void *arg1, const void *arg2) 1450 { 1451 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1452 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1453 long dummy, oup1, oup2; 1454 1455 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1456 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1457 1458 return (oup2 - oup1); 1459 } 1460 1461 static int 1462 compare_iofault(const void *arg1, const void *arg2) 1463 { 1464 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1465 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1466 long dummy, flp1, flp2; 1467 1468 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1469 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1470 1471 return (flp2 - flp1); 1472 } 1473 1474 static int 1475 compare_vcsw(const void *arg1, const void *arg2) 1476 { 1477 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1478 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1479 long dummy, flp1, flp2; 1480 1481 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1482 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1483 1484 return (flp2 - flp1); 1485 } 1486 1487 static int 1488 compare_ivcsw(const void *arg1, const void *arg2) 1489 { 1490 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1491 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1492 long dummy, flp1, flp2; 1493 1494 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1495 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1496 1497 return (flp2 - flp1); 1498 } 1499 1500 int (*compares[])(const void *arg1, const void *arg2) = { 1501 compare_cpu, 1502 compare_size, 1503 compare_res, 1504 compare_time, 1505 compare_prio, 1506 compare_threads, 1507 compare_iototal, 1508 compare_ioread, 1509 compare_iowrite, 1510 compare_iofault, 1511 compare_vcsw, 1512 compare_ivcsw, 1513 compare_jid, 1514 compare_swap, 1515 NULL 1516 }; 1517 1518 1519 static int 1520 swapmode(int *retavail, int *retfree) 1521 { 1522 int n; 1523 struct kvm_swap swapary[1]; 1524 static int pagesize = 0; 1525 static unsigned long swap_maxpages = 0; 1526 1527 *retavail = 0; 1528 *retfree = 0; 1529 1530 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1531 1532 n = kvm_getswapinfo(kd, swapary, 1, 0); 1533 if (n < 0 || swapary[0].ksw_total == 0) 1534 return (0); 1535 1536 if (pagesize == 0) 1537 pagesize = getpagesize(); 1538 if (swap_maxpages == 0) 1539 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1540 1541 /* ksw_total contains the total size of swap all devices which may 1542 exceed the maximum swap size allocatable in the system */ 1543 if ( swapary[0].ksw_total > swap_maxpages ) 1544 swapary[0].ksw_total = swap_maxpages; 1545 1546 *retavail = CONVERT(swapary[0].ksw_total); 1547 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1548 1549 #undef CONVERT 1550 1551 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1552 return (n); 1553 } 1554