xref: /freebsd/usr.bin/top/machine.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for FreeBSD 2.2
13  * Works for:
14  *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19  *          Steven Wallace  <swallace@freebsd.org>
20  *          Wolfram Schneider <wosch@FreeBSD.org>
21  *          Thomas Moestl <tmoestl@gmx.net>
22  *
23  * $FreeBSD$
24  */
25 
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/file.h>
29 #include <sys/proc.h>
30 #include <sys/resource.h>
31 #include <sys/rtprio.h>
32 #include <sys/signal.h>
33 #include <sys/sysctl.h>
34 #include <sys/time.h>
35 #include <sys/user.h>
36 #include <sys/vmmeter.h>
37 
38 #include <kvm.h>
39 #include <math.h>
40 #include <nlist.h>
41 #include <paths.h>
42 #include <pwd.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <strings.h>
47 #include <unistd.h>
48 #include <vis.h>
49 
50 #include "top.h"
51 #include "machine.h"
52 #include "screen.h"
53 #include "utils.h"
54 
55 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
56 #define	SMPUNAMELEN	13
57 #define	UPUNAMELEN	15
58 
59 extern struct process_select ps;
60 extern char* printable(char *);
61 static int smpmode;
62 enum displaymodes displaymode;
63 #ifdef TOP_USERNAME_LEN
64 static int namelength = TOP_USERNAME_LEN;
65 #else
66 static int namelength = 8;
67 #endif
68 static int cmdlengthdelta;
69 
70 /* Prototypes for top internals */
71 void quit(int);
72 
73 /* get_process_info passes back a handle.  This is what it looks like: */
74 
75 struct handle {
76 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
77 	int remaining;			/* number of pointers remaining */
78 };
79 
80 /* declarations for load_avg */
81 #include "loadavg.h"
82 
83 /* define what weighted cpu is.  */
84 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
85 			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
86 
87 /* what we consider to be process size: */
88 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
89 
90 #define RU(pp)	(&(pp)->ki_rusage)
91 #define RUTOT(pp) \
92 	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
93 
94 
95 /* definitions for indices in the nlist array */
96 
97 /*
98  *  These definitions control the format of the per-process area
99  */
100 
101 static char io_header[] =
102     "  PID%s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
103 
104 #define io_Proc_format \
105     "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
106 
107 static char smp_header_thr[] =
108     "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
109 static char smp_header[] =
110     "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
111 
112 #define smp_Proc_format \
113     "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
114 
115 static char up_header_thr[] =
116     "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
117 static char up_header[] =
118     "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
119 
120 #define up_Proc_format \
121     "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
122 
123 
124 /* process state names for the "STATE" column of the display */
125 /* the extra nulls in the string "run" are for adding a slash and
126    the processor number when needed */
127 
128 char *state_abbrev[] = {
129 	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
130 };
131 
132 
133 static kvm_t *kd;
134 
135 /* values that we stash away in _init and use in later routines */
136 
137 static double logcpu;
138 
139 /* these are retrieved from the kernel in _init */
140 
141 static load_avg  ccpu;
142 
143 /* these are used in the get_ functions */
144 
145 static int lastpid;
146 
147 /* these are for calculating cpu state percentages */
148 
149 static long cp_time[CPUSTATES];
150 static long cp_old[CPUSTATES];
151 static long cp_diff[CPUSTATES];
152 
153 /* these are for detailing the process states */
154 
155 int process_states[8];
156 char *procstatenames[] = {
157 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
158 	" zombie, ", " waiting, ", " lock, ",
159 	NULL
160 };
161 
162 /* these are for detailing the cpu states */
163 
164 int cpu_states[CPUSTATES];
165 char *cpustatenames[] = {
166 	"user", "nice", "system", "interrupt", "idle", NULL
167 };
168 
169 /* these are for detailing the memory statistics */
170 
171 int memory_stats[7];
172 char *memorynames[] = {
173 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
174 	"K Free", NULL
175 };
176 
177 int swap_stats[7];
178 char *swapnames[] = {
179 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
180 	NULL
181 };
182 
183 
184 /* these are for keeping track of the proc array */
185 
186 static int nproc;
187 static int onproc = -1;
188 static int pref_len;
189 static struct kinfo_proc *pbase;
190 static struct kinfo_proc **pref;
191 static struct kinfo_proc *previous_procs;
192 static struct kinfo_proc **previous_pref;
193 static int previous_proc_count = 0;
194 static int previous_proc_count_max = 0;
195 
196 /* total number of io operations */
197 static long total_inblock;
198 static long total_oublock;
199 static long total_majflt;
200 
201 /* these are for getting the memory statistics */
202 
203 static int pageshift;		/* log base 2 of the pagesize */
204 
205 /* define pagetok in terms of pageshift */
206 
207 #define pagetok(size) ((size) << pageshift)
208 
209 /* useful externals */
210 long percentages();
211 
212 #ifdef ORDER
213 /*
214  * Sorting orders.  The first element is the default.
215  */
216 char *ordernames[] = {
217 	"cpu", "size", "res", "time", "pri", "threads",
218 	"total", "read", "write", "fault", "vcsw", "ivcsw",
219 	"jid", NULL
220 };
221 #endif
222 
223 static int compare_jid(const void *a, const void *b);
224 static int compare_pid(const void *a, const void *b);
225 static const char *format_nice(const struct kinfo_proc *pp);
226 static void getsysctl(const char *name, void *ptr, size_t len);
227 static int swapmode(int *retavail, int *retfree);
228 
229 int
230 machine_init(struct statics *statics, char do_unames)
231 {
232 	int pagesize;
233 	size_t modelen;
234 	struct passwd *pw;
235 
236 	modelen = sizeof(smpmode);
237 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
238 	    NULL, 0) != 0 &&
239 	    sysctlbyname("kern.smp.active", &smpmode, &modelen,
240 	    NULL, 0) != 0) ||
241 	    modelen != sizeof(smpmode))
242 		smpmode = 0;
243 
244 	if (do_unames) {
245 	    while ((pw = getpwent()) != NULL) {
246 		if (strlen(pw->pw_name) > namelength)
247 			namelength = strlen(pw->pw_name);
248 	    }
249 	}
250 	if (smpmode && namelength > SMPUNAMELEN)
251 		namelength = SMPUNAMELEN;
252 	else if (namelength > UPUNAMELEN)
253 		namelength = UPUNAMELEN;
254 
255 	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
256 	if (kd == NULL)
257 		return (-1);
258 
259 	GETSYSCTL("kern.ccpu", ccpu);
260 
261 	/* this is used in calculating WCPU -- calculate it ahead of time */
262 	logcpu = log(loaddouble(ccpu));
263 
264 	pbase = NULL;
265 	pref = NULL;
266 	nproc = 0;
267 	onproc = -1;
268 
269 	/* get the page size and calculate pageshift from it */
270 	pagesize = getpagesize();
271 	pageshift = 0;
272 	while (pagesize > 1) {
273 		pageshift++;
274 		pagesize >>= 1;
275 	}
276 
277 	/* we only need the amount of log(2)1024 for our conversion */
278 	pageshift -= LOG1024;
279 
280 	/* fill in the statics information */
281 	statics->procstate_names = procstatenames;
282 	statics->cpustate_names = cpustatenames;
283 	statics->memory_names = memorynames;
284 	statics->swap_names = swapnames;
285 #ifdef ORDER
286 	statics->order_names = ordernames;
287 #endif
288 
289 	/* all done! */
290 	return (0);
291 }
292 
293 char *
294 format_header(char *uname_field)
295 {
296 	static char Header[128];
297 	const char *prehead;
298 
299 	switch (displaymode) {
300 	case DISP_CPU:
301 		/*
302 		 * The logic of picking the right header format seems reverse
303 		 * here because we only want to display a THR column when
304 		 * "thread mode" is off (and threads are not listed as
305 		 * separate lines).
306 		 */
307 		prehead = smpmode ?
308 		    (ps.thread ? smp_header : smp_header_thr) :
309 		    (ps.thread ? up_header : up_header_thr);
310 		snprintf(Header, sizeof(Header), prehead,
311 		    ps.jail ? " JID" : "",
312 		    namelength, namelength, uname_field,
313 		    ps.wcpu ? "WCPU" : "CPU");
314 		break;
315 	case DISP_IO:
316 		prehead = io_header;
317 		snprintf(Header, sizeof(Header), prehead,
318 		    ps.jail ? " JID" : "",
319 		    namelength, namelength, uname_field);
320 		break;
321 	}
322 	cmdlengthdelta = strlen(Header) - 7;
323 	return (Header);
324 }
325 
326 static int swappgsin = -1;
327 static int swappgsout = -1;
328 extern struct timeval timeout;
329 
330 void
331 get_system_info(struct system_info *si)
332 {
333 	long total;
334 	struct loadavg sysload;
335 	int mib[2];
336 	struct timeval boottime;
337 	size_t bt_size;
338 	int i;
339 
340 	/* get the cp_time array */
341 	GETSYSCTL("kern.cp_time", cp_time);
342 	GETSYSCTL("vm.loadavg", sysload);
343 	GETSYSCTL("kern.lastpid", lastpid);
344 
345 	/* convert load averages to doubles */
346 	for (i = 0; i < 3; i++)
347 		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
348 
349 	/* convert cp_time counts to percentages */
350 	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
351 
352 	/* sum memory & swap statistics */
353 	{
354 		static unsigned int swap_delay = 0;
355 		static int swapavail = 0;
356 		static int swapfree = 0;
357 		static int bufspace = 0;
358 		static int nspgsin, nspgsout;
359 
360 		GETSYSCTL("vfs.bufspace", bufspace);
361 		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
362 		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
363 		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
364 		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
365 		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
366 		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
367 		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
368 		/* convert memory stats to Kbytes */
369 		memory_stats[0] = pagetok(memory_stats[0]);
370 		memory_stats[1] = pagetok(memory_stats[1]);
371 		memory_stats[2] = pagetok(memory_stats[2]);
372 		memory_stats[3] = pagetok(memory_stats[3]);
373 		memory_stats[4] = bufspace / 1024;
374 		memory_stats[5] = pagetok(memory_stats[5]);
375 		memory_stats[6] = -1;
376 
377 		/* first interval */
378 		if (swappgsin < 0) {
379 			swap_stats[4] = 0;
380 			swap_stats[5] = 0;
381 		}
382 
383 		/* compute differences between old and new swap statistic */
384 		else {
385 			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
386 			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
387 		}
388 
389 		swappgsin = nspgsin;
390 		swappgsout = nspgsout;
391 
392 		/* call CPU heavy swapmode() only for changes */
393 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
394 			swap_stats[3] = swapmode(&swapavail, &swapfree);
395 			swap_stats[0] = swapavail;
396 			swap_stats[1] = swapavail - swapfree;
397 			swap_stats[2] = swapfree;
398 		}
399 		swap_delay = 1;
400 		swap_stats[6] = -1;
401 	}
402 
403 	/* set arrays and strings */
404 	si->cpustates = cpu_states;
405 	si->memory = memory_stats;
406 	si->swap = swap_stats;
407 
408 
409 	if (lastpid > 0) {
410 		si->last_pid = lastpid;
411 	} else {
412 		si->last_pid = -1;
413 	}
414 
415 	/*
416 	 * Print how long system has been up.
417 	 * (Found by looking getting "boottime" from the kernel)
418 	 */
419 	mib[0] = CTL_KERN;
420 	mib[1] = KERN_BOOTTIME;
421 	bt_size = sizeof(boottime);
422 	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
423 	    boottime.tv_sec != 0) {
424 		si->boottime = boottime;
425 	} else {
426 		si->boottime.tv_sec = -1;
427 	}
428 }
429 
430 #define NOPROC	((void *)-1)
431 
432 /*
433  * We need to compare data from the old process entry with the new
434  * process entry.
435  * To facilitate doing this quickly we stash a pointer in the kinfo_proc
436  * structure to cache the mapping.  We also use a negative cache pointer
437  * of NOPROC to avoid duplicate lookups.
438  * XXX: this could be done when the actual processes are fetched, we do
439  * it here out of laziness.
440  */
441 const struct kinfo_proc *
442 get_old_proc(struct kinfo_proc *pp)
443 {
444 	struct kinfo_proc **oldpp, *oldp;
445 
446 	/*
447 	 * If this is the first fetch of the kinfo_procs then we don't have
448 	 * any previous entries.
449 	 */
450 	if (previous_proc_count == 0)
451 		return (NULL);
452 	/* negative cache? */
453 	if (pp->ki_udata == NOPROC)
454 		return (NULL);
455 	/* cached? */
456 	if (pp->ki_udata != NULL)
457 		return (pp->ki_udata);
458 	/*
459 	 * Not cached,
460 	 * 1) look up based on pid.
461 	 * 2) compare process start.
462 	 * If we fail here, then setup a negative cache entry, otherwise
463 	 * cache it.
464 	 */
465 	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
466 	    sizeof(*previous_pref), compare_pid);
467 	if (oldpp == NULL) {
468 		pp->ki_udata = NOPROC;
469 		return (NULL);
470 	}
471 	oldp = *oldpp;
472 	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
473 		pp->ki_udata = NOPROC;
474 		return (NULL);
475 	}
476 	pp->ki_udata = oldp;
477 	return (oldp);
478 }
479 
480 /*
481  * Return the total amount of IO done in blocks in/out and faults.
482  * store the values individually in the pointers passed in.
483  */
484 long
485 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
486     long *vcsw, long *ivcsw)
487 {
488 	const struct kinfo_proc *oldp;
489 	static struct kinfo_proc dummy;
490 	long ret;
491 
492 	oldp = get_old_proc(pp);
493 	if (oldp == NULL) {
494 		bzero(&dummy, sizeof(dummy));
495 		oldp = &dummy;
496 	}
497 	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
498 	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
499 	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
500 	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
501 	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
502 	ret =
503 	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
504 	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
505 	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
506 	return (ret);
507 }
508 
509 /*
510  * Return the total number of block in/out and faults by a process.
511  */
512 long
513 get_io_total(struct kinfo_proc *pp)
514 {
515 	long dummy;
516 
517 	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
518 }
519 
520 static struct handle handle;
521 
522 caddr_t
523 get_process_info(struct system_info *si, struct process_select *sel,
524     int (*compare)(const void *, const void *))
525 {
526 	int i;
527 	int total_procs;
528 	long p_io;
529 	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
530 	int active_procs;
531 	struct kinfo_proc **prefp;
532 	struct kinfo_proc *pp;
533 	struct kinfo_proc *prev_pp = NULL;
534 
535 	/* these are copied out of sel for speed */
536 	int show_idle;
537 	int show_self;
538 	int show_system;
539 	int show_uid;
540 	int show_command;
541 
542 	/*
543 	 * Save the previous process info.
544 	 */
545 	if (previous_proc_count_max < nproc) {
546 		free(previous_procs);
547 		previous_procs = malloc(nproc * sizeof(*previous_procs));
548 		free(previous_pref);
549 		previous_pref = malloc(nproc * sizeof(*previous_pref));
550 		if (previous_procs == NULL || previous_pref == NULL) {
551 			(void) fprintf(stderr, "top: Out of memory.\n");
552 			quit(23);
553 		}
554 		previous_proc_count_max = nproc;
555 	}
556 	if (nproc) {
557 		for (i = 0; i < nproc; i++)
558 			previous_pref[i] = &previous_procs[i];
559 		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
560 		qsort(previous_pref, nproc, sizeof(*previous_pref),
561 		    compare_pid);
562 	}
563 	previous_proc_count = nproc;
564 
565 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
566 	if (nproc > onproc)
567 		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
568 	if (pref == NULL || pbase == NULL) {
569 		(void) fprintf(stderr, "top: Out of memory.\n");
570 		quit(23);
571 	}
572 	/* get a pointer to the states summary array */
573 	si->procstates = process_states;
574 
575 	/* set up flags which define what we are going to select */
576 	show_idle = sel->idle;
577 	show_self = sel->self == -1;
578 	show_system = sel->system;
579 	show_uid = sel->uid != -1;
580 	show_command = sel->command != NULL;
581 
582 	/* count up process states and get pointers to interesting procs */
583 	total_procs = 0;
584 	active_procs = 0;
585 	total_inblock = 0;
586 	total_oublock = 0;
587 	total_majflt = 0;
588 	memset((char *)process_states, 0, sizeof(process_states));
589 	prefp = pref;
590 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
591 
592 		if (pp->ki_stat == 0)
593 			/* not in use */
594 			continue;
595 
596 		if (!show_self && pp->ki_pid == sel->self)
597 			/* skip self */
598 			continue;
599 
600 		if (!show_system && (pp->ki_flag & P_SYSTEM))
601 			/* skip system process */
602 			continue;
603 
604 		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
605 		    &p_vcsw, &p_ivcsw);
606 		total_inblock += p_inblock;
607 		total_oublock += p_oublock;
608 		total_majflt += p_majflt;
609 		total_procs++;
610 		process_states[pp->ki_stat]++;
611 
612 		if (pp->ki_stat == SZOMB)
613 			/* skip zombies */
614 			continue;
615 
616 		if (displaymode == DISP_CPU && !show_idle &&
617 		    (pp->ki_pctcpu == 0 ||
618 		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
619 			/* skip idle or non-running processes */
620 			continue;
621 
622 		if (displaymode == DISP_IO && !show_idle && p_io == 0)
623 			/* skip processes that aren't doing I/O */
624 			continue;
625 
626 		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
627 			/* skip proc. that don't belong to the selected UID */
628 			continue;
629 
630 		/*
631 		 * When not showing threads, take the first thread
632 		 * for output and add the fields that we can from
633 		 * the rest of the process's threads rather than
634 		 * using the system's mostly-broken KERN_PROC_PROC.
635 		 */
636 		if (sel->thread || prev_pp == NULL ||
637 		    prev_pp->ki_pid != pp->ki_pid) {
638 			*prefp++ = pp;
639 			active_procs++;
640 			prev_pp = pp;
641 		} else {
642 			prev_pp->ki_pctcpu += pp->ki_pctcpu;
643 		}
644 	}
645 
646 	/* if requested, sort the "interesting" processes */
647 	if (compare != NULL)
648 		qsort(pref, active_procs, sizeof(*pref), compare);
649 
650 	/* remember active and total counts */
651 	si->p_total = total_procs;
652 	si->p_active = pref_len = active_procs;
653 
654 	/* pass back a handle */
655 	handle.next_proc = pref;
656 	handle.remaining = active_procs;
657 	return ((caddr_t)&handle);
658 }
659 
660 static char fmt[128];	/* static area where result is built */
661 
662 char *
663 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
664 {
665 	struct kinfo_proc *pp;
666 	const struct kinfo_proc *oldp;
667 	long cputime;
668 	double pct;
669 	struct handle *hp;
670 	char status[16];
671 	int state;
672 	struct rusage ru, *rup;
673 	long p_tot, s_tot;
674 	char *proc_fmt, thr_buf[6], jid_buf[6];
675 	char *cmdbuf = NULL;
676 	char **args;
677 
678 	/* find and remember the next proc structure */
679 	hp = (struct handle *)handle;
680 	pp = *(hp->next_proc++);
681 	hp->remaining--;
682 
683 	/* get the process's command name */
684 	if ((pp->ki_flag & P_INMEM) == 0) {
685 		/*
686 		 * Print swapped processes as <pname>
687 		 */
688 		size_t len;
689 
690 		len = strlen(pp->ki_comm);
691 		if (len > sizeof(pp->ki_comm) - 3)
692 			len = sizeof(pp->ki_comm) - 3;
693 		memmove(pp->ki_comm + 1, pp->ki_comm, len);
694 		pp->ki_comm[0] = '<';
695 		pp->ki_comm[len + 1] = '>';
696 		pp->ki_comm[len + 2] = '\0';
697 	}
698 
699 	/*
700 	 * Convert the process's runtime from microseconds to seconds.  This
701 	 * time includes the interrupt time although that is not wanted here.
702 	 * ps(1) is similarly sloppy.
703 	 */
704 	cputime = (pp->ki_runtime + 500000) / 1000000;
705 
706 	/* calculate the base for cpu percentages */
707 	pct = pctdouble(pp->ki_pctcpu);
708 
709 	/* generate "STATE" field */
710 	switch (state = pp->ki_stat) {
711 	case SRUN:
712 		if (smpmode && pp->ki_oncpu != 0xff)
713 			sprintf(status, "CPU%d", pp->ki_oncpu);
714 		else
715 			strcpy(status, "RUN");
716 		break;
717 	case SLOCK:
718 		if (pp->ki_kiflag & KI_LOCKBLOCK) {
719 			sprintf(status, "*%.6s", pp->ki_lockname);
720 			break;
721 		}
722 		/* fall through */
723 	case SSLEEP:
724 		if (pp->ki_wmesg != NULL) {
725 			sprintf(status, "%.6s", pp->ki_wmesg);
726 			break;
727 		}
728 		/* FALLTHROUGH */
729 	default:
730 
731 		if (state >= 0 &&
732 		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
733 			sprintf(status, "%.6s", state_abbrev[state]);
734 		else
735 			sprintf(status, "?%5d", state);
736 		break;
737 	}
738 
739 	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
740 	if (cmdbuf == NULL) {
741 		warn("malloc(%d)", cmdlengthdelta + 1);
742 		return NULL;
743 	}
744 
745 	if (!(flags & FMT_SHOWARGS)) {
746 		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
747 		    pp->ki_ocomm[0]) {
748 			snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm);
749 		} else {
750 			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
751 		}
752 	} else {
753 		if (pp->ki_flag & P_SYSTEM ||
754 		    pp->ki_args == NULL ||
755 		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
756 		    !(*args)) {
757 			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
758 		    	pp->ki_ocomm[0]) {
759 				snprintf(cmdbuf, cmdlengthdelta,
760 				    "{%s}", pp->ki_ocomm);
761 			} else {
762 				snprintf(cmdbuf, cmdlengthdelta,
763 				    "[%s]", pp->ki_comm);
764 			}
765 		} else {
766 			char *src, *dst, *argbuf;
767 			char *cmd;
768 			size_t argbuflen;
769 			size_t len;
770 
771 			argbuflen = cmdlengthdelta * 4;
772 			argbuf = (char *)malloc(argbuflen + 1);
773 			if (argbuf == NULL) {
774 				warn("malloc(%d)", argbuflen + 1);
775 				free(cmdbuf);
776 				return NULL;
777 			}
778 
779 			dst = argbuf;
780 
781 			/* Extract cmd name from argv */
782 			cmd = strrchr(*args, '/');
783 			if (cmd == NULL)
784 				cmd = *args;
785 			else
786 				cmd++;
787 
788 			for (; (src = *args++) != NULL; ) {
789 				if (*src == '\0')
790 					continue;
791 				len = (argbuflen - (dst - argbuf) - 1) / 4;
792 				strvisx(dst, src,
793 				    strlen(src) < len ? strlen(src) : len,
794 				    VIS_NL | VIS_CSTYLE);
795 				while (*dst != '\0')
796 					dst++;
797 				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
798 					*dst++ = ' '; /* add delimiting space */
799 			}
800 			if (dst != argbuf && dst[-1] == ' ')
801 				dst--;
802 			*dst = '\0';
803 
804 			if (strcmp(cmd, pp->ki_comm) != 0 )
805 				snprintf(cmdbuf, cmdlengthdelta,
806 				    "%s (%s)",argbuf,  pp->ki_comm);
807 			else
808 				strlcpy(cmdbuf, argbuf, cmdlengthdelta);
809 
810 			free(argbuf);
811 		}
812 	}
813 
814 	if (ps.jail == 0)
815 		jid_buf[0] = '\0';
816 	else
817 		snprintf(jid_buf, sizeof(jid_buf), " %*d",
818 		    sizeof(jid_buf) - 3, pp->ki_jid);
819 
820 	if (displaymode == DISP_IO) {
821 		oldp = get_old_proc(pp);
822 		if (oldp != NULL) {
823 			ru.ru_inblock = RU(pp)->ru_inblock -
824 			    RU(oldp)->ru_inblock;
825 			ru.ru_oublock = RU(pp)->ru_oublock -
826 			    RU(oldp)->ru_oublock;
827 			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
828 			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
829 			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
830 			rup = &ru;
831 		} else {
832 			rup = RU(pp);
833 		}
834 		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
835 		s_tot = total_inblock + total_oublock + total_majflt;
836 
837 		sprintf(fmt, io_Proc_format,
838 		    pp->ki_pid,
839 		    jid_buf,
840 		    namelength, namelength, (*get_userid)(pp->ki_ruid),
841 		    rup->ru_nvcsw,
842 		    rup->ru_nivcsw,
843 		    rup->ru_inblock,
844 		    rup->ru_oublock,
845 		    rup->ru_majflt,
846 		    p_tot,
847 		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
848 		    screen_width > cmdlengthdelta ?
849 		    screen_width - cmdlengthdelta : 0,
850 		    printable(cmdbuf));
851 
852 		free(cmdbuf);
853 
854 		return (fmt);
855 	}
856 
857 	/* format this entry */
858 	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
859 	if (ps.thread != 0)
860 		thr_buf[0] = '\0';
861 	else
862 		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
863 		    sizeof(thr_buf) - 2, pp->ki_numthreads);
864 
865 	sprintf(fmt, proc_fmt,
866 	    pp->ki_pid,
867 	    jid_buf,
868 	    namelength, namelength, (*get_userid)(pp->ki_ruid),
869 	    thr_buf,
870 	    pp->ki_pri.pri_level - PZERO,
871 	    format_nice(pp),
872 	    format_k2(PROCSIZE(pp)),
873 	    format_k2(pagetok(pp->ki_rssize)),
874 	    status,
875 	    smpmode ? pp->ki_lastcpu : 0,
876 	    format_time(cputime),
877 	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
878 	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
879 	    printable(cmdbuf));
880 
881 	free(cmdbuf);
882 
883 	/* return the result */
884 	return (fmt);
885 }
886 
887 static void
888 getsysctl(const char *name, void *ptr, size_t len)
889 {
890 	size_t nlen = len;
891 
892 	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
893 		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
894 		    strerror(errno));
895 		quit(23);
896 	}
897 	if (nlen != len) {
898 		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
899 		    name, (unsigned long)len, (unsigned long)nlen);
900 		quit(23);
901 	}
902 }
903 
904 static const char *
905 format_nice(const struct kinfo_proc *pp)
906 {
907 	const char *fifo, *kthread;
908 	int rtpri;
909 	static char nicebuf[4 + 1];
910 
911 	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
912 	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
913 	switch (PRI_BASE(pp->ki_pri.pri_class)) {
914 	case PRI_ITHD:
915 		return ("-");
916 	case PRI_REALTIME:
917 		/*
918 		 * XXX: the kernel doesn't tell us the original rtprio and
919 		 * doesn't really know what it was, so to recover it we
920 		 * must be more chummy with the implementation than the
921 		 * implementation is with itself.  pri_user gives a
922 		 * constant "base" priority, but is only initialized
923 		 * properly for user threads.  pri_native gives what the
924 		 * kernel calls the "base" priority, but it isn't constant
925 		 * since it is changed by priority propagation.  pri_native
926 		 * also isn't properly initialized for all threads, but it
927 		 * is properly initialized for kernel realtime and idletime
928 		 * threads.  Thus we use pri_user for the base priority of
929 		 * user threads (it is always correct) and pri_native for
930 		 * the base priority of kernel realtime and idletime threads
931 		 * (there is nothing better, and it is usually correct).
932 		 *
933 		 * The field width and thus the buffer are too small for
934 		 * values like "kr31F", but such values shouldn't occur,
935 		 * and if they do then the tailing "F" is not displayed.
936 		 */
937 		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
938 		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
939 		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
940 		    kthread, rtpri, fifo);
941 		break;
942 	case PRI_TIMESHARE:
943 		if (pp->ki_flag & P_KTHREAD)
944 			return ("-");
945 		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
946 		break;
947 	case PRI_IDLE:
948 		/* XXX: as above. */
949 		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
950 		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
951 		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
952 		    kthread, rtpri, fifo);
953 		break;
954 	default:
955 		return ("?");
956 	}
957 	return (nicebuf);
958 }
959 
960 /* comparison routines for qsort */
961 
962 static int
963 compare_pid(const void *p1, const void *p2)
964 {
965 	const struct kinfo_proc * const *pp1 = p1;
966 	const struct kinfo_proc * const *pp2 = p2;
967 
968 	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
969 		abort();
970 
971 	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
972 }
973 
974 /*
975  *  proc_compare - comparison function for "qsort"
976  *	Compares the resource consumption of two processes using five
977  *	distinct keys.  The keys (in descending order of importance) are:
978  *	percent cpu, cpu ticks, state, resident set size, total virtual
979  *	memory usage.  The process states are ordered as follows (from least
980  *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
981  *	array declaration below maps a process state index into a number
982  *	that reflects this ordering.
983  */
984 
985 static int sorted_state[] = {
986 	0,	/* not used		*/
987 	3,	/* sleep		*/
988 	1,	/* ABANDONED (WAIT)	*/
989 	6,	/* run			*/
990 	5,	/* start		*/
991 	2,	/* zombie		*/
992 	4	/* stop			*/
993 };
994 
995 
996 #define ORDERKEY_PCTCPU(a, b) do { \
997 	long diff; \
998 	if (ps.wcpu) \
999 		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1000 		    (b))) - \
1001 		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1002 		    (a))); \
1003 	else \
1004 		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1005 	if (diff != 0) \
1006 		return (diff > 0 ? 1 : -1); \
1007 } while (0)
1008 
1009 #define ORDERKEY_CPTICKS(a, b) do { \
1010 	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1011 	if (diff != 0) \
1012 		return (diff > 0 ? 1 : -1); \
1013 } while (0)
1014 
1015 #define ORDERKEY_STATE(a, b) do { \
1016 	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1017 	if (diff != 0) \
1018 		return (diff > 0 ? 1 : -1); \
1019 } while (0)
1020 
1021 #define ORDERKEY_PRIO(a, b) do { \
1022 	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1023 	if (diff != 0) \
1024 		return (diff > 0 ? 1 : -1); \
1025 } while (0)
1026 
1027 #define	ORDERKEY_THREADS(a, b) do { \
1028 	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1029 	if (diff != 0) \
1030 		return (diff > 0 ? 1 : -1); \
1031 } while (0)
1032 
1033 #define ORDERKEY_RSSIZE(a, b) do { \
1034 	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1035 	if (diff != 0) \
1036 		return (diff > 0 ? 1 : -1); \
1037 } while (0)
1038 
1039 #define ORDERKEY_MEM(a, b) do { \
1040 	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1041 	if (diff != 0) \
1042 		return (diff > 0 ? 1 : -1); \
1043 } while (0)
1044 
1045 #define ORDERKEY_JID(a, b) do { \
1046 	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1047 	if (diff != 0) \
1048 		return (diff > 0 ? 1 : -1); \
1049 } while (0)
1050 
1051 /* compare_cpu - the comparison function for sorting by cpu percentage */
1052 
1053 int
1054 #ifdef ORDER
1055 compare_cpu(void *arg1, void *arg2)
1056 #else
1057 proc_compare(void *arg1, void *arg2)
1058 #endif
1059 {
1060 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1061 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1062 
1063 	ORDERKEY_PCTCPU(p1, p2);
1064 	ORDERKEY_CPTICKS(p1, p2);
1065 	ORDERKEY_STATE(p1, p2);
1066 	ORDERKEY_PRIO(p1, p2);
1067 	ORDERKEY_RSSIZE(p1, p2);
1068 	ORDERKEY_MEM(p1, p2);
1069 
1070 	return (0);
1071 }
1072 
1073 #ifdef ORDER
1074 /* "cpu" compare routines */
1075 int compare_size(), compare_res(), compare_time(), compare_prio(),
1076     compare_threads();
1077 
1078 /*
1079  * "io" compare routines.  Context switches aren't i/o, but are displayed
1080  * on the "io" display.
1081  */
1082 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1083     compare_vcsw(), compare_ivcsw();
1084 
1085 int (*compares[])() = {
1086 	compare_cpu,
1087 	compare_size,
1088 	compare_res,
1089 	compare_time,
1090 	compare_prio,
1091 	compare_threads,
1092 	compare_iototal,
1093 	compare_ioread,
1094 	compare_iowrite,
1095 	compare_iofault,
1096 	compare_vcsw,
1097 	compare_ivcsw,
1098 	compare_jid,
1099 	NULL
1100 };
1101 
1102 /* compare_size - the comparison function for sorting by total memory usage */
1103 
1104 int
1105 compare_size(void *arg1, void *arg2)
1106 {
1107 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1108 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1109 
1110 	ORDERKEY_MEM(p1, p2);
1111 	ORDERKEY_RSSIZE(p1, p2);
1112 	ORDERKEY_PCTCPU(p1, p2);
1113 	ORDERKEY_CPTICKS(p1, p2);
1114 	ORDERKEY_STATE(p1, p2);
1115 	ORDERKEY_PRIO(p1, p2);
1116 
1117 	return (0);
1118 }
1119 
1120 /* compare_res - the comparison function for sorting by resident set size */
1121 
1122 int
1123 compare_res(void *arg1, void *arg2)
1124 {
1125 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1126 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1127 
1128 	ORDERKEY_RSSIZE(p1, p2);
1129 	ORDERKEY_MEM(p1, p2);
1130 	ORDERKEY_PCTCPU(p1, p2);
1131 	ORDERKEY_CPTICKS(p1, p2);
1132 	ORDERKEY_STATE(p1, p2);
1133 	ORDERKEY_PRIO(p1, p2);
1134 
1135 	return (0);
1136 }
1137 
1138 /* compare_time - the comparison function for sorting by total cpu time */
1139 
1140 int
1141 compare_time(void *arg1, void *arg2)
1142 {
1143 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1144 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1145 
1146 	ORDERKEY_CPTICKS(p1, p2);
1147 	ORDERKEY_PCTCPU(p1, p2);
1148 	ORDERKEY_STATE(p1, p2);
1149 	ORDERKEY_PRIO(p1, p2);
1150 	ORDERKEY_RSSIZE(p1, p2);
1151 	ORDERKEY_MEM(p1, p2);
1152 
1153 	return (0);
1154 }
1155 
1156 /* compare_prio - the comparison function for sorting by priority */
1157 
1158 int
1159 compare_prio(void *arg1, void *arg2)
1160 {
1161 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1162 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1163 
1164 	ORDERKEY_PRIO(p1, p2);
1165 	ORDERKEY_CPTICKS(p1, p2);
1166 	ORDERKEY_PCTCPU(p1, p2);
1167 	ORDERKEY_STATE(p1, p2);
1168 	ORDERKEY_RSSIZE(p1, p2);
1169 	ORDERKEY_MEM(p1, p2);
1170 
1171 	return (0);
1172 }
1173 
1174 /* compare_threads - the comparison function for sorting by threads */
1175 int
1176 compare_threads(void *arg1, void *arg2)
1177 {
1178 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1179 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1180 
1181 	ORDERKEY_THREADS(p1, p2);
1182 	ORDERKEY_PCTCPU(p1, p2);
1183 	ORDERKEY_CPTICKS(p1, p2);
1184 	ORDERKEY_STATE(p1, p2);
1185 	ORDERKEY_PRIO(p1, p2);
1186 	ORDERKEY_RSSIZE(p1, p2);
1187 	ORDERKEY_MEM(p1, p2);
1188 
1189 	return (0);
1190 }
1191 
1192 /* compare_jid - the comparison function for sorting by jid */
1193 static int
1194 compare_jid(const void *arg1, const void *arg2)
1195 {
1196 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1197 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1198 
1199 	ORDERKEY_JID(p1, p2);
1200 	ORDERKEY_PCTCPU(p1, p2);
1201 	ORDERKEY_CPTICKS(p1, p2);
1202 	ORDERKEY_STATE(p1, p2);
1203 	ORDERKEY_PRIO(p1, p2);
1204 	ORDERKEY_RSSIZE(p1, p2);
1205 	ORDERKEY_MEM(p1, p2);
1206 
1207 	return (0);
1208 }
1209 #endif /* ORDER */
1210 
1211 /* assorted comparison functions for sorting by i/o */
1212 
1213 int
1214 #ifdef ORDER
1215 compare_iototal(void *arg1, void *arg2)
1216 #else
1217 io_compare(void *arg1, void *arg2)
1218 #endif
1219 {
1220 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1221 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1222 
1223 	return (get_io_total(p2) - get_io_total(p1));
1224 }
1225 
1226 #ifdef ORDER
1227 int
1228 compare_ioread(void *arg1, void *arg2)
1229 {
1230 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1231 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1232 	long dummy, inp1, inp2;
1233 
1234 	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1235 	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1236 
1237 	return (inp2 - inp1);
1238 }
1239 
1240 int
1241 compare_iowrite(void *arg1, void *arg2)
1242 {
1243 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1244 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1245 	long dummy, oup1, oup2;
1246 
1247 	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1248 	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1249 
1250 	return (oup2 - oup1);
1251 }
1252 
1253 int
1254 compare_iofault(void *arg1, void *arg2)
1255 {
1256 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1257 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1258 	long dummy, flp1, flp2;
1259 
1260 	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1261 	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1262 
1263 	return (flp2 - flp1);
1264 }
1265 
1266 int
1267 compare_vcsw(void *arg1, void *arg2)
1268 {
1269 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1270 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1271 	long dummy, flp1, flp2;
1272 
1273 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1274 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1275 
1276 	return (flp2 - flp1);
1277 }
1278 
1279 int
1280 compare_ivcsw(void *arg1, void *arg2)
1281 {
1282 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1283 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1284 	long dummy, flp1, flp2;
1285 
1286 	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1287 	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1288 
1289 	return (flp2 - flp1);
1290 }
1291 #endif /* ORDER */
1292 
1293 /*
1294  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1295  *		the process does not exist.
1296  *		It is EXTREMLY IMPORTANT that this function work correctly.
1297  *		If top runs setuid root (as in SVR4), then this function
1298  *		is the only thing that stands in the way of a serious
1299  *		security problem.  It validates requests for the "kill"
1300  *		and "renice" commands.
1301  */
1302 
1303 int
1304 proc_owner(int pid)
1305 {
1306 	int cnt;
1307 	struct kinfo_proc **prefp;
1308 	struct kinfo_proc *pp;
1309 
1310 	prefp = pref;
1311 	cnt = pref_len;
1312 	while (--cnt >= 0) {
1313 		pp = *prefp++;
1314 		if (pp->ki_pid == (pid_t)pid)
1315 			return ((int)pp->ki_ruid);
1316 	}
1317 	return (-1);
1318 }
1319 
1320 static int
1321 swapmode(int *retavail, int *retfree)
1322 {
1323 	int n;
1324 	int pagesize = getpagesize();
1325 	struct kvm_swap swapary[1];
1326 
1327 	*retavail = 0;
1328 	*retfree = 0;
1329 
1330 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1331 
1332 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1333 	if (n < 0 || swapary[0].ksw_total == 0)
1334 		return (0);
1335 
1336 	*retavail = CONVERT(swapary[0].ksw_total);
1337 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1338 
1339 	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1340 	return (n);
1341 }
1342