1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x system 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * 22 * $Id: machine.c,v 1.17 1998/11/26 12:59:21 bde Exp $ 23 */ 24 25 26 #include <sys/time.h> 27 #include <sys/types.h> 28 #include <sys/signal.h> 29 #include <sys/param.h> 30 31 #include "os.h" 32 #include <stdio.h> 33 #include <nlist.h> 34 #include <math.h> 35 #include <kvm.h> 36 #include <pwd.h> 37 #include <sys/errno.h> 38 #include <sys/sysctl.h> 39 #include <sys/dkstat.h> 40 #include <sys/file.h> 41 #include <sys/time.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/vmmeter.h> 45 #include <sys/resource.h> 46 #include <sys/rtprio.h> 47 48 /* Swap */ 49 #include <stdlib.h> 50 #include <sys/rlist.h> 51 #include <sys/conf.h> 52 53 #include <osreldate.h> /* for changes in kernel structures */ 54 55 #include "top.h" 56 #include "machine.h" 57 58 static int check_nlist __P((struct nlist *)); 59 static int getkval __P((unsigned long, int *, int, char *)); 60 extern char* printable __P((char *)); 61 int swapmode __P((int *retavail, int *retfree)); 62 static int smpmode; 63 static int namelength; 64 static int cmdlength; 65 66 67 /* get_process_info passes back a handle. This is what it looks like: */ 68 69 struct handle 70 { 71 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 72 int remaining; /* number of pointers remaining */ 73 }; 74 75 /* declarations for load_avg */ 76 #include "loadavg.h" 77 78 #define PP(pp, field) ((pp)->kp_proc . field) 79 #define EP(pp, field) ((pp)->kp_eproc . field) 80 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) 81 82 /* define what weighted cpu is. */ 83 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ 84 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) 85 86 /* what we consider to be process size: */ 87 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024) 88 89 /* definitions for indices in the nlist array */ 90 91 static struct nlist nlst[] = { 92 #define X_CCPU 0 93 { "_ccpu" }, 94 #define X_CP_TIME 1 95 { "_cp_time" }, 96 #define X_AVENRUN 2 97 { "_averunnable" }, 98 99 /* Swap */ 100 #define VM_SWAPLIST 3 101 { "_swaplist" },/* list of free swap areas */ 102 #define VM_SWDEVT 4 103 { "_swdevt" }, /* list of swap devices and sizes */ 104 #define VM_NSWAP 5 105 { "_nswap" }, /* size of largest swap device */ 106 #define VM_NSWDEV 6 107 { "_nswdev" }, /* number of swap devices */ 108 #define VM_DMMAX 7 109 { "_dmmax" }, /* maximum size of a swap block */ 110 #define X_BUFSPACE 8 111 { "_bufspace" }, /* K in buffer cache */ 112 #define X_CNT 9 113 { "_cnt" }, /* struct vmmeter cnt */ 114 115 /* Last pid */ 116 #define X_LASTPID 10 117 { "_nextpid" }, 118 { 0 } 119 }; 120 121 /* 122 * These definitions control the format of the per-process area 123 */ 124 125 static char smp_header[] = 126 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 127 128 #define smp_Proc_format \ 129 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" 130 131 static char up_header[] = 132 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 133 134 #define up_Proc_format \ 135 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 136 137 138 139 /* process state names for the "STATE" column of the display */ 140 /* the extra nulls in the string "run" are for adding a slash and 141 the processor number when needed */ 142 143 char *state_abbrev[] = 144 { 145 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", 146 }; 147 148 149 static kvm_t *kd; 150 151 /* values that we stash away in _init and use in later routines */ 152 153 static double logcpu; 154 155 /* these are retrieved from the kernel in _init */ 156 157 static load_avg ccpu; 158 159 /* these are offsets obtained via nlist and used in the get_ functions */ 160 161 static unsigned long cp_time_offset; 162 static unsigned long avenrun_offset; 163 static unsigned long lastpid_offset; 164 static long lastpid; 165 static unsigned long cnt_offset; 166 static unsigned long bufspace_offset; 167 static long cnt; 168 169 /* these are for calculating cpu state percentages */ 170 171 static long cp_time[CPUSTATES]; 172 static long cp_old[CPUSTATES]; 173 static long cp_diff[CPUSTATES]; 174 175 /* these are for detailing the process states */ 176 177 int process_states[6]; 178 char *procstatenames[] = { 179 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 180 " zombie, ", 181 NULL 182 }; 183 184 /* these are for detailing the cpu states */ 185 186 int cpu_states[CPUSTATES]; 187 char *cpustatenames[] = { 188 "user", "nice", "system", "interrupt", "idle", NULL 189 }; 190 191 /* these are for detailing the memory statistics */ 192 193 int memory_stats[7]; 194 char *memorynames[] = { 195 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 196 NULL 197 }; 198 199 int swap_stats[7]; 200 char *swapnames[] = { 201 /* 0 1 2 3 4 5 */ 202 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 203 NULL 204 }; 205 206 207 /* these are for keeping track of the proc array */ 208 209 static int nproc; 210 static int onproc = -1; 211 static int pref_len; 212 static struct kinfo_proc *pbase; 213 static struct kinfo_proc **pref; 214 215 /* these are for getting the memory statistics */ 216 217 static int pageshift; /* log base 2 of the pagesize */ 218 219 /* define pagetok in terms of pageshift */ 220 221 #define pagetok(size) ((size) << pageshift) 222 223 /* useful externals */ 224 long percentages(); 225 226 #ifdef ORDER 227 /* sorting orders. first is default */ 228 char *ordernames[] = { 229 "cpu", "size", "res", "time", "pri", NULL 230 }; 231 #endif 232 233 int 234 machine_init(statics) 235 236 struct statics *statics; 237 238 { 239 register int i = 0; 240 register int pagesize; 241 int modelen; 242 struct passwd *pw; 243 244 modelen = sizeof(smpmode); 245 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 246 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || 247 modelen != sizeof(smpmode)) 248 smpmode = 0; 249 250 while ((pw = getpwent()) != NULL) { 251 if (strlen(pw->pw_name) > namelength) 252 namelength = strlen(pw->pw_name); 253 } 254 if (namelength < 8) 255 namelength = 8; 256 if (namelength > 16) 257 namelength = 16; 258 259 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 260 return -1; 261 262 263 /* get the list of symbols we want to access in the kernel */ 264 (void) kvm_nlist(kd, nlst); 265 if (nlst[0].n_type == 0) 266 { 267 fprintf(stderr, "top: nlist failed\n"); 268 return(-1); 269 } 270 271 /* make sure they were all found */ 272 if (i > 0 && check_nlist(nlst) > 0) 273 { 274 return(-1); 275 } 276 277 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 278 nlst[X_CCPU].n_name); 279 280 /* stash away certain offsets for later use */ 281 cp_time_offset = nlst[X_CP_TIME].n_value; 282 avenrun_offset = nlst[X_AVENRUN].n_value; 283 lastpid_offset = nlst[X_LASTPID].n_value; 284 cnt_offset = nlst[X_CNT].n_value; 285 bufspace_offset = nlst[X_BUFSPACE].n_value; 286 287 /* this is used in calculating WCPU -- calculate it ahead of time */ 288 logcpu = log(loaddouble(ccpu)); 289 290 pbase = NULL; 291 pref = NULL; 292 nproc = 0; 293 onproc = -1; 294 /* get the page size with "getpagesize" and calculate pageshift from it */ 295 pagesize = getpagesize(); 296 pageshift = 0; 297 while (pagesize > 1) 298 { 299 pageshift++; 300 pagesize >>= 1; 301 } 302 303 /* we only need the amount of log(2)1024 for our conversion */ 304 pageshift -= LOG1024; 305 306 /* fill in the statics information */ 307 statics->procstate_names = procstatenames; 308 statics->cpustate_names = cpustatenames; 309 statics->memory_names = memorynames; 310 statics->swap_names = swapnames; 311 #ifdef ORDER 312 statics->order_names = ordernames; 313 #endif 314 315 /* all done! */ 316 return(0); 317 } 318 319 char *format_header(uname_field) 320 321 register char *uname_field; 322 323 { 324 register char *ptr; 325 static char Header[128]; 326 327 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 328 namelength, namelength, uname_field); 329 330 cmdlength = 80 - strlen(Header) + 6; 331 332 return Header; 333 } 334 335 static int swappgsin = -1; 336 static int swappgsout = -1; 337 extern struct timeval timeout; 338 339 void 340 get_system_info(si) 341 342 struct system_info *si; 343 344 { 345 long total; 346 load_avg avenrun[3]; 347 int mib[2]; 348 struct timeval boottime; 349 size_t bt_size; 350 351 /* get the cp_time array */ 352 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 353 nlst[X_CP_TIME].n_name); 354 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 355 nlst[X_AVENRUN].n_name); 356 357 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 358 "!"); 359 360 /* convert load averages to doubles */ 361 { 362 register int i; 363 register double *infoloadp; 364 load_avg *avenrunp; 365 366 #ifdef notyet 367 struct loadavg sysload; 368 int size; 369 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 370 #endif 371 372 infoloadp = si->load_avg; 373 avenrunp = avenrun; 374 for (i = 0; i < 3; i++) 375 { 376 #ifdef notyet 377 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 378 #endif 379 *infoloadp++ = loaddouble(*avenrunp++); 380 } 381 } 382 383 /* convert cp_time counts to percentages */ 384 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 385 386 /* sum memory & swap statistics */ 387 { 388 struct vmmeter sum; 389 static unsigned int swap_delay = 0; 390 static int swapavail = 0; 391 static int swapfree = 0; 392 static int bufspace = 0; 393 394 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 395 "_cnt"); 396 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 397 "_bufspace"); 398 399 /* convert memory stats to Kbytes */ 400 memory_stats[0] = pagetok(sum.v_active_count); 401 memory_stats[1] = pagetok(sum.v_inactive_count); 402 memory_stats[2] = pagetok(sum.v_wire_count); 403 memory_stats[3] = pagetok(sum.v_cache_count); 404 memory_stats[4] = bufspace / 1024; 405 memory_stats[5] = pagetok(sum.v_free_count); 406 memory_stats[6] = -1; 407 408 /* first interval */ 409 if (swappgsin < 0) { 410 swap_stats[4] = 0; 411 swap_stats[5] = 0; 412 } 413 414 /* compute differences between old and new swap statistic */ 415 else { 416 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 417 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 418 } 419 420 swappgsin = sum.v_swappgsin; 421 swappgsout = sum.v_swappgsout; 422 423 /* call CPU heavy swapmode() only for changes */ 424 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 425 swap_stats[3] = swapmode(&swapavail, &swapfree); 426 swap_stats[0] = swapavail; 427 swap_stats[1] = swapavail - swapfree; 428 swap_stats[2] = swapfree; 429 } 430 swap_delay = 1; 431 swap_stats[6] = -1; 432 } 433 434 /* set arrays and strings */ 435 si->cpustates = cpu_states; 436 si->memory = memory_stats; 437 si->swap = swap_stats; 438 439 440 if(lastpid > 0) { 441 si->last_pid = lastpid; 442 } else { 443 si->last_pid = -1; 444 } 445 446 /* 447 * Print how long system has been up. 448 * (Found by looking getting "boottime" from the kernel) 449 */ 450 mib[0] = CTL_KERN; 451 mib[1] = KERN_BOOTTIME; 452 bt_size = sizeof(boottime); 453 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 454 boottime.tv_sec != 0) { 455 si->boottime = boottime; 456 } else { 457 si->boottime.tv_sec = -1; 458 } 459 } 460 461 static struct handle handle; 462 463 caddr_t get_process_info(si, sel, compare) 464 465 struct system_info *si; 466 struct process_select *sel; 467 int (*compare)(); 468 469 { 470 register int i; 471 register int total_procs; 472 register int active_procs; 473 register struct kinfo_proc **prefp; 474 register struct kinfo_proc *pp; 475 476 /* these are copied out of sel for speed */ 477 int show_idle; 478 int show_self; 479 int show_system; 480 int show_uid; 481 int show_command; 482 483 484 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 485 if (nproc > onproc) 486 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 487 * (onproc = nproc)); 488 if (pref == NULL || pbase == NULL) { 489 (void) fprintf(stderr, "top: Out of memory.\n"); 490 quit(23); 491 } 492 /* get a pointer to the states summary array */ 493 si->procstates = process_states; 494 495 /* set up flags which define what we are going to select */ 496 show_idle = sel->idle; 497 show_self = sel->self; 498 show_system = sel->system; 499 show_uid = sel->uid != -1; 500 show_command = sel->command != NULL; 501 502 /* count up process states and get pointers to interesting procs */ 503 total_procs = 0; 504 active_procs = 0; 505 memset((char *)process_states, 0, sizeof(process_states)); 506 prefp = pref; 507 for (pp = pbase, i = 0; i < nproc; pp++, i++) 508 { 509 /* 510 * Place pointers to each valid proc structure in pref[]. 511 * Process slots that are actually in use have a non-zero 512 * status field. Processes with P_SYSTEM set are system 513 * processes---these get ignored unless show_sysprocs is set. 514 */ 515 if (PP(pp, p_stat) != 0 && 516 (show_self != PP(pp, p_pid)) && 517 (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) 518 { 519 total_procs++; 520 process_states[(unsigned char) PP(pp, p_stat)]++; 521 if ((PP(pp, p_stat) != SZOMB) && 522 (show_idle || (PP(pp, p_pctcpu) != 0) || 523 (PP(pp, p_stat) == SRUN)) && 524 (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) 525 { 526 *prefp++ = pp; 527 active_procs++; 528 } 529 } 530 } 531 532 /* if requested, sort the "interesting" processes */ 533 if (compare != NULL) 534 { 535 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 536 } 537 538 /* remember active and total counts */ 539 si->p_total = total_procs; 540 si->p_active = pref_len = active_procs; 541 542 /* pass back a handle */ 543 handle.next_proc = pref; 544 handle.remaining = active_procs; 545 return((caddr_t)&handle); 546 } 547 548 char fmt[128]; /* static area where result is built */ 549 550 char *format_next_process(handle, get_userid) 551 552 caddr_t handle; 553 char *(*get_userid)(); 554 555 { 556 register struct kinfo_proc *pp; 557 register long cputime; 558 register double pct; 559 struct handle *hp; 560 char status[16]; 561 562 /* find and remember the next proc structure */ 563 hp = (struct handle *)handle; 564 pp = *(hp->next_proc++); 565 hp->remaining--; 566 567 568 /* get the process's user struct and set cputime */ 569 if ((PP(pp, p_flag) & P_INMEM) == 0) { 570 /* 571 * Print swapped processes as <pname> 572 */ 573 char *comm = PP(pp, p_comm); 574 #define COMSIZ sizeof(PP(pp, p_comm)) 575 char buf[COMSIZ]; 576 (void) strncpy(buf, comm, COMSIZ); 577 comm[0] = '<'; 578 (void) strncpy(&comm[1], buf, COMSIZ - 2); 579 comm[COMSIZ - 2] = '\0'; 580 (void) strncat(comm, ">", COMSIZ - 1); 581 comm[COMSIZ - 1] = '\0'; 582 } 583 584 #if 0 585 /* This does not produce the correct results */ 586 cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); 587 #endif 588 /* This does not count interrupts */ 589 cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000; 590 591 /* calculate the base for cpu percentages */ 592 pct = pctdouble(PP(pp, p_pctcpu)); 593 594 /* generate "STATE" field */ 595 switch (PP(pp, p_stat)) { 596 case SRUN: 597 if (smpmode && PP(pp, p_oncpu) >= 0) 598 sprintf(status, "CPU%d", PP(pp, p_oncpu)); 599 else 600 strcpy(status, "RUN"); 601 break; 602 case SSLEEP: 603 if (PP(pp, p_wmesg) != NULL) { 604 sprintf(status, "%.6s", EP(pp, e_wmesg)); 605 break; 606 } 607 /* fall through */ 608 default: 609 sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]); 610 break; 611 } 612 613 /* format this entry */ 614 sprintf(fmt, 615 smpmode ? smp_Proc_format : up_Proc_format, 616 PP(pp, p_pid), 617 namelength, namelength, 618 (*get_userid)(EP(pp, e_pcred.p_ruid)), 619 PP(pp, p_priority) - PZERO, 620 621 /* 622 * normal time -> nice value -20 - +20 623 * real time 0 - 31 -> nice value -52 - -21 624 * idle time 0 - 31 -> nice value +21 - +52 625 */ 626 (PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ? 627 PP(pp, p_nice) - NZERO : 628 (PP(pp, p_rtprio.type) == RTP_PRIO_REALTIME ? 629 (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) : 630 (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))), 631 format_k2(PROCSIZE(pp)), 632 format_k2(pagetok(VP(pp, vm_rssize))), 633 status, 634 smpmode ? PP(pp, p_lastcpu) : 0, 635 format_time(cputime), 636 100.0 * weighted_cpu(pct, pp), 637 100.0 * pct, 638 cmdlength, 639 printable(PP(pp, p_comm))); 640 641 /* return the result */ 642 return(fmt); 643 } 644 645 646 /* 647 * check_nlist(nlst) - checks the nlist to see if any symbols were not 648 * found. For every symbol that was not found, a one-line 649 * message is printed to stderr. The routine returns the 650 * number of symbols NOT found. 651 */ 652 653 static int check_nlist(nlst) 654 655 register struct nlist *nlst; 656 657 { 658 register int i; 659 660 /* check to see if we got ALL the symbols we requested */ 661 /* this will write one line to stderr for every symbol not found */ 662 663 i = 0; 664 while (nlst->n_name != NULL) 665 { 666 if (nlst->n_type == 0) 667 { 668 /* this one wasn't found */ 669 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 670 nlst->n_name); 671 i = 1; 672 } 673 nlst++; 674 } 675 676 return(i); 677 } 678 679 680 /* 681 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 682 * "offset" is the byte offset into the kernel for the desired value, 683 * "ptr" points to a buffer into which the value is retrieved, 684 * "size" is the size of the buffer (and the object to retrieve), 685 * "refstr" is a reference string used when printing error meessages, 686 * if "refstr" starts with a '!', then a failure on read will not 687 * be fatal (this may seem like a silly way to do things, but I 688 * really didn't want the overhead of another argument). 689 * 690 */ 691 692 static int getkval(offset, ptr, size, refstr) 693 694 unsigned long offset; 695 int *ptr; 696 int size; 697 char *refstr; 698 699 { 700 if (kvm_read(kd, offset, (char *) ptr, size) != size) 701 { 702 if (*refstr == '!') 703 { 704 return(0); 705 } 706 else 707 { 708 fprintf(stderr, "top: kvm_read for %s: %s\n", 709 refstr, strerror(errno)); 710 quit(23); 711 } 712 } 713 return(1); 714 } 715 716 /* comparison routines for qsort */ 717 718 /* 719 * proc_compare - comparison function for "qsort" 720 * Compares the resource consumption of two processes using five 721 * distinct keys. The keys (in descending order of importance) are: 722 * percent cpu, cpu ticks, state, resident set size, total virtual 723 * memory usage. The process states are ordered as follows (from least 724 * to most important): WAIT, zombie, sleep, stop, start, run. The 725 * array declaration below maps a process state index into a number 726 * that reflects this ordering. 727 */ 728 729 static unsigned char sorted_state[] = 730 { 731 0, /* not used */ 732 3, /* sleep */ 733 1, /* ABANDONED (WAIT) */ 734 6, /* run */ 735 5, /* start */ 736 2, /* zombie */ 737 4 /* stop */ 738 }; 739 740 741 #define ORDERKEY_PCTCPU \ 742 if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \ 743 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 744 745 #define ORDERKEY_CPTICKS \ 746 if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0) 747 748 #define ORDERKEY_STATE \ 749 if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \ 750 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) 751 752 #define ORDERKEY_PRIO \ 753 if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) 754 755 #define ORDERKEY_RSSIZE \ 756 if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) 757 758 #define ORDERKEY_MEM \ 759 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 760 761 /* compare_cpu - the comparison function for sorting by cpu percentage */ 762 763 int 764 #ifdef ORDER 765 compare_cpu(pp1, pp2) 766 #else 767 proc_compare(pp1, pp2) 768 #endif 769 770 struct proc **pp1; 771 struct proc **pp2; 772 773 { 774 register struct kinfo_proc *p1; 775 register struct kinfo_proc *p2; 776 register int result; 777 register pctcpu lresult; 778 779 /* remove one level of indirection */ 780 p1 = *(struct kinfo_proc **) pp1; 781 p2 = *(struct kinfo_proc **) pp2; 782 783 ORDERKEY_PCTCPU 784 ORDERKEY_CPTICKS 785 ORDERKEY_STATE 786 ORDERKEY_PRIO 787 ORDERKEY_RSSIZE 788 ORDERKEY_MEM 789 ; 790 791 return(result); 792 } 793 794 #ifdef ORDER 795 /* compare routines */ 796 int compare_size(), compare_res(), compare_time(), compare_prio(); 797 798 int (*proc_compares[])() = { 799 compare_cpu, 800 compare_size, 801 compare_res, 802 compare_time, 803 compare_prio, 804 NULL 805 }; 806 807 /* compare_size - the comparison function for sorting by total memory usage */ 808 809 int 810 compare_size(pp1, pp2) 811 812 struct proc **pp1; 813 struct proc **pp2; 814 815 { 816 register struct kinfo_proc *p1; 817 register struct kinfo_proc *p2; 818 register int result; 819 register pctcpu lresult; 820 821 /* remove one level of indirection */ 822 p1 = *(struct kinfo_proc **) pp1; 823 p2 = *(struct kinfo_proc **) pp2; 824 825 ORDERKEY_MEM 826 ORDERKEY_RSSIZE 827 ORDERKEY_PCTCPU 828 ORDERKEY_CPTICKS 829 ORDERKEY_STATE 830 ORDERKEY_PRIO 831 ; 832 833 return(result); 834 } 835 836 /* compare_res - the comparison function for sorting by resident set size */ 837 838 int 839 compare_res(pp1, pp2) 840 841 struct proc **pp1; 842 struct proc **pp2; 843 844 { 845 register struct kinfo_proc *p1; 846 register struct kinfo_proc *p2; 847 register int result; 848 register pctcpu lresult; 849 850 /* remove one level of indirection */ 851 p1 = *(struct kinfo_proc **) pp1; 852 p2 = *(struct kinfo_proc **) pp2; 853 854 ORDERKEY_RSSIZE 855 ORDERKEY_MEM 856 ORDERKEY_PCTCPU 857 ORDERKEY_CPTICKS 858 ORDERKEY_STATE 859 ORDERKEY_PRIO 860 ; 861 862 return(result); 863 } 864 865 /* compare_time - the comparison function for sorting by total cpu time */ 866 867 int 868 compare_time(pp1, pp2) 869 870 struct proc **pp1; 871 struct proc **pp2; 872 873 { 874 register struct kinfo_proc *p1; 875 register struct kinfo_proc *p2; 876 register int result; 877 register pctcpu lresult; 878 879 /* remove one level of indirection */ 880 p1 = *(struct kinfo_proc **) pp1; 881 p2 = *(struct kinfo_proc **) pp2; 882 883 ORDERKEY_CPTICKS 884 ORDERKEY_PCTCPU 885 ORDERKEY_STATE 886 ORDERKEY_PRIO 887 ORDERKEY_RSSIZE 888 ORDERKEY_MEM 889 ; 890 891 return(result); 892 } 893 894 /* compare_prio - the comparison function for sorting by cpu percentage */ 895 896 int 897 compare_prio(pp1, pp2) 898 899 struct proc **pp1; 900 struct proc **pp2; 901 902 { 903 register struct kinfo_proc *p1; 904 register struct kinfo_proc *p2; 905 register int result; 906 register pctcpu lresult; 907 908 /* remove one level of indirection */ 909 p1 = *(struct kinfo_proc **) pp1; 910 p2 = *(struct kinfo_proc **) pp2; 911 912 ORDERKEY_PRIO 913 ORDERKEY_CPTICKS 914 ORDERKEY_PCTCPU 915 ORDERKEY_STATE 916 ORDERKEY_RSSIZE 917 ORDERKEY_MEM 918 ; 919 920 return(result); 921 } 922 #endif 923 924 /* 925 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 926 * the process does not exist. 927 * It is EXTREMLY IMPORTANT that this function work correctly. 928 * If top runs setuid root (as in SVR4), then this function 929 * is the only thing that stands in the way of a serious 930 * security problem. It validates requests for the "kill" 931 * and "renice" commands. 932 */ 933 934 int proc_owner(pid) 935 936 int pid; 937 938 { 939 register int cnt; 940 register struct kinfo_proc **prefp; 941 register struct kinfo_proc *pp; 942 943 prefp = pref; 944 cnt = pref_len; 945 while (--cnt >= 0) 946 { 947 pp = *prefp++; 948 if (PP(pp, p_pid) == (pid_t)pid) 949 { 950 return((int)EP(pp, e_pcred.p_ruid)); 951 } 952 } 953 return(-1); 954 } 955 956 957 /* 958 * swapmode is based on a program called swapinfo written 959 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 960 */ 961 962 #define SVAR(var) __STRING(var) /* to force expansion */ 963 #define KGET(idx, var) \ 964 KGET1(idx, &var, sizeof(var), SVAR(var)) 965 #define KGET1(idx, p, s, msg) \ 966 KGET2(nlst[idx].n_value, p, s, msg) 967 #define KGET2(addr, p, s, msg) \ 968 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 969 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 970 return (0); \ 971 } 972 #define KGETRET(addr, p, s, msg) \ 973 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 974 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 975 return (0); \ 976 } 977 978 979 int 980 swapmode(retavail, retfree) 981 int *retavail; 982 int *retfree; 983 { 984 char *header; 985 int hlen, nswap, nswdev, dmmax; 986 int i, div, avail, nfree, npfree, used; 987 struct swdevt *sw; 988 long blocksize, *perdev; 989 u_long ptr; 990 struct rlist head; 991 #if __FreeBSD_version >= 220000 992 struct rlisthdr swaplist; 993 #else 994 struct rlist *swaplist; 995 #endif 996 struct rlist *swapptr; 997 998 /* 999 * Counter for error messages. If we reach the limit, 1000 * stop reading information from swap devices and 1001 * return zero. This prevent endless 'bad address' 1002 * messages. 1003 */ 1004 static warning = 10; 1005 1006 if (warning <= 0) { 1007 /* a single warning */ 1008 if (!warning) { 1009 warning--; 1010 fprintf(stderr, 1011 "Too much errors, stop reading swap devices ...\n"); 1012 (void)sleep(3); 1013 } 1014 return(0); 1015 } 1016 warning--; /* decrease counter, see end of function */ 1017 1018 KGET(VM_NSWAP, nswap); 1019 if (!nswap) { 1020 fprintf(stderr, "No swap space available\n"); 1021 return(0); 1022 } 1023 1024 KGET(VM_NSWDEV, nswdev); 1025 KGET(VM_DMMAX, dmmax); 1026 KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist"); 1027 if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL || 1028 (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL) 1029 err(1, "malloc"); 1030 KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt"); 1031 KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt"); 1032 1033 /* Count up swap space. */ 1034 nfree = 0; 1035 memset(perdev, 0, nswdev * sizeof(*perdev)); 1036 #if __FreeBSD_version >= 220000 1037 swapptr = swaplist.rlh_list; 1038 while (swapptr) { 1039 #else 1040 while (swaplist) { 1041 #endif 1042 int top, bottom, next_block; 1043 #if __FreeBSD_version >= 220000 1044 KGET2(swapptr, &head, sizeof(struct rlist), "swapptr"); 1045 #else 1046 KGET2(swaplist, &head, sizeof(struct rlist), "swaplist"); 1047 #endif 1048 1049 top = head.rl_end; 1050 bottom = head.rl_start; 1051 1052 nfree += top - bottom + 1; 1053 1054 /* 1055 * Swap space is split up among the configured disks. 1056 * 1057 * For interleaved swap devices, the first dmmax blocks 1058 * of swap space some from the first disk, the next dmmax 1059 * blocks from the next, and so on up to nswap blocks. 1060 * 1061 * The list of free space joins adjacent free blocks, 1062 * ignoring device boundries. If we want to keep track 1063 * of this information per device, we'll just have to 1064 * extract it ourselves. 1065 */ 1066 while (top / dmmax != bottom / dmmax) { 1067 next_block = ((bottom + dmmax) / dmmax); 1068 perdev[(bottom / dmmax) % nswdev] += 1069 next_block * dmmax - bottom; 1070 bottom = next_block * dmmax; 1071 } 1072 perdev[(bottom / dmmax) % nswdev] += 1073 top - bottom + 1; 1074 1075 #if __FreeBSD_version >= 220000 1076 swapptr = head.rl_next; 1077 #else 1078 swaplist = head.rl_next; 1079 #endif 1080 } 1081 1082 header = getbsize(&hlen, &blocksize); 1083 div = blocksize / 512; 1084 avail = npfree = 0; 1085 for (i = 0; i < nswdev; i++) { 1086 int xsize, xfree; 1087 1088 /* 1089 * Don't report statistics for partitions which have not 1090 * yet been activated via swapon(8). 1091 */ 1092 if (!(sw[i].sw_flags & SW_FREED)) 1093 continue; 1094 1095 /* The first dmmax is never allocated to avoid trashing of 1096 * disklabels 1097 */ 1098 xsize = sw[i].sw_nblks - dmmax; 1099 xfree = perdev[i]; 1100 used = xsize - xfree; 1101 npfree++; 1102 avail += xsize; 1103 } 1104 1105 /* 1106 * If only one partition has been set up via swapon(8), we don't 1107 * need to bother with totals. 1108 */ 1109 *retavail = avail / 2; 1110 *retfree = nfree / 2; 1111 used = avail - nfree; 1112 free(sw); free(perdev); 1113 1114 /* increase counter, no errors occurs */ 1115 warning++; 1116 1117 return (int)(((double)used / (double)avail * 100.0) + 0.5); 1118 } 1119