xref: /freebsd/usr.bin/top/machine.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for FreeBSD 2.2
13  * Works for:
14  *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19  *          Steven Wallace  <swallace@freebsd.org>
20  *          Wolfram Schneider <wosch@FreeBSD.org>
21  *          Thomas Moestl <tmoestl@gmx.net>
22  *
23  * $FreeBSD$
24  */
25 
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/file.h>
29 #include <sys/proc.h>
30 #include <sys/resource.h>
31 #include <sys/rtprio.h>
32 #include <sys/signal.h>
33 #include <sys/sysctl.h>
34 #include <sys/time.h>
35 #include <sys/user.h>
36 #include <sys/vmmeter.h>
37 
38 #include <kvm.h>
39 #include <math.h>
40 #include <nlist.h>
41 #include <paths.h>
42 #include <pwd.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <strings.h>
47 #include <unistd.h>
48 
49 #include "top.h"
50 #include "machine.h"
51 #include "screen.h"
52 #include "utils.h"
53 
54 static void getsysctl(char *, void *, size_t);
55 
56 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
57 #define	SMPUNAMELEN	13
58 #define	UPUNAMELEN	15
59 
60 extern struct process_select ps;
61 extern char* printable(char *);
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 enum displaymodes displaymode;
65 static int namelength = 8;
66 static int cmdlengthdelta;
67 
68 /* Prototypes for top internals */
69 void quit(int);
70 int compare_pid(const void *a, const void *b);
71 
72 /* get_process_info passes back a handle.  This is what it looks like: */
73 
74 struct handle
75 {
76 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
77 	int remaining;			/* number of pointers remaining */
78 };
79 
80 /* declarations for load_avg */
81 #include "loadavg.h"
82 
83 /* define what weighted cpu is.  */
84 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
85 			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
86 
87 /* what we consider to be process size: */
88 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
89 
90 #define RU(pp)	(&(pp)->ki_rusage)
91 #define RUTOT(pp) \
92 	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
93 
94 
95 /* definitions for indices in the nlist array */
96 
97 /*
98  *  These definitions control the format of the per-process area
99  */
100 
101 static char io_header[] =
102 	"  PID %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
103 
104 #define io_Proc_format \
105 	"%5d %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
106 
107 static char smp_header_thr[] =
108  	"  PID %-*.*s  THR PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
109 static char smp_header[] =
110  	"  PID %-*.*s "   "PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
111 
112 #define smp_Proc_format \
113  	"%5d %-*.*s %s%3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
114 
115 static char up_header_thr[] =
116  	"  PID %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
117 static char up_header[] =
118  	"  PID %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
119 
120 #define up_Proc_format \
121  	"%5d %-*.*s %s%3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
122 
123 
124 /* process state names for the "STATE" column of the display */
125 /* the extra nulls in the string "run" are for adding a slash and
126    the processor number when needed */
127 
128 char *state_abbrev[] =
129 {
130 	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
131 };
132 
133 
134 static kvm_t *kd;
135 
136 /* values that we stash away in _init and use in later routines */
137 
138 static double logcpu;
139 
140 /* these are retrieved from the kernel in _init */
141 
142 static load_avg  ccpu;
143 
144 /* these are used in the get_ functions */
145 
146 static int lastpid;
147 
148 /* these are for calculating cpu state percentages */
149 
150 static long cp_time[CPUSTATES];
151 static long cp_old[CPUSTATES];
152 static long cp_diff[CPUSTATES];
153 
154 /* these are for detailing the process states */
155 
156 int process_states[8];
157 char *procstatenames[] = {
158 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
159 	" zombie, ", " waiting, ", " lock, ",
160 	NULL
161 };
162 
163 /* these are for detailing the cpu states */
164 
165 int cpu_states[CPUSTATES];
166 char *cpustatenames[] = {
167 	"user", "nice", "system", "interrupt", "idle", NULL
168 };
169 
170 /* these are for detailing the memory statistics */
171 
172 int memory_stats[7];
173 char *memorynames[] = {
174 	/* 0             1            2            3            4          5 */
175 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
176 	NULL
177 };
178 
179 int swap_stats[7];
180 char *swapnames[] = {
181 	/* 0            1           2           3            4         5 */
182 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
183 	NULL
184 };
185 
186 
187 /* these are for keeping track of the proc array */
188 
189 static int nproc;
190 static int onproc = -1;
191 static int pref_len;
192 static struct kinfo_proc *pbase;
193 static struct kinfo_proc **pref;
194 static struct kinfo_proc *previous_procs;
195 static struct kinfo_proc **previous_pref;
196 static int previous_proc_count = 0;
197 static int previous_proc_count_max = 0;
198 
199 /* total number of io operations */
200 static long total_inblock;
201 static long total_oublock;
202 static long total_majflt;
203 
204 /* these are for getting the memory statistics */
205 
206 static int pageshift;		/* log base 2 of the pagesize */
207 
208 /* define pagetok in terms of pageshift */
209 
210 #define pagetok(size) ((size) << pageshift)
211 
212 /* useful externals */
213 long percentages();
214 
215 #ifdef ORDER
216 /*
217  * Sorting orders.  The first element is the default.
218  */
219 char *ordernames[] = {
220 	"cpu", "size", "res", "time", "pri", "threads",
221 	"total", "read", "write", "fault", "vcsw", "ivcsw", NULL
222 };
223 #endif
224 
225 int
226 machine_init(struct statics *statics)
227 {
228 	int pagesize;
229 	size_t modelen;
230 	struct passwd *pw;
231 
232 	modelen = sizeof(smpmode);
233 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
234 		sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
235 	    modelen != sizeof(smpmode))
236 		smpmode = 0;
237 
238 	while ((pw = getpwent()) != NULL) {
239 		if (strlen(pw->pw_name) > namelength)
240 			namelength = strlen(pw->pw_name);
241 	}
242 	if (smpmode && namelength > SMPUNAMELEN)
243 		namelength = SMPUNAMELEN;
244 	else if (namelength > UPUNAMELEN)
245 		namelength = UPUNAMELEN;
246 
247 	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
248 	if (kd == NULL)
249 		return (-1);
250 
251 	GETSYSCTL("kern.ccpu", ccpu);
252 
253 	/* this is used in calculating WCPU -- calculate it ahead of time */
254 	logcpu = log(loaddouble(ccpu));
255 
256 	pbase = NULL;
257 	pref = NULL;
258 	nproc = 0;
259 	onproc = -1;
260 	/* get the page size with "getpagesize" and calculate pageshift from it */
261 	pagesize = getpagesize();
262 	pageshift = 0;
263 	while (pagesize > 1) {
264 		pageshift++;
265 		pagesize >>= 1;
266 	}
267 
268 	/* we only need the amount of log(2)1024 for our conversion */
269 	pageshift -= LOG1024;
270 
271 	/* fill in the statics information */
272 	statics->procstate_names = procstatenames;
273 	statics->cpustate_names = cpustatenames;
274 	statics->memory_names = memorynames;
275 	statics->swap_names = swapnames;
276 #ifdef ORDER
277 	statics->order_names = ordernames;
278 #endif
279 
280 	/* all done! */
281 	return (0);
282 }
283 
284 char *
285 format_header(char *uname_field)
286 {
287 	static char Header[128];
288 	const char *prehead;
289 
290 	switch (displaymode) {
291 	case DISP_CPU:
292 		/*
293 		 * The logic of picking the right header format seems reverse
294 		 * here because we only want to display a THR column when
295 		 * "thread mode" is off (and threads are not listed as
296 		 * separate lines).
297 		 */
298 		prehead = smpmode ?
299 		    (ps.thread ? smp_header : smp_header_thr) :
300 		    (ps.thread ? up_header : up_header_thr);
301 		snprintf(Header, sizeof(Header), prehead,
302 		    namelength, namelength, uname_field,
303 		    ps.wcpu ? "WCPU" : "CPU");
304 		break;
305 	case DISP_IO:
306 		prehead = io_header;
307 		snprintf(Header, sizeof(Header), prehead,
308 		    namelength, namelength, uname_field);
309 		break;
310 	}
311 	cmdlengthdelta = strlen(Header) - 7;
312 	return (Header);
313 }
314 
315 static int swappgsin = -1;
316 static int swappgsout = -1;
317 extern struct timeval timeout;
318 
319 void
320 get_system_info(struct system_info *si)
321 {
322 	long total;
323 	struct loadavg sysload;
324 	int mib[2];
325 	struct timeval boottime;
326 	size_t bt_size;
327 	int i;
328 
329 	/* get the cp_time array */
330 	GETSYSCTL("kern.cp_time", cp_time);
331 	GETSYSCTL("vm.loadavg", sysload);
332 	GETSYSCTL("kern.lastpid", lastpid);
333 
334 	/* convert load averages to doubles */
335 	for (i = 0; i < 3; i++)
336 		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
337 
338 	/* convert cp_time counts to percentages */
339 	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
340 
341 	/* sum memory & swap statistics */
342 	{
343 		static unsigned int swap_delay = 0;
344 		static int swapavail = 0;
345 		static int swapfree = 0;
346 		static int bufspace = 0;
347 		static int nspgsin, nspgsout;
348 
349 		GETSYSCTL("vfs.bufspace", bufspace);
350 		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
351 		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
352 		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
353 		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
354 		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
355 		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
356 		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
357 		/* convert memory stats to Kbytes */
358 		memory_stats[0] = pagetok(memory_stats[0]);
359 		memory_stats[1] = pagetok(memory_stats[1]);
360 		memory_stats[2] = pagetok(memory_stats[2]);
361 		memory_stats[3] = pagetok(memory_stats[3]);
362 		memory_stats[4] = bufspace / 1024;
363 		memory_stats[5] = pagetok(memory_stats[5]);
364 		memory_stats[6] = -1;
365 
366 		/* first interval */
367 		if (swappgsin < 0) {
368 			swap_stats[4] = 0;
369 			swap_stats[5] = 0;
370 		}
371 
372 		/* compute differences between old and new swap statistic */
373 		else {
374 			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
375 			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
376 		}
377 
378 		swappgsin = nspgsin;
379 		swappgsout = nspgsout;
380 
381 		/* call CPU heavy swapmode() only for changes */
382 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
383 			swap_stats[3] = swapmode(&swapavail, &swapfree);
384 			swap_stats[0] = swapavail;
385 			swap_stats[1] = swapavail - swapfree;
386 			swap_stats[2] = swapfree;
387 		}
388 		swap_delay = 1;
389 		swap_stats[6] = -1;
390 	}
391 
392 	/* set arrays and strings */
393 	si->cpustates = cpu_states;
394 	si->memory = memory_stats;
395 	si->swap = swap_stats;
396 
397 
398 	if (lastpid > 0) {
399 		si->last_pid = lastpid;
400 	} else {
401 		si->last_pid = -1;
402 	}
403 
404 	/*
405 	 * Print how long system has been up.
406 	 * (Found by looking getting "boottime" from the kernel)
407 	 */
408 	mib[0] = CTL_KERN;
409 	mib[1] = KERN_BOOTTIME;
410 	bt_size = sizeof(boottime);
411 	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
412 	    boottime.tv_sec != 0) {
413 		si->boottime = boottime;
414 	} else {
415 		si->boottime.tv_sec = -1;
416 	}
417 }
418 
419 #define NOPROC	((void *)-1)
420 
421 /*
422  * We need to compare data from the old process entry with the new
423  * process entry.
424  * To facilitate doing this quickly we stash a pointer in the kinfo_proc
425  * structure to cache the mapping.  We also use a negative cache pointer
426  * of NOPROC to avoid duplicate lookups.
427  * XXX: this could be done when the actual processes are fetched, we do
428  * it here out of laziness.
429  */
430 const struct kinfo_proc *
431 get_old_proc(struct kinfo_proc *pp)
432 {
433 	struct kinfo_proc **oldpp, *oldp;
434 
435 	/*
436 	 * If this is the first fetch of the kinfo_procs then we don't have
437 	 * any previous entries.
438 	 */
439 	if (previous_proc_count == 0)
440 		return (NULL);
441 	/* negative cache? */
442 	if (pp->ki_udata == NOPROC)
443 		return (NULL);
444 	/* cached? */
445 	if (pp->ki_udata != NULL)
446 		return (pp->ki_udata);
447 	/*
448 	 * Not cached,
449 	 * 1) look up based on pid.
450 	 * 2) compare process start.
451 	 * If we fail here, then setup a negative cache entry, otherwise
452 	 * cache it.
453 	 */
454 	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
455 	    sizeof(*previous_pref), compare_pid);
456 	if (oldpp == NULL) {
457 		pp->ki_udata = NOPROC;
458 		return (NULL);
459 	}
460 	oldp = *oldpp;
461 	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
462 		pp->ki_udata = NOPROC;
463 		return (NULL);
464 	}
465 	pp->ki_udata = oldp;
466 	return (oldp);
467 }
468 
469 /*
470  * Return the total amount of IO done in blocks in/out and faults.
471  * store the values individually in the pointers passed in.
472  */
473 long
474 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw)
475 {
476 	const struct kinfo_proc *oldp;
477 	static struct kinfo_proc dummy;
478 	long ret;
479 
480 	oldp = get_old_proc(pp);
481 	if (oldp == NULL) {
482 		bzero(&dummy, sizeof(dummy));
483 		oldp = &dummy;
484 	}
485 
486 	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
487 	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
488 	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
489 	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
490 	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
491 	ret =
492 	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
493 	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
494 	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
495 	return (ret);
496 }
497 
498 /*
499  * Return the total number of block in/out and faults by a process.
500  */
501 long
502 get_io_total(struct kinfo_proc *pp)
503 {
504 	long dummy;
505 
506 	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
507 }
508 
509 static struct handle handle;
510 
511 caddr_t
512 get_process_info(struct system_info *si, struct process_select *sel,
513     int (*compare)(const void *, const void *))
514 {
515 	int i;
516 	int total_procs;
517 	long p_io;
518 	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
519 	int active_procs;
520 	struct kinfo_proc **prefp;
521 	struct kinfo_proc *pp;
522 	struct kinfo_proc *prev_pp = NULL;
523 
524 	/* these are copied out of sel for speed */
525 	int show_idle;
526 	int show_self;
527 	int show_system;
528 	int show_uid;
529 	int show_command;
530 
531 	/*
532 	 * Save the previous process info.
533 	 */
534 	if (previous_proc_count_max < nproc) {
535 		free(previous_procs);
536 		previous_procs = malloc(nproc * sizeof(*previous_procs));
537 		free(previous_pref);
538 		previous_pref = malloc(nproc * sizeof(*previous_pref));
539 		if (previous_procs == NULL || previous_pref == NULL) {
540 			(void) fprintf(stderr, "top: Out of memory.\n");
541 			quit(23);
542 		}
543 		previous_proc_count_max = nproc;
544 	}
545 	if (nproc) {
546 		for (i = 0; i < nproc; i++)
547 			previous_pref[i] = &previous_procs[i];
548 		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
549 		qsort(previous_pref, nproc, sizeof(*previous_pref), compare_pid);
550 	}
551 	previous_proc_count = nproc;
552 
553 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
554 	if (nproc > onproc)
555 		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
556 	if (pref == NULL || pbase == NULL) {
557 		(void) fprintf(stderr, "top: Out of memory.\n");
558 		quit(23);
559 	}
560 	/* get a pointer to the states summary array */
561 	si->procstates = process_states;
562 
563 	/* set up flags which define what we are going to select */
564 	show_idle = sel->idle;
565 	show_self = sel->self == -1;
566 	show_system = sel->system;
567 	show_uid = sel->uid != -1;
568 	show_command = sel->command != NULL;
569 
570 	/* count up process states and get pointers to interesting procs */
571 	total_procs = 0;
572 	active_procs = 0;
573 	total_inblock = 0;
574 	total_oublock = 0;
575 	total_majflt = 0;
576 	memset((char *)process_states, 0, sizeof(process_states));
577 	prefp = pref;
578 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
579 
580 		if (pp->ki_stat == 0)
581 			/* not in use */
582 			continue;
583 
584 		if (!show_self && pp->ki_pid == sel->self)
585 			/* skip self */
586 			continue;
587 
588 		if (!show_system && (pp->ki_flag & P_SYSTEM))
589 			/* skip system process */
590 			continue;
591 
592 		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw);
593 		total_inblock += p_inblock;
594 		total_oublock += p_oublock;
595 		total_majflt += p_majflt;
596 		total_procs++;
597 		process_states[pp->ki_stat]++;
598 
599 		if (pp->ki_stat == SZOMB)
600 			/* skip zombies */
601 			continue;
602 
603 		if (displaymode == DISP_CPU && !show_idle &&
604 		    (pp->ki_pctcpu == 0 || pp->ki_stat != SRUN))
605 			/* skip idle or non-running processes */
606 			continue;
607 
608 		if (displaymode == DISP_IO && !show_idle && p_io == 0)
609 			/* skip processes that aren't doing I/O */
610 			continue;
611 
612 		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
613 			/* skip processes which don't belong to the selected UID */
614 			continue;
615 
616 		/*
617 		 * When not showing threads, take the first thread
618 		 * for output and add the fields that we can from
619 		 * the rest of the process's threads rather than
620 		 * using the system's mostly-broken KERN_PROC_PROC.
621 		 */
622 		if (sel->thread || prev_pp == NULL ||
623 		    prev_pp->ki_pid != pp->ki_pid) {
624 			*prefp++ = pp;
625 			active_procs++;
626 			prev_pp = pp;
627 		} else {
628 			prev_pp->ki_pctcpu += pp->ki_pctcpu;
629 		}
630 	}
631 
632 	/* if requested, sort the "interesting" processes */
633 	if (compare != NULL)
634 		qsort(pref, active_procs, sizeof(*pref), compare);
635 
636 	/* remember active and total counts */
637 	si->p_total = total_procs;
638 	si->p_active = pref_len = active_procs;
639 
640 	/* pass back a handle */
641 	handle.next_proc = pref;
642 	handle.remaining = active_procs;
643 	return ((caddr_t)&handle);
644 }
645 
646 static char fmt[128];	/* static area where result is built */
647 
648 char *
649 format_next_process(caddr_t handle, char *(*get_userid)(int))
650 {
651 	struct kinfo_proc *pp;
652 	const struct kinfo_proc *oldp;
653 	long cputime;
654 	double pct;
655 	struct handle *hp;
656 	char status[16];
657 	int state;
658 	struct rusage ru, *rup;
659 	long p_tot, s_tot;
660 	char *proc_fmt, thr_buf[6];
661 
662 	/* find and remember the next proc structure */
663 	hp = (struct handle *)handle;
664 	pp = *(hp->next_proc++);
665 	hp->remaining--;
666 
667 	/* get the process's command name */
668 	if ((pp->ki_sflag & PS_INMEM) == 0) {
669 		/*
670 		 * Print swapped processes as <pname>
671 		 */
672 		size_t len = strlen(pp->ki_comm);
673 		if (len > sizeof(pp->ki_comm) - 3)
674 			len = sizeof(pp->ki_comm) - 3;
675 		memmove(pp->ki_comm + 1, pp->ki_comm, len);
676 		pp->ki_comm[0] = '<';
677 		pp->ki_comm[len + 1] = '>';
678 		pp->ki_comm[len + 2] = '\0';
679 	}
680 
681 	/*
682 	 * Convert the process's runtime from microseconds to seconds.  This
683 	 * time includes the interrupt time although that is not wanted here.
684 	 * ps(1) is similarly sloppy.
685 	 */
686 	cputime = (pp->ki_runtime + 500000) / 1000000;
687 
688 	/* calculate the base for cpu percentages */
689 	pct = pctdouble(pp->ki_pctcpu);
690 
691 	/* generate "STATE" field */
692 	switch (state = pp->ki_stat) {
693 	case SRUN:
694 		if (smpmode && pp->ki_oncpu != 0xff)
695 			sprintf(status, "CPU%d", pp->ki_oncpu);
696 		else
697 			strcpy(status, "RUN");
698 		break;
699 	case SLOCK:
700 		if (pp->ki_kiflag & KI_LOCKBLOCK) {
701 			sprintf(status, "*%.6s", pp->ki_lockname);
702 			break;
703 		}
704 		/* fall through */
705 	case SSLEEP:
706 		if (pp->ki_wmesg != NULL) {
707 			sprintf(status, "%.6s", pp->ki_wmesg);
708 			break;
709 		}
710 		/* FALLTHROUGH */
711 	default:
712 
713 		if (state >= 0 &&
714 		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
715 			sprintf(status, "%.6s", state_abbrev[state]);
716 		else
717 			sprintf(status, "?%5d", state);
718 		break;
719 	}
720 
721 	if (displaymode == DISP_IO) {
722 		oldp = get_old_proc(pp);
723 		if (oldp != NULL) {
724 			ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
725 			ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
726 			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
727 			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
728 			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
729 			rup = &ru;
730 		} else {
731 			rup = RU(pp);
732 		}
733 		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
734 		s_tot = total_inblock + total_oublock + total_majflt;
735 
736 		sprintf(fmt, io_Proc_format,
737 		    pp->ki_pid,
738 		    namelength, namelength,
739 		    (*get_userid)(pp->ki_ruid),
740 		    rup->ru_nvcsw,
741 		    rup->ru_nivcsw,
742 		    rup->ru_inblock,
743 		    rup->ru_oublock,
744 		    rup->ru_majflt,
745 		    p_tot,
746 		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
747 		    screen_width > cmdlengthdelta ?
748 		    screen_width - cmdlengthdelta : 0,
749 		    printable(pp->ki_comm));
750 		return (fmt);
751 	}
752 
753 	/* format this entry */
754 	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
755 	if (ps.thread != 0)
756 		thr_buf[0] = '\0';
757 	else
758 		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
759 		    sizeof(thr_buf) - 2, pp->ki_numthreads);
760 
761 	sprintf(fmt, proc_fmt,
762 	    pp->ki_pid,
763 	    namelength, namelength,
764 	    (*get_userid)(pp->ki_ruid),
765 	    thr_buf,
766 	    pp->ki_pri.pri_level - PZERO,
767 
768 	    /*
769 	     * normal time      -> nice value -20 - +20
770 	     * real time 0 - 31 -> nice value -52 - -21
771 	     * idle time 0 - 31 -> nice value +21 - +52
772 	     */
773 	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
774 		pp->ki_nice - NZERO :
775 		(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
776 		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
777 		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
778 	    format_k2(PROCSIZE(pp)),
779 	    format_k2(pagetok(pp->ki_rssize)),
780 	    status,
781 	    smpmode ? pp->ki_lastcpu : 0,
782 	    format_time(cputime),
783 	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
784 	    screen_width > cmdlengthdelta ?
785 	    screen_width - cmdlengthdelta :
786 	    0,
787 	    printable(pp->ki_comm));
788 
789 	/* return the result */
790 	return (fmt);
791 }
792 
793 static void
794 getsysctl(char *name, void *ptr, size_t len)
795 {
796 	size_t nlen = len;
797 
798 	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
799 		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
800 		    strerror(errno));
801 		quit(23);
802 	}
803 	if (nlen != len) {
804 		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
805 		    (unsigned long)len, (unsigned long)nlen);
806 		quit(23);
807 	}
808 }
809 
810 /* comparison routines for qsort */
811 
812 int
813 compare_pid(const void *p1, const void *p2)
814 {
815 	const struct kinfo_proc * const *pp1 = p1;
816 	const struct kinfo_proc * const *pp2 = p2;
817 
818 	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
819 		abort();
820 
821 	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
822 }
823 
824 /*
825  *  proc_compare - comparison function for "qsort"
826  *	Compares the resource consumption of two processes using five
827  *	distinct keys.  The keys (in descending order of importance) are:
828  *	percent cpu, cpu ticks, state, resident set size, total virtual
829  *	memory usage.  The process states are ordered as follows (from least
830  *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
831  *	array declaration below maps a process state index into a number
832  *	that reflects this ordering.
833  */
834 
835 static int sorted_state[] =
836 {
837 	0,	/* not used		*/
838 	3,	/* sleep		*/
839 	1,	/* ABANDONED (WAIT)	*/
840 	6,	/* run			*/
841 	5,	/* start		*/
842 	2,	/* zombie		*/
843 	4	/* stop			*/
844 };
845 
846 
847 #define ORDERKEY_PCTCPU(a, b) do { \
848 	long diff; \
849 	if (ps.wcpu) \
850 		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), (b))) - \
851 		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), (a))); \
852 	else \
853 		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
854 	if (diff != 0) \
855 		return (diff > 0 ? 1 : -1); \
856 } while (0)
857 
858 #define ORDERKEY_CPTICKS(a, b) do { \
859 	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
860 	if (diff != 0) \
861 		return (diff > 0 ? 1 : -1); \
862 } while (0)
863 
864 #define ORDERKEY_STATE(a, b) do { \
865 	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
866 	if (diff != 0) \
867 		return (diff > 0 ? 1 : -1); \
868 } while (0)
869 
870 #define ORDERKEY_PRIO(a, b) do { \
871 	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
872 	if (diff != 0) \
873 		return (diff > 0 ? 1 : -1); \
874 } while (0)
875 
876 #define	ORDERKEY_THREADS(a, b) do { \
877 	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
878 	if (diff != 0) \
879 		return (diff > 0 ? 1 : -1); \
880 } while (0)
881 
882 #define ORDERKEY_RSSIZE(a, b) do { \
883 	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
884 	if (diff != 0) \
885 		return (diff > 0 ? 1 : -1); \
886 } while (0)
887 
888 #define ORDERKEY_MEM(a, b) do { \
889 	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
890 	if (diff != 0) \
891 		return (diff > 0 ? 1 : -1); \
892 } while (0)
893 
894 /* compare_cpu - the comparison function for sorting by cpu percentage */
895 
896 int
897 #ifdef ORDER
898 compare_cpu(void *arg1, void *arg2)
899 #else
900 proc_compare(void *arg1, void *arg2)
901 #endif
902 {
903 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
904 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
905 
906 	ORDERKEY_PCTCPU(p1, p2);
907 	ORDERKEY_CPTICKS(p1, p2);
908 	ORDERKEY_STATE(p1, p2);
909 	ORDERKEY_PRIO(p1, p2);
910 	ORDERKEY_RSSIZE(p1, p2);
911 	ORDERKEY_MEM(p1, p2);
912 
913 	return (0);
914 }
915 
916 #ifdef ORDER
917 /* compare routines */
918 int compare_size(), compare_res(), compare_time(), compare_prio(), compare_threads();
919 /* io compare routines */
920 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), compare_vcsw(), compare_ivcsw();
921 
922 int (*compares[])() = {
923 	compare_cpu,
924 	compare_size,
925 	compare_res,
926 	compare_time,
927 	compare_prio,
928 	compare_threads,
929 	compare_iototal,
930 	compare_ioread,
931 	compare_iowrite,
932 	compare_iofault,
933 	compare_vcsw,
934 	compare_ivcsw,
935 	NULL
936 };
937 
938 /* compare_size - the comparison function for sorting by total memory usage */
939 
940 int
941 compare_size(void *arg1, void *arg2)
942 {
943 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
944 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
945 
946 	ORDERKEY_MEM(p1, p2);
947 	ORDERKEY_RSSIZE(p1, p2);
948 	ORDERKEY_PCTCPU(p1, p2);
949 	ORDERKEY_CPTICKS(p1, p2);
950 	ORDERKEY_STATE(p1, p2);
951 	ORDERKEY_PRIO(p1, p2);
952 
953 	return (0);
954 }
955 
956 /* compare_res - the comparison function for sorting by resident set size */
957 
958 int
959 compare_res(void *arg1, void *arg2)
960 {
961 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
962 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
963 
964 	ORDERKEY_RSSIZE(p1, p2);
965 	ORDERKEY_MEM(p1, p2);
966 	ORDERKEY_PCTCPU(p1, p2);
967 	ORDERKEY_CPTICKS(p1, p2);
968 	ORDERKEY_STATE(p1, p2);
969 	ORDERKEY_PRIO(p1, p2);
970 
971 	return (0);
972 }
973 
974 /* compare_time - the comparison function for sorting by total cpu time */
975 
976 int
977 compare_time(void *arg1, void *arg2)
978 {
979 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
980 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
981 
982 	ORDERKEY_CPTICKS(p1, p2);
983 	ORDERKEY_PCTCPU(p1, p2);
984 	ORDERKEY_STATE(p1, p2);
985 	ORDERKEY_PRIO(p1, p2);
986 	ORDERKEY_RSSIZE(p1, p2);
987 	ORDERKEY_MEM(p1, p2);
988 
989 	return (0);
990 }
991 
992 /* compare_prio - the comparison function for sorting by priority */
993 
994 int
995 compare_prio(void *arg1, void *arg2)
996 {
997 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
998 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
999 
1000 	ORDERKEY_PRIO(p1, p2);
1001 	ORDERKEY_CPTICKS(p1, p2);
1002 	ORDERKEY_PCTCPU(p1, p2);
1003 	ORDERKEY_STATE(p1, p2);
1004 	ORDERKEY_RSSIZE(p1, p2);
1005 	ORDERKEY_MEM(p1, p2);
1006 
1007 	return (0);
1008 }
1009 
1010 /* compare_threads - the comparison function for sorting by threads */
1011 int
1012 compare_threads(void *arg1, void *arg2)
1013 {
1014 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1015 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1016 
1017 	ORDERKEY_THREADS(p1, p2);
1018 	ORDERKEY_PCTCPU(p1, p2);
1019 	ORDERKEY_CPTICKS(p1, p2);
1020 	ORDERKEY_STATE(p1, p2);
1021 	ORDERKEY_PRIO(p1, p2);
1022 	ORDERKEY_RSSIZE(p1, p2);
1023 	ORDERKEY_MEM(p1, p2);
1024 
1025 	return (0);
1026 }
1027 #endif
1028 
1029 /* compare_io - the comparison function for sorting by total io */
1030 
1031 int
1032 #ifdef ORDER
1033 compare_iototal(void *arg1, void *arg2)
1034 #else
1035 io_compare(void *arg1, void *arg2)
1036 #endif
1037 {
1038 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1039 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1040 
1041 	return (get_io_total(p2) - get_io_total(p1));
1042 }
1043 
1044 #ifdef ORDER
1045 
1046 int
1047 compare_ioread(void *arg1, void *arg2)
1048 {
1049 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1050 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1051 	long dummy, inp1, inp2;
1052 
1053 	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1054 	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1055 
1056 	return (inp2 - inp1);
1057 }
1058 
1059 int
1060 compare_iowrite(void *arg1, void *arg2)
1061 {
1062 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1063 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1064 	long dummy, oup1, oup2;
1065 
1066 	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1067 	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1068 
1069 	return (oup2 - oup1);
1070 }
1071 
1072 int
1073 compare_iofault(void *arg1, void *arg2)
1074 {
1075 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1076 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1077 	long dummy, flp1, flp2;
1078 
1079 	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1080 	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1081 
1082 	return (flp2 - flp1);
1083 }
1084 
1085 int
1086 compare_vcsw(void *arg1, void *arg2)
1087 {
1088 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1089 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1090 	long dummy, flp1, flp2;
1091 
1092 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1093 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1094 
1095 	return (flp2 - flp1);
1096 }
1097 
1098 int
1099 compare_ivcsw(void *arg1, void *arg2)
1100 {
1101 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1102 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1103 	long dummy, flp1, flp2;
1104 
1105 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1106 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1107 
1108 	return (flp2 - flp1);
1109 }
1110 
1111 #endif /* ORDER */
1112 
1113 /*
1114  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1115  *		the process does not exist.
1116  *		It is EXTREMLY IMPORTANT that this function work correctly.
1117  *		If top runs setuid root (as in SVR4), then this function
1118  *		is the only thing that stands in the way of a serious
1119  *		security problem.  It validates requests for the "kill"
1120  *		and "renice" commands.
1121  */
1122 
1123 int
1124 proc_owner(int pid)
1125 {
1126 	int cnt;
1127 	struct kinfo_proc **prefp;
1128 	struct kinfo_proc *pp;
1129 
1130 	prefp = pref;
1131 	cnt = pref_len;
1132 	while (--cnt >= 0) {
1133 		pp = *prefp++;
1134 		if (pp->ki_pid == (pid_t)pid)
1135 			return ((int)pp->ki_ruid);
1136 	}
1137 	return (-1);
1138 }
1139 
1140 int
1141 swapmode(int *retavail, int *retfree)
1142 {
1143 	int n;
1144 	int pagesize = getpagesize();
1145 	struct kvm_swap swapary[1];
1146 
1147 	*retavail = 0;
1148 	*retfree = 0;
1149 
1150 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1151 
1152 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1153 	if (n < 0 || swapary[0].ksw_total == 0)
1154 		return (0);
1155 
1156 	*retavail = CONVERT(swapary[0].ksw_total);
1157 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1158 
1159 	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1160 	return (n);
1161 }
1162