1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <kvm.h> 39 #include <math.h> 40 #include <nlist.h> 41 #include <paths.h> 42 #include <pwd.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <strings.h> 47 #include <unistd.h> 48 #include <vis.h> 49 50 #include "top.h" 51 #include "machine.h" 52 #include "screen.h" 53 #include "utils.h" 54 #include "layout.h" 55 56 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 57 #define SMPUNAMELEN 13 58 #define UPUNAMELEN 15 59 60 extern struct process_select ps; 61 extern char* printable(char *); 62 static int smpmode; 63 enum displaymodes displaymode; 64 #ifdef TOP_USERNAME_LEN 65 static int namelength = TOP_USERNAME_LEN; 66 #else 67 static int namelength = 8; 68 #endif 69 static int cmdlengthdelta; 70 71 /* Prototypes for top internals */ 72 void quit(int); 73 74 /* get_process_info passes back a handle. This is what it looks like: */ 75 76 struct handle { 77 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 78 int remaining; /* number of pointers remaining */ 79 }; 80 81 /* declarations for load_avg */ 82 #include "loadavg.h" 83 84 /* define what weighted cpu is. */ 85 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 86 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 87 88 /* what we consider to be process size: */ 89 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 90 91 #define RU(pp) (&(pp)->ki_rusage) 92 #define RUTOT(pp) \ 93 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 94 95 96 /* definitions for indices in the nlist array */ 97 98 /* 99 * These definitions control the format of the per-process area 100 */ 101 102 static char io_header[] = 103 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 104 105 #define io_Proc_format \ 106 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 107 108 static char smp_header_thr[] = 109 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 110 static char smp_header[] = 111 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 112 113 #define smp_Proc_format \ 114 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s" 115 116 static char up_header_thr[] = 117 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; 118 static char up_header[] = 119 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; 120 121 #define up_Proc_format \ 122 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" 123 124 125 /* process state names for the "STATE" column of the display */ 126 /* the extra nulls in the string "run" are for adding a slash and 127 the processor number when needed */ 128 129 char *state_abbrev[] = { 130 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 131 }; 132 133 134 static kvm_t *kd; 135 136 /* values that we stash away in _init and use in later routines */ 137 138 static double logcpu; 139 140 /* these are retrieved from the kernel in _init */ 141 142 static load_avg ccpu; 143 144 /* these are used in the get_ functions */ 145 146 static int lastpid; 147 148 /* these are for calculating cpu state percentages */ 149 150 static long cp_time[CPUSTATES]; 151 static long cp_old[CPUSTATES]; 152 static long cp_diff[CPUSTATES]; 153 154 /* these are for detailing the process states */ 155 156 int process_states[8]; 157 char *procstatenames[] = { 158 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 159 " zombie, ", " waiting, ", " lock, ", 160 NULL 161 }; 162 163 /* these are for detailing the cpu states */ 164 165 int cpu_states[CPUSTATES]; 166 char *cpustatenames[] = { 167 "user", "nice", "system", "interrupt", "idle", NULL 168 }; 169 170 /* these are for detailing the memory statistics */ 171 172 int memory_stats[7]; 173 char *memorynames[] = { 174 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 175 "K Free", NULL 176 }; 177 178 int swap_stats[7]; 179 char *swapnames[] = { 180 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 181 NULL 182 }; 183 184 185 /* these are for keeping track of the proc array */ 186 187 static int nproc; 188 static int onproc = -1; 189 static int pref_len; 190 static struct kinfo_proc *pbase; 191 static struct kinfo_proc **pref; 192 static struct kinfo_proc *previous_procs; 193 static struct kinfo_proc **previous_pref; 194 static int previous_proc_count = 0; 195 static int previous_proc_count_max = 0; 196 197 /* total number of io operations */ 198 static long total_inblock; 199 static long total_oublock; 200 static long total_majflt; 201 202 /* these are for getting the memory statistics */ 203 204 static int pageshift; /* log base 2 of the pagesize */ 205 206 /* define pagetok in terms of pageshift */ 207 208 #define pagetok(size) ((size) << pageshift) 209 210 /* useful externals */ 211 long percentages(); 212 213 #ifdef ORDER 214 /* 215 * Sorting orders. The first element is the default. 216 */ 217 char *ordernames[] = { 218 "cpu", "size", "res", "time", "pri", "threads", 219 "total", "read", "write", "fault", "vcsw", "ivcsw", 220 "jid", NULL 221 }; 222 #endif 223 224 /* Per-cpu time states */ 225 static int maxcpu; 226 static int maxid; 227 static int ncpus; 228 static u_long cpumask; 229 static long *times; 230 static long *pcpu_cp_time; 231 static long *pcpu_cp_old; 232 static long *pcpu_cp_diff; 233 static int *pcpu_cpu_states; 234 235 static int compare_jid(const void *a, const void *b); 236 static int compare_pid(const void *a, const void *b); 237 static const char *format_nice(const struct kinfo_proc *pp); 238 static void getsysctl(const char *name, void *ptr, size_t len); 239 static int swapmode(int *retavail, int *retfree); 240 241 int 242 machine_init(struct statics *statics, char do_unames) 243 { 244 int pagesize; 245 size_t modelen; 246 struct passwd *pw; 247 248 modelen = sizeof(smpmode); 249 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, 250 NULL, 0) != 0 && 251 sysctlbyname("kern.smp.active", &smpmode, &modelen, 252 NULL, 0) != 0) || 253 modelen != sizeof(smpmode)) 254 smpmode = 0; 255 256 if (do_unames) { 257 while ((pw = getpwent()) != NULL) { 258 if (strlen(pw->pw_name) > namelength) 259 namelength = strlen(pw->pw_name); 260 } 261 } 262 if (smpmode && namelength > SMPUNAMELEN) 263 namelength = SMPUNAMELEN; 264 else if (namelength > UPUNAMELEN) 265 namelength = UPUNAMELEN; 266 267 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 268 if (kd == NULL) 269 return (-1); 270 271 GETSYSCTL("kern.ccpu", ccpu); 272 273 /* this is used in calculating WCPU -- calculate it ahead of time */ 274 logcpu = log(loaddouble(ccpu)); 275 276 pbase = NULL; 277 pref = NULL; 278 nproc = 0; 279 onproc = -1; 280 281 /* get the page size and calculate pageshift from it */ 282 pagesize = getpagesize(); 283 pageshift = 0; 284 while (pagesize > 1) { 285 pageshift++; 286 pagesize >>= 1; 287 } 288 289 /* we only need the amount of log(2)1024 for our conversion */ 290 pageshift -= LOG1024; 291 292 /* fill in the statics information */ 293 statics->procstate_names = procstatenames; 294 statics->cpustate_names = cpustatenames; 295 statics->memory_names = memorynames; 296 statics->swap_names = swapnames; 297 #ifdef ORDER 298 statics->order_names = ordernames; 299 #endif 300 301 /* Adjust display based on ncpus */ 302 if (pcpu_stats) { 303 int i, j, empty; 304 size_t size; 305 306 cpumask = 0; 307 ncpus = 0; 308 GETSYSCTL("kern.smp.maxcpus", maxcpu); 309 size = sizeof(long) * maxcpu * CPUSTATES; 310 times = malloc(size); 311 if (times == NULL) 312 err(1, "malloc %zd bytes", size); 313 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 314 err(1, "sysctlbyname kern.cp_times"); 315 maxid = (size / CPUSTATES / sizeof(long)) - 1; 316 for (i = 0; i <= maxid; i++) { 317 empty = 1; 318 for (j = 0; empty && j < CPUSTATES; j++) { 319 if (times[i * CPUSTATES + j] != 0) 320 empty = 0; 321 } 322 if (!empty) { 323 cpumask |= (1ul << i); 324 ncpus++; 325 } 326 } 327 328 if (ncpus > 1) { 329 y_mem += ncpus - 1; /* 3 */ 330 y_swap += ncpus - 1; /* 4 */ 331 y_idlecursor += ncpus - 1; /* 5 */ 332 y_message += ncpus - 1; /* 5 */ 333 y_header += ncpus - 1; /* 6 */ 334 y_procs += ncpus - 1; /* 7 */ 335 Header_lines += ncpus - 1; /* 7 */ 336 } 337 size = sizeof(long) * ncpus * CPUSTATES; 338 pcpu_cp_time = calloc(1, size); 339 pcpu_cp_old = calloc(1, size); 340 pcpu_cp_diff = calloc(1, size); 341 pcpu_cpu_states = calloc(1, size); 342 statics->ncpus = ncpus; 343 } else { 344 statics->ncpus = 1; 345 } 346 347 /* all done! */ 348 return (0); 349 } 350 351 char * 352 format_header(char *uname_field) 353 { 354 static char Header[128]; 355 const char *prehead; 356 357 switch (displaymode) { 358 case DISP_CPU: 359 /* 360 * The logic of picking the right header format seems reverse 361 * here because we only want to display a THR column when 362 * "thread mode" is off (and threads are not listed as 363 * separate lines). 364 */ 365 prehead = smpmode ? 366 (ps.thread ? smp_header : smp_header_thr) : 367 (ps.thread ? up_header : up_header_thr); 368 snprintf(Header, sizeof(Header), prehead, 369 ps.jail ? " JID" : "", 370 namelength, namelength, uname_field, 371 ps.wcpu ? "WCPU" : "CPU"); 372 break; 373 case DISP_IO: 374 prehead = io_header; 375 snprintf(Header, sizeof(Header), prehead, 376 ps.jail ? " JID" : "", 377 namelength, namelength, uname_field); 378 break; 379 } 380 cmdlengthdelta = strlen(Header) - 7; 381 return (Header); 382 } 383 384 static int swappgsin = -1; 385 static int swappgsout = -1; 386 extern struct timeval timeout; 387 388 389 void 390 get_system_info(struct system_info *si) 391 { 392 long total; 393 struct loadavg sysload; 394 int mib[2]; 395 struct timeval boottime; 396 size_t bt_size; 397 int i, j; 398 size_t size; 399 400 /* get the cp_time array */ 401 if (pcpu_stats) { 402 size = (maxid + 1) * CPUSTATES * sizeof(long); 403 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 404 err(1, "sysctlbyname kern.cp_times"); 405 } else { 406 GETSYSCTL("kern.cp_time", cp_time); 407 } 408 GETSYSCTL("vm.loadavg", sysload); 409 GETSYSCTL("kern.lastpid", lastpid); 410 411 /* convert load averages to doubles */ 412 for (i = 0; i < 3; i++) 413 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 414 415 if (pcpu_stats) { 416 for (i = j = 0; i <= maxid; i++, j++) { 417 if (cpumask && (1ul << i) == 0) 418 continue; 419 /* convert cp_time counts to percentages */ 420 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 421 &pcpu_cp_time[j * CPUSTATES], 422 &pcpu_cp_old[j * CPUSTATES], 423 &pcpu_cp_diff[j * CPUSTATES]); 424 } 425 } else { 426 /* convert cp_time counts to percentages */ 427 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 428 } 429 430 /* sum memory & swap statistics */ 431 { 432 static unsigned int swap_delay = 0; 433 static int swapavail = 0; 434 static int swapfree = 0; 435 static int bufspace = 0; 436 static int nspgsin, nspgsout; 437 438 GETSYSCTL("vfs.bufspace", bufspace); 439 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 440 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 441 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 442 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 443 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 444 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 445 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 446 /* convert memory stats to Kbytes */ 447 memory_stats[0] = pagetok(memory_stats[0]); 448 memory_stats[1] = pagetok(memory_stats[1]); 449 memory_stats[2] = pagetok(memory_stats[2]); 450 memory_stats[3] = pagetok(memory_stats[3]); 451 memory_stats[4] = bufspace / 1024; 452 memory_stats[5] = pagetok(memory_stats[5]); 453 memory_stats[6] = -1; 454 455 /* first interval */ 456 if (swappgsin < 0) { 457 swap_stats[4] = 0; 458 swap_stats[5] = 0; 459 } 460 461 /* compute differences between old and new swap statistic */ 462 else { 463 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 464 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 465 } 466 467 swappgsin = nspgsin; 468 swappgsout = nspgsout; 469 470 /* call CPU heavy swapmode() only for changes */ 471 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 472 swap_stats[3] = swapmode(&swapavail, &swapfree); 473 swap_stats[0] = swapavail; 474 swap_stats[1] = swapavail - swapfree; 475 swap_stats[2] = swapfree; 476 } 477 swap_delay = 1; 478 swap_stats[6] = -1; 479 } 480 481 /* set arrays and strings */ 482 if (pcpu_stats) { 483 si->cpustates = pcpu_cpu_states; 484 si->cpumask = cpumask; 485 si->ncpus = ncpus; 486 } else { 487 si->cpustates = cpu_states; 488 si->cpumask = 1; 489 si->ncpus = 1; 490 } 491 si->memory = memory_stats; 492 si->swap = swap_stats; 493 494 495 if (lastpid > 0) { 496 si->last_pid = lastpid; 497 } else { 498 si->last_pid = -1; 499 } 500 501 /* 502 * Print how long system has been up. 503 * (Found by looking getting "boottime" from the kernel) 504 */ 505 mib[0] = CTL_KERN; 506 mib[1] = KERN_BOOTTIME; 507 bt_size = sizeof(boottime); 508 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 509 boottime.tv_sec != 0) { 510 si->boottime = boottime; 511 } else { 512 si->boottime.tv_sec = -1; 513 } 514 } 515 516 #define NOPROC ((void *)-1) 517 518 /* 519 * We need to compare data from the old process entry with the new 520 * process entry. 521 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 522 * structure to cache the mapping. We also use a negative cache pointer 523 * of NOPROC to avoid duplicate lookups. 524 * XXX: this could be done when the actual processes are fetched, we do 525 * it here out of laziness. 526 */ 527 const struct kinfo_proc * 528 get_old_proc(struct kinfo_proc *pp) 529 { 530 struct kinfo_proc **oldpp, *oldp; 531 532 /* 533 * If this is the first fetch of the kinfo_procs then we don't have 534 * any previous entries. 535 */ 536 if (previous_proc_count == 0) 537 return (NULL); 538 /* negative cache? */ 539 if (pp->ki_udata == NOPROC) 540 return (NULL); 541 /* cached? */ 542 if (pp->ki_udata != NULL) 543 return (pp->ki_udata); 544 /* 545 * Not cached, 546 * 1) look up based on pid. 547 * 2) compare process start. 548 * If we fail here, then setup a negative cache entry, otherwise 549 * cache it. 550 */ 551 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 552 sizeof(*previous_pref), compare_pid); 553 if (oldpp == NULL) { 554 pp->ki_udata = NOPROC; 555 return (NULL); 556 } 557 oldp = *oldpp; 558 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 559 pp->ki_udata = NOPROC; 560 return (NULL); 561 } 562 pp->ki_udata = oldp; 563 return (oldp); 564 } 565 566 /* 567 * Return the total amount of IO done in blocks in/out and faults. 568 * store the values individually in the pointers passed in. 569 */ 570 long 571 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 572 long *vcsw, long *ivcsw) 573 { 574 const struct kinfo_proc *oldp; 575 static struct kinfo_proc dummy; 576 long ret; 577 578 oldp = get_old_proc(pp); 579 if (oldp == NULL) { 580 bzero(&dummy, sizeof(dummy)); 581 oldp = &dummy; 582 } 583 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 584 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 585 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 586 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 587 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 588 ret = 589 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 590 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 591 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 592 return (ret); 593 } 594 595 /* 596 * Return the total number of block in/out and faults by a process. 597 */ 598 long 599 get_io_total(struct kinfo_proc *pp) 600 { 601 long dummy; 602 603 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 604 } 605 606 static struct handle handle; 607 608 caddr_t 609 get_process_info(struct system_info *si, struct process_select *sel, 610 int (*compare)(const void *, const void *)) 611 { 612 int i; 613 int total_procs; 614 long p_io; 615 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 616 int active_procs; 617 struct kinfo_proc **prefp; 618 struct kinfo_proc *pp; 619 struct kinfo_proc *prev_pp = NULL; 620 621 /* these are copied out of sel for speed */ 622 int show_idle; 623 int show_self; 624 int show_system; 625 int show_uid; 626 int show_command; 627 628 /* 629 * Save the previous process info. 630 */ 631 if (previous_proc_count_max < nproc) { 632 free(previous_procs); 633 previous_procs = malloc(nproc * sizeof(*previous_procs)); 634 free(previous_pref); 635 previous_pref = malloc(nproc * sizeof(*previous_pref)); 636 if (previous_procs == NULL || previous_pref == NULL) { 637 (void) fprintf(stderr, "top: Out of memory.\n"); 638 quit(23); 639 } 640 previous_proc_count_max = nproc; 641 } 642 if (nproc) { 643 for (i = 0; i < nproc; i++) 644 previous_pref[i] = &previous_procs[i]; 645 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 646 qsort(previous_pref, nproc, sizeof(*previous_pref), 647 compare_pid); 648 } 649 previous_proc_count = nproc; 650 651 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 652 if (nproc > onproc) 653 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 654 if (pref == NULL || pbase == NULL) { 655 (void) fprintf(stderr, "top: Out of memory.\n"); 656 quit(23); 657 } 658 /* get a pointer to the states summary array */ 659 si->procstates = process_states; 660 661 /* set up flags which define what we are going to select */ 662 show_idle = sel->idle; 663 show_self = sel->self == -1; 664 show_system = sel->system; 665 show_uid = sel->uid != -1; 666 show_command = sel->command != NULL; 667 668 /* count up process states and get pointers to interesting procs */ 669 total_procs = 0; 670 active_procs = 0; 671 total_inblock = 0; 672 total_oublock = 0; 673 total_majflt = 0; 674 memset((char *)process_states, 0, sizeof(process_states)); 675 prefp = pref; 676 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 677 678 if (pp->ki_stat == 0) 679 /* not in use */ 680 continue; 681 682 if (!show_self && pp->ki_pid == sel->self) 683 /* skip self */ 684 continue; 685 686 if (!show_system && (pp->ki_flag & P_SYSTEM)) 687 /* skip system process */ 688 continue; 689 690 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 691 &p_vcsw, &p_ivcsw); 692 total_inblock += p_inblock; 693 total_oublock += p_oublock; 694 total_majflt += p_majflt; 695 total_procs++; 696 process_states[pp->ki_stat]++; 697 698 if (pp->ki_stat == SZOMB) 699 /* skip zombies */ 700 continue; 701 702 if (displaymode == DISP_CPU && !show_idle && 703 (pp->ki_pctcpu == 0 || 704 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 705 /* skip idle or non-running processes */ 706 continue; 707 708 if (displaymode == DISP_IO && !show_idle && p_io == 0) 709 /* skip processes that aren't doing I/O */ 710 continue; 711 712 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 713 /* skip proc. that don't belong to the selected UID */ 714 continue; 715 716 /* 717 * When not showing threads, take the first thread 718 * for output and add the fields that we can from 719 * the rest of the process's threads rather than 720 * using the system's mostly-broken KERN_PROC_PROC. 721 */ 722 if (sel->thread || prev_pp == NULL || 723 prev_pp->ki_pid != pp->ki_pid) { 724 *prefp++ = pp; 725 active_procs++; 726 prev_pp = pp; 727 } else { 728 prev_pp->ki_pctcpu += pp->ki_pctcpu; 729 } 730 } 731 732 /* if requested, sort the "interesting" processes */ 733 if (compare != NULL) 734 qsort(pref, active_procs, sizeof(*pref), compare); 735 736 /* remember active and total counts */ 737 si->p_total = total_procs; 738 si->p_active = pref_len = active_procs; 739 740 /* pass back a handle */ 741 handle.next_proc = pref; 742 handle.remaining = active_procs; 743 return ((caddr_t)&handle); 744 } 745 746 static char fmt[128]; /* static area where result is built */ 747 748 char * 749 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 750 { 751 struct kinfo_proc *pp; 752 const struct kinfo_proc *oldp; 753 long cputime; 754 double pct; 755 struct handle *hp; 756 char status[16]; 757 int state; 758 struct rusage ru, *rup; 759 long p_tot, s_tot; 760 char *proc_fmt, thr_buf[6], jid_buf[6]; 761 char *cmdbuf = NULL; 762 char **args; 763 764 /* find and remember the next proc structure */ 765 hp = (struct handle *)handle; 766 pp = *(hp->next_proc++); 767 hp->remaining--; 768 769 /* get the process's command name */ 770 if ((pp->ki_flag & P_INMEM) == 0) { 771 /* 772 * Print swapped processes as <pname> 773 */ 774 size_t len; 775 776 len = strlen(pp->ki_comm); 777 if (len > sizeof(pp->ki_comm) - 3) 778 len = sizeof(pp->ki_comm) - 3; 779 memmove(pp->ki_comm + 1, pp->ki_comm, len); 780 pp->ki_comm[0] = '<'; 781 pp->ki_comm[len + 1] = '>'; 782 pp->ki_comm[len + 2] = '\0'; 783 } 784 785 /* 786 * Convert the process's runtime from microseconds to seconds. This 787 * time includes the interrupt time although that is not wanted here. 788 * ps(1) is similarly sloppy. 789 */ 790 cputime = (pp->ki_runtime + 500000) / 1000000; 791 792 /* calculate the base for cpu percentages */ 793 pct = pctdouble(pp->ki_pctcpu); 794 795 /* generate "STATE" field */ 796 switch (state = pp->ki_stat) { 797 case SRUN: 798 if (smpmode && pp->ki_oncpu != 0xff) 799 sprintf(status, "CPU%d", pp->ki_oncpu); 800 else 801 strcpy(status, "RUN"); 802 break; 803 case SLOCK: 804 if (pp->ki_kiflag & KI_LOCKBLOCK) { 805 sprintf(status, "*%.6s", pp->ki_lockname); 806 break; 807 } 808 /* fall through */ 809 case SSLEEP: 810 if (pp->ki_wmesg != NULL) { 811 sprintf(status, "%.6s", pp->ki_wmesg); 812 break; 813 } 814 /* FALLTHROUGH */ 815 default: 816 817 if (state >= 0 && 818 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 819 sprintf(status, "%.6s", state_abbrev[state]); 820 else 821 sprintf(status, "?%5d", state); 822 break; 823 } 824 825 cmdbuf = (char *)malloc(cmdlengthdelta + 1); 826 if (cmdbuf == NULL) { 827 warn("malloc(%d)", cmdlengthdelta + 1); 828 return NULL; 829 } 830 831 if (!(flags & FMT_SHOWARGS)) { 832 if (ps.thread && pp->ki_flag & P_HADTHREADS && 833 pp->ki_ocomm[0]) { 834 snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm); 835 } else { 836 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); 837 } 838 } else { 839 if (pp->ki_flag & P_SYSTEM || 840 pp->ki_args == NULL || 841 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || 842 !(*args)) { 843 if (ps.thread && pp->ki_flag & P_HADTHREADS && 844 pp->ki_ocomm[0]) { 845 snprintf(cmdbuf, cmdlengthdelta, 846 "{%s}", pp->ki_ocomm); 847 } else { 848 snprintf(cmdbuf, cmdlengthdelta, 849 "[%s]", pp->ki_comm); 850 } 851 } else { 852 char *src, *dst, *argbuf; 853 char *cmd; 854 size_t argbuflen; 855 size_t len; 856 857 argbuflen = cmdlengthdelta * 4; 858 argbuf = (char *)malloc(argbuflen + 1); 859 if (argbuf == NULL) { 860 warn("malloc(%d)", argbuflen + 1); 861 free(cmdbuf); 862 return NULL; 863 } 864 865 dst = argbuf; 866 867 /* Extract cmd name from argv */ 868 cmd = strrchr(*args, '/'); 869 if (cmd == NULL) 870 cmd = *args; 871 else 872 cmd++; 873 874 for (; (src = *args++) != NULL; ) { 875 if (*src == '\0') 876 continue; 877 len = (argbuflen - (dst - argbuf) - 1) / 4; 878 strvisx(dst, src, 879 strlen(src) < len ? strlen(src) : len, 880 VIS_NL | VIS_CSTYLE); 881 while (*dst != '\0') 882 dst++; 883 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 884 *dst++ = ' '; /* add delimiting space */ 885 } 886 if (dst != argbuf && dst[-1] == ' ') 887 dst--; 888 *dst = '\0'; 889 890 if (strcmp(cmd, pp->ki_comm) != 0 ) 891 snprintf(cmdbuf, cmdlengthdelta, 892 "%s (%s)",argbuf, pp->ki_comm); 893 else 894 strlcpy(cmdbuf, argbuf, cmdlengthdelta); 895 896 free(argbuf); 897 } 898 } 899 900 if (ps.jail == 0) 901 jid_buf[0] = '\0'; 902 else 903 snprintf(jid_buf, sizeof(jid_buf), " %*d", 904 sizeof(jid_buf) - 3, pp->ki_jid); 905 906 if (displaymode == DISP_IO) { 907 oldp = get_old_proc(pp); 908 if (oldp != NULL) { 909 ru.ru_inblock = RU(pp)->ru_inblock - 910 RU(oldp)->ru_inblock; 911 ru.ru_oublock = RU(pp)->ru_oublock - 912 RU(oldp)->ru_oublock; 913 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 914 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 915 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 916 rup = &ru; 917 } else { 918 rup = RU(pp); 919 } 920 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 921 s_tot = total_inblock + total_oublock + total_majflt; 922 923 sprintf(fmt, io_Proc_format, 924 pp->ki_pid, 925 jid_buf, 926 namelength, namelength, (*get_userid)(pp->ki_ruid), 927 rup->ru_nvcsw, 928 rup->ru_nivcsw, 929 rup->ru_inblock, 930 rup->ru_oublock, 931 rup->ru_majflt, 932 p_tot, 933 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 934 screen_width > cmdlengthdelta ? 935 screen_width - cmdlengthdelta : 0, 936 printable(cmdbuf)); 937 938 free(cmdbuf); 939 940 return (fmt); 941 } 942 943 /* format this entry */ 944 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 945 if (ps.thread != 0) 946 thr_buf[0] = '\0'; 947 else 948 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 949 sizeof(thr_buf) - 2, pp->ki_numthreads); 950 951 sprintf(fmt, proc_fmt, 952 pp->ki_pid, 953 jid_buf, 954 namelength, namelength, (*get_userid)(pp->ki_ruid), 955 thr_buf, 956 pp->ki_pri.pri_level - PZERO, 957 format_nice(pp), 958 format_k2(PROCSIZE(pp)), 959 format_k2(pagetok(pp->ki_rssize)), 960 status, 961 smpmode ? pp->ki_lastcpu : 0, 962 format_time(cputime), 963 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 964 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 965 printable(cmdbuf)); 966 967 free(cmdbuf); 968 969 /* return the result */ 970 return (fmt); 971 } 972 973 static void 974 getsysctl(const char *name, void *ptr, size_t len) 975 { 976 size_t nlen = len; 977 978 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 979 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 980 strerror(errno)); 981 quit(23); 982 } 983 if (nlen != len) { 984 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 985 name, (unsigned long)len, (unsigned long)nlen); 986 quit(23); 987 } 988 } 989 990 static const char * 991 format_nice(const struct kinfo_proc *pp) 992 { 993 const char *fifo, *kthread; 994 int rtpri; 995 static char nicebuf[4 + 1]; 996 997 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 998 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 999 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1000 case PRI_ITHD: 1001 return ("-"); 1002 case PRI_REALTIME: 1003 /* 1004 * XXX: the kernel doesn't tell us the original rtprio and 1005 * doesn't really know what it was, so to recover it we 1006 * must be more chummy with the implementation than the 1007 * implementation is with itself. pri_user gives a 1008 * constant "base" priority, but is only initialized 1009 * properly for user threads. pri_native gives what the 1010 * kernel calls the "base" priority, but it isn't constant 1011 * since it is changed by priority propagation. pri_native 1012 * also isn't properly initialized for all threads, but it 1013 * is properly initialized for kernel realtime and idletime 1014 * threads. Thus we use pri_user for the base priority of 1015 * user threads (it is always correct) and pri_native for 1016 * the base priority of kernel realtime and idletime threads 1017 * (there is nothing better, and it is usually correct). 1018 * 1019 * The field width and thus the buffer are too small for 1020 * values like "kr31F", but such values shouldn't occur, 1021 * and if they do then the tailing "F" is not displayed. 1022 */ 1023 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1024 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1025 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1026 kthread, rtpri, fifo); 1027 break; 1028 case PRI_TIMESHARE: 1029 if (pp->ki_flag & P_KTHREAD) 1030 return ("-"); 1031 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1032 break; 1033 case PRI_IDLE: 1034 /* XXX: as above. */ 1035 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1036 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1037 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1038 kthread, rtpri, fifo); 1039 break; 1040 default: 1041 return ("?"); 1042 } 1043 return (nicebuf); 1044 } 1045 1046 /* comparison routines for qsort */ 1047 1048 static int 1049 compare_pid(const void *p1, const void *p2) 1050 { 1051 const struct kinfo_proc * const *pp1 = p1; 1052 const struct kinfo_proc * const *pp2 = p2; 1053 1054 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1055 abort(); 1056 1057 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1058 } 1059 1060 /* 1061 * proc_compare - comparison function for "qsort" 1062 * Compares the resource consumption of two processes using five 1063 * distinct keys. The keys (in descending order of importance) are: 1064 * percent cpu, cpu ticks, state, resident set size, total virtual 1065 * memory usage. The process states are ordered as follows (from least 1066 * to most important): WAIT, zombie, sleep, stop, start, run. The 1067 * array declaration below maps a process state index into a number 1068 * that reflects this ordering. 1069 */ 1070 1071 static int sorted_state[] = { 1072 0, /* not used */ 1073 3, /* sleep */ 1074 1, /* ABANDONED (WAIT) */ 1075 6, /* run */ 1076 5, /* start */ 1077 2, /* zombie */ 1078 4 /* stop */ 1079 }; 1080 1081 1082 #define ORDERKEY_PCTCPU(a, b) do { \ 1083 long diff; \ 1084 if (ps.wcpu) \ 1085 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 1086 (b))) - \ 1087 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 1088 (a))); \ 1089 else \ 1090 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 1091 if (diff != 0) \ 1092 return (diff > 0 ? 1 : -1); \ 1093 } while (0) 1094 1095 #define ORDERKEY_CPTICKS(a, b) do { \ 1096 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1097 if (diff != 0) \ 1098 return (diff > 0 ? 1 : -1); \ 1099 } while (0) 1100 1101 #define ORDERKEY_STATE(a, b) do { \ 1102 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1103 if (diff != 0) \ 1104 return (diff > 0 ? 1 : -1); \ 1105 } while (0) 1106 1107 #define ORDERKEY_PRIO(a, b) do { \ 1108 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1109 if (diff != 0) \ 1110 return (diff > 0 ? 1 : -1); \ 1111 } while (0) 1112 1113 #define ORDERKEY_THREADS(a, b) do { \ 1114 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1115 if (diff != 0) \ 1116 return (diff > 0 ? 1 : -1); \ 1117 } while (0) 1118 1119 #define ORDERKEY_RSSIZE(a, b) do { \ 1120 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1121 if (diff != 0) \ 1122 return (diff > 0 ? 1 : -1); \ 1123 } while (0) 1124 1125 #define ORDERKEY_MEM(a, b) do { \ 1126 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1127 if (diff != 0) \ 1128 return (diff > 0 ? 1 : -1); \ 1129 } while (0) 1130 1131 #define ORDERKEY_JID(a, b) do { \ 1132 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1133 if (diff != 0) \ 1134 return (diff > 0 ? 1 : -1); \ 1135 } while (0) 1136 1137 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1138 1139 int 1140 #ifdef ORDER 1141 compare_cpu(void *arg1, void *arg2) 1142 #else 1143 proc_compare(void *arg1, void *arg2) 1144 #endif 1145 { 1146 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1147 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1148 1149 ORDERKEY_PCTCPU(p1, p2); 1150 ORDERKEY_CPTICKS(p1, p2); 1151 ORDERKEY_STATE(p1, p2); 1152 ORDERKEY_PRIO(p1, p2); 1153 ORDERKEY_RSSIZE(p1, p2); 1154 ORDERKEY_MEM(p1, p2); 1155 1156 return (0); 1157 } 1158 1159 #ifdef ORDER 1160 /* "cpu" compare routines */ 1161 int compare_size(), compare_res(), compare_time(), compare_prio(), 1162 compare_threads(); 1163 1164 /* 1165 * "io" compare routines. Context switches aren't i/o, but are displayed 1166 * on the "io" display. 1167 */ 1168 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1169 compare_vcsw(), compare_ivcsw(); 1170 1171 int (*compares[])() = { 1172 compare_cpu, 1173 compare_size, 1174 compare_res, 1175 compare_time, 1176 compare_prio, 1177 compare_threads, 1178 compare_iototal, 1179 compare_ioread, 1180 compare_iowrite, 1181 compare_iofault, 1182 compare_vcsw, 1183 compare_ivcsw, 1184 compare_jid, 1185 NULL 1186 }; 1187 1188 /* compare_size - the comparison function for sorting by total memory usage */ 1189 1190 int 1191 compare_size(void *arg1, void *arg2) 1192 { 1193 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1194 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1195 1196 ORDERKEY_MEM(p1, p2); 1197 ORDERKEY_RSSIZE(p1, p2); 1198 ORDERKEY_PCTCPU(p1, p2); 1199 ORDERKEY_CPTICKS(p1, p2); 1200 ORDERKEY_STATE(p1, p2); 1201 ORDERKEY_PRIO(p1, p2); 1202 1203 return (0); 1204 } 1205 1206 /* compare_res - the comparison function for sorting by resident set size */ 1207 1208 int 1209 compare_res(void *arg1, void *arg2) 1210 { 1211 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1212 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1213 1214 ORDERKEY_RSSIZE(p1, p2); 1215 ORDERKEY_MEM(p1, p2); 1216 ORDERKEY_PCTCPU(p1, p2); 1217 ORDERKEY_CPTICKS(p1, p2); 1218 ORDERKEY_STATE(p1, p2); 1219 ORDERKEY_PRIO(p1, p2); 1220 1221 return (0); 1222 } 1223 1224 /* compare_time - the comparison function for sorting by total cpu time */ 1225 1226 int 1227 compare_time(void *arg1, void *arg2) 1228 { 1229 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1230 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1231 1232 ORDERKEY_CPTICKS(p1, p2); 1233 ORDERKEY_PCTCPU(p1, p2); 1234 ORDERKEY_STATE(p1, p2); 1235 ORDERKEY_PRIO(p1, p2); 1236 ORDERKEY_RSSIZE(p1, p2); 1237 ORDERKEY_MEM(p1, p2); 1238 1239 return (0); 1240 } 1241 1242 /* compare_prio - the comparison function for sorting by priority */ 1243 1244 int 1245 compare_prio(void *arg1, void *arg2) 1246 { 1247 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1248 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1249 1250 ORDERKEY_PRIO(p1, p2); 1251 ORDERKEY_CPTICKS(p1, p2); 1252 ORDERKEY_PCTCPU(p1, p2); 1253 ORDERKEY_STATE(p1, p2); 1254 ORDERKEY_RSSIZE(p1, p2); 1255 ORDERKEY_MEM(p1, p2); 1256 1257 return (0); 1258 } 1259 1260 /* compare_threads - the comparison function for sorting by threads */ 1261 int 1262 compare_threads(void *arg1, void *arg2) 1263 { 1264 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1265 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1266 1267 ORDERKEY_THREADS(p1, p2); 1268 ORDERKEY_PCTCPU(p1, p2); 1269 ORDERKEY_CPTICKS(p1, p2); 1270 ORDERKEY_STATE(p1, p2); 1271 ORDERKEY_PRIO(p1, p2); 1272 ORDERKEY_RSSIZE(p1, p2); 1273 ORDERKEY_MEM(p1, p2); 1274 1275 return (0); 1276 } 1277 1278 /* compare_jid - the comparison function for sorting by jid */ 1279 static int 1280 compare_jid(const void *arg1, const void *arg2) 1281 { 1282 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1283 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1284 1285 ORDERKEY_JID(p1, p2); 1286 ORDERKEY_PCTCPU(p1, p2); 1287 ORDERKEY_CPTICKS(p1, p2); 1288 ORDERKEY_STATE(p1, p2); 1289 ORDERKEY_PRIO(p1, p2); 1290 ORDERKEY_RSSIZE(p1, p2); 1291 ORDERKEY_MEM(p1, p2); 1292 1293 return (0); 1294 } 1295 #endif /* ORDER */ 1296 1297 /* assorted comparison functions for sorting by i/o */ 1298 1299 int 1300 #ifdef ORDER 1301 compare_iototal(void *arg1, void *arg2) 1302 #else 1303 io_compare(void *arg1, void *arg2) 1304 #endif 1305 { 1306 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1307 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1308 1309 return (get_io_total(p2) - get_io_total(p1)); 1310 } 1311 1312 #ifdef ORDER 1313 int 1314 compare_ioread(void *arg1, void *arg2) 1315 { 1316 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1317 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1318 long dummy, inp1, inp2; 1319 1320 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1321 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1322 1323 return (inp2 - inp1); 1324 } 1325 1326 int 1327 compare_iowrite(void *arg1, void *arg2) 1328 { 1329 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1330 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1331 long dummy, oup1, oup2; 1332 1333 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1334 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1335 1336 return (oup2 - oup1); 1337 } 1338 1339 int 1340 compare_iofault(void *arg1, void *arg2) 1341 { 1342 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1343 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1344 long dummy, flp1, flp2; 1345 1346 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1347 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1348 1349 return (flp2 - flp1); 1350 } 1351 1352 int 1353 compare_vcsw(void *arg1, void *arg2) 1354 { 1355 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1356 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1357 long dummy, flp1, flp2; 1358 1359 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1360 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1361 1362 return (flp2 - flp1); 1363 } 1364 1365 int 1366 compare_ivcsw(void *arg1, void *arg2) 1367 { 1368 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1369 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1370 long dummy, flp1, flp2; 1371 1372 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1373 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1374 1375 return (flp2 - flp1); 1376 } 1377 #endif /* ORDER */ 1378 1379 /* 1380 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1381 * the process does not exist. 1382 * It is EXTREMLY IMPORTANT that this function work correctly. 1383 * If top runs setuid root (as in SVR4), then this function 1384 * is the only thing that stands in the way of a serious 1385 * security problem. It validates requests for the "kill" 1386 * and "renice" commands. 1387 */ 1388 1389 int 1390 proc_owner(int pid) 1391 { 1392 int cnt; 1393 struct kinfo_proc **prefp; 1394 struct kinfo_proc *pp; 1395 1396 prefp = pref; 1397 cnt = pref_len; 1398 while (--cnt >= 0) { 1399 pp = *prefp++; 1400 if (pp->ki_pid == (pid_t)pid) 1401 return ((int)pp->ki_ruid); 1402 } 1403 return (-1); 1404 } 1405 1406 static int 1407 swapmode(int *retavail, int *retfree) 1408 { 1409 int n; 1410 int pagesize = getpagesize(); 1411 struct kvm_swap swapary[1]; 1412 1413 *retavail = 0; 1414 *retfree = 0; 1415 1416 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1417 1418 n = kvm_getswapinfo(kd, swapary, 1, 0); 1419 if (n < 0 || swapary[0].ksw_total == 0) 1420 return (0); 1421 1422 *retavail = CONVERT(swapary[0].ksw_total); 1423 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1424 1425 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1426 return (n); 1427 } 1428