xref: /freebsd/usr.bin/top/machine.c (revision 11afcc8f9f96d657b8e6f7547c02c1957331fc96)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x system
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  *
10  * This is the machine-dependent module for FreeBSD 2.2
11  * Works for:
12  *	FreeBSD 2.2, and probably FreeBSD 2.1.x
13  *
14  * LIBS: -lkvm
15  *
16  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
17  *          Steven Wallace  <swallace@freebsd.org>
18  *          Wolfram Schneider <wosch@FreeBSD.org>
19  *
20  * $Id: machine.c,v 1.12 1998/07/27 12:21:58 wosch Exp $
21  */
22 
23 
24 #include <sys/types.h>
25 #include <sys/signal.h>
26 #include <sys/param.h>
27 
28 #include "os.h"
29 #include <stdio.h>
30 #include <nlist.h>
31 #include <math.h>
32 #include <kvm.h>
33 #include <pwd.h>
34 #include <sys/errno.h>
35 #include <sys/sysctl.h>
36 #include <sys/dkstat.h>
37 #include <sys/file.h>
38 #include <sys/time.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/rlist.h>
48 #include <sys/conf.h>
49 
50 #include <osreldate.h> /* for changes in kernel structures */
51 
52 #include "top.h"
53 #include "machine.h"
54 
55 static int check_nlist __P((struct nlist *));
56 static int getkval __P((unsigned long, int *, int, char *));
57 extern char* printable __P((char *));
58 int swapmode __P((int *retavail, int *retfree));
59 static int smpmode;
60 static int namelength;
61 static int cmdlength;
62 
63 
64 /* get_process_info passes back a handle.  This is what it looks like: */
65 
66 struct handle
67 {
68     struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
69     int remaining;		/* number of pointers remaining */
70 };
71 
72 /* declarations for load_avg */
73 #include "loadavg.h"
74 
75 #define PP(pp, field) ((pp)->kp_proc . field)
76 #define EP(pp, field) ((pp)->kp_eproc . field)
77 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
78 
79 /* define what weighted cpu is.  */
80 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
81 			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
82 
83 /* what we consider to be process size: */
84 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
85 
86 /* definitions for indices in the nlist array */
87 
88 
89 static struct nlist nlst[] = {
90 #define X_CCPU		0
91     { "_ccpu" },		/* 0 */
92 #define X_CP_TIME	1
93     { "_cp_time" },		/* 1 */
94 #define X_HZ		2
95     { "_hz" },		        /* 2 */
96 #define X_STATHZ	3
97     { "_stathz" },		/* 3 */
98 #define X_AVENRUN	4
99     { "_averunnable" },		/* 4 */
100 
101 /* Swap */
102 #define VM_SWAPLIST	5
103 	{ "_swaplist" },/* list of free swap areas */
104 #define VM_SWDEVT	6
105 	{ "_swdevt" },	/* list of swap devices and sizes */
106 #define VM_NSWAP	7
107 	{ "_nswap" },	/* size of largest swap device */
108 #define VM_NSWDEV	8
109 	{ "_nswdev" },	/* number of swap devices */
110 #define VM_DMMAX	9
111 	{ "_dmmax" },	/* maximum size of a swap block */
112 #define X_BUFSPACE	10
113 	{ "_bufspace" },	/* K in buffer cache */
114 #define X_CNT           11
115     { "_cnt" },		        /* struct vmmeter cnt */
116 
117 /* Last pid */
118 #define X_LASTPID	12
119     { "_nextpid" },
120     { 0 }
121 };
122 
123 /*
124  *  These definitions control the format of the per-process area
125  */
126 
127 static char smp_header[] =
128   "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
129 
130 #define smp_Proc_format \
131 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
132 
133 static char up_header[] =
134   "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
135 
136 #define up_Proc_format \
137 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
138 
139 
140 
141 /* process state names for the "STATE" column of the display */
142 /* the extra nulls in the string "run" are for adding a slash and
143    the processor number when needed */
144 
145 char *state_abbrev[] =
146 {
147     "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
148 };
149 
150 
151 static kvm_t *kd;
152 
153 /* values that we stash away in _init and use in later routines */
154 
155 static double logcpu;
156 
157 /* these are retrieved from the kernel in _init */
158 
159 static          long hz;
160 static load_avg  ccpu;
161 
162 /* these are offsets obtained via nlist and used in the get_ functions */
163 
164 static unsigned long cp_time_offset;
165 static unsigned long avenrun_offset;
166 static unsigned long lastpid_offset;
167 static long lastpid;
168 static unsigned long cnt_offset;
169 static unsigned long bufspace_offset;
170 static long cnt;
171 
172 /* these are for calculating cpu state percentages */
173 
174 static long cp_time[CPUSTATES];
175 static long cp_old[CPUSTATES];
176 static long cp_diff[CPUSTATES];
177 
178 /* these are for detailing the process states */
179 
180 int process_states[6];
181 char *procstatenames[] = {
182     "", " starting, ", " running, ", " sleeping, ", " stopped, ",
183     " zombie, ",
184     NULL
185 };
186 
187 /* these are for detailing the cpu states */
188 
189 int cpu_states[CPUSTATES];
190 char *cpustatenames[] = {
191     "user", "nice", "system", "interrupt", "idle", NULL
192 };
193 
194 /* these are for detailing the memory statistics */
195 
196 int memory_stats[7];
197 char *memorynames[] = {
198     "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
199     NULL
200 };
201 
202 int swap_stats[7];
203 char *swapnames[] = {
204 /*   0           1            2           3            4       5 */
205     "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
206     NULL
207 };
208 
209 
210 /* these are for keeping track of the proc array */
211 
212 static int nproc;
213 static int onproc = -1;
214 static int pref_len;
215 static struct kinfo_proc *pbase;
216 static struct kinfo_proc **pref;
217 
218 /* these are for getting the memory statistics */
219 
220 static int pageshift;		/* log base 2 of the pagesize */
221 
222 /* define pagetok in terms of pageshift */
223 
224 #define pagetok(size) ((size) << pageshift)
225 
226 /* useful externals */
227 long percentages();
228 
229 int
230 machine_init(statics)
231 
232 struct statics *statics;
233 
234 {
235     register int i = 0;
236     register int pagesize;
237     int modelen;
238     struct passwd *pw;
239 
240     modelen = sizeof(smpmode);
241     if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
242          sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
243 	modelen != sizeof(smpmode))
244 	    smpmode = 0;
245 
246     while ((pw = getpwent()) != NULL) {
247 	if (strlen(pw->pw_name) > namelength)
248 	    namelength = strlen(pw->pw_name);
249     }
250     if (namelength < 8)
251 	namelength = 8;
252     if (namelength > 16)
253 	namelength = 16;
254 
255     if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
256 	return -1;
257 
258 
259     /* get the list of symbols we want to access in the kernel */
260     (void) kvm_nlist(kd, nlst);
261     if (nlst[0].n_type == 0)
262     {
263 	fprintf(stderr, "top: nlist failed\n");
264 	return(-1);
265     }
266 
267     /* make sure they were all found */
268     if (i > 0 && check_nlist(nlst) > 0)
269     {
270 	return(-1);
271     }
272 
273     /* get the symbol values out of kmem */
274     (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
275     if (!hz) {
276 	(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
277 		       nlst[X_HZ].n_name);
278     }
279 
280     (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
281 	    nlst[X_CCPU].n_name);
282 
283     /* stash away certain offsets for later use */
284     cp_time_offset = nlst[X_CP_TIME].n_value;
285     avenrun_offset = nlst[X_AVENRUN].n_value;
286     lastpid_offset =  nlst[X_LASTPID].n_value;
287     cnt_offset = nlst[X_CNT].n_value;
288     bufspace_offset = nlst[X_BUFSPACE].n_value;
289 
290     /* this is used in calculating WCPU -- calculate it ahead of time */
291     logcpu = log(loaddouble(ccpu));
292 
293     pbase = NULL;
294     pref = NULL;
295     nproc = 0;
296     onproc = -1;
297     /* get the page size with "getpagesize" and calculate pageshift from it */
298     pagesize = getpagesize();
299     pageshift = 0;
300     while (pagesize > 1)
301     {
302 	pageshift++;
303 	pagesize >>= 1;
304     }
305 
306     /* we only need the amount of log(2)1024 for our conversion */
307     pageshift -= LOG1024;
308 
309     /* fill in the statics information */
310     statics->procstate_names = procstatenames;
311     statics->cpustate_names = cpustatenames;
312     statics->memory_names = memorynames;
313     statics->swap_names = swapnames;
314 
315     /* all done! */
316     return(0);
317 }
318 
319 char *format_header(uname_field)
320 
321 register char *uname_field;
322 
323 {
324     register char *ptr;
325     static char Header[128];
326 
327     snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
328 	     namelength, namelength, uname_field);
329 
330     cmdlength = 80 - strlen(Header) + 6;
331 
332     return Header;
333 }
334 
335 static int swappgsin = -1;
336 static int swappgsout = -1;
337 extern struct timeval timeout;
338 
339 void
340 get_system_info(si)
341 
342 struct system_info *si;
343 
344 {
345     long total;
346     load_avg avenrun[3];
347 
348     /* get the cp_time array */
349     (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
350 		   nlst[X_CP_TIME].n_name);
351     (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
352 		   nlst[X_AVENRUN].n_name);
353 
354     (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
355 		   "!");
356 
357     /* convert load averages to doubles */
358     {
359 	register int i;
360 	register double *infoloadp;
361 	load_avg *avenrunp;
362 
363 #ifdef notyet
364 	struct loadavg sysload;
365 	int size;
366 	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
367 #endif
368 
369 	infoloadp = si->load_avg;
370 	avenrunp = avenrun;
371 	for (i = 0; i < 3; i++)
372 	{
373 #ifdef notyet
374 	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
375 #endif
376 	    *infoloadp++ = loaddouble(*avenrunp++);
377 	}
378     }
379 
380     /* convert cp_time counts to percentages */
381     total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
382 
383     /* sum memory & swap statistics */
384     {
385 	struct vmmeter sum;
386 	static unsigned int swap_delay = 0;
387 	static int swapavail = 0;
388 	static int swapfree = 0;
389 	static int bufspace = 0;
390 
391         (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
392 		   "_cnt");
393         (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
394 		   "_bufspace");
395 
396 	/* convert memory stats to Kbytes */
397 	memory_stats[0] = pagetok(sum.v_active_count);
398 	memory_stats[1] = pagetok(sum.v_inactive_count);
399 	memory_stats[2] = pagetok(sum.v_wire_count);
400 	memory_stats[3] = pagetok(sum.v_cache_count);
401 	memory_stats[4] = bufspace / 1024;
402 	memory_stats[5] = pagetok(sum.v_free_count);
403 	memory_stats[6] = -1;
404 
405 	/* first interval */
406         if (swappgsin < 0) {
407 	    swap_stats[4] = 0;
408 	    swap_stats[5] = 0;
409 	}
410 
411 	/* compute differences between old and new swap statistic */
412 	else {
413 	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
414 	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
415 	}
416 
417         swappgsin = sum.v_swappgsin;
418 	swappgsout = sum.v_swappgsout;
419 
420 	/* call CPU heavy swapmode() only for changes */
421         if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
422 	    swap_stats[3] = swapmode(&swapavail, &swapfree);
423 	    swap_stats[0] = swapavail;
424 	    swap_stats[1] = swapavail - swapfree;
425 	    swap_stats[2] = swapfree;
426 	}
427         swap_delay = 1;
428 	swap_stats[6] = -1;
429     }
430 
431     /* set arrays and strings */
432     si->cpustates = cpu_states;
433     si->memory = memory_stats;
434     si->swap = swap_stats;
435 
436 
437     if(lastpid > 0) {
438 	si->last_pid = lastpid;
439     } else {
440 	si->last_pid = -1;
441     }
442 }
443 
444 static struct handle handle;
445 
446 caddr_t get_process_info(si, sel, compare)
447 
448 struct system_info *si;
449 struct process_select *sel;
450 int (*compare)();
451 
452 {
453     register int i;
454     register int total_procs;
455     register int active_procs;
456     register struct kinfo_proc **prefp;
457     register struct kinfo_proc *pp;
458 
459     /* these are copied out of sel for speed */
460     int show_idle;
461     int show_self;
462     int show_system;
463     int show_uid;
464     int show_command;
465 
466 
467     pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
468     if (nproc > onproc)
469 	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
470 		* (onproc = nproc));
471     if (pref == NULL || pbase == NULL) {
472 	(void) fprintf(stderr, "top: Out of memory.\n");
473 	quit(23);
474     }
475     /* get a pointer to the states summary array */
476     si->procstates = process_states;
477 
478     /* set up flags which define what we are going to select */
479     show_idle = sel->idle;
480     show_self = sel->self;
481     show_system = sel->system;
482     show_uid = sel->uid != -1;
483     show_command = sel->command != NULL;
484 
485     /* count up process states and get pointers to interesting procs */
486     total_procs = 0;
487     active_procs = 0;
488     memset((char *)process_states, 0, sizeof(process_states));
489     prefp = pref;
490     for (pp = pbase, i = 0; i < nproc; pp++, i++)
491     {
492 	/*
493 	 *  Place pointers to each valid proc structure in pref[].
494 	 *  Process slots that are actually in use have a non-zero
495 	 *  status field.  Processes with P_SYSTEM set are system
496 	 *  processes---these get ignored unless show_sysprocs is set.
497 	 */
498 	if (PP(pp, p_stat) != 0 &&
499 	    (show_self != PP(pp, p_pid)) &&
500 	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
501 	{
502 	    total_procs++;
503 	    process_states[(unsigned char) PP(pp, p_stat)]++;
504 	    if ((PP(pp, p_stat) != SZOMB) &&
505 		(show_idle || (PP(pp, p_pctcpu) != 0) ||
506 		 (PP(pp, p_stat) == SRUN)) &&
507 		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
508 	    {
509 		*prefp++ = pp;
510 		active_procs++;
511 	    }
512 	}
513     }
514 
515     /* if requested, sort the "interesting" processes */
516     if (compare != NULL)
517     {
518 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
519     }
520 
521     /* remember active and total counts */
522     si->p_total = total_procs;
523     si->p_active = pref_len = active_procs;
524 
525     /* pass back a handle */
526     handle.next_proc = pref;
527     handle.remaining = active_procs;
528     return((caddr_t)&handle);
529 }
530 
531 char fmt[128];		/* static area where result is built */
532 
533 char *format_next_process(handle, get_userid)
534 
535 caddr_t handle;
536 char *(*get_userid)();
537 
538 {
539     register struct kinfo_proc *pp;
540     register long cputime;
541     register double pct;
542     struct handle *hp;
543     char status[16];
544 
545     /* find and remember the next proc structure */
546     hp = (struct handle *)handle;
547     pp = *(hp->next_proc++);
548     hp->remaining--;
549 
550 
551     /* get the process's user struct and set cputime */
552     if ((PP(pp, p_flag) & P_INMEM) == 0) {
553 	/*
554 	 * Print swapped processes as <pname>
555 	 */
556 	char *comm = PP(pp, p_comm);
557 #define COMSIZ sizeof(PP(pp, p_comm))
558 	char buf[COMSIZ];
559 	(void) strncpy(buf, comm, COMSIZ);
560 	comm[0] = '<';
561 	(void) strncpy(&comm[1], buf, COMSIZ - 2);
562 	comm[COMSIZ - 2] = '\0';
563 	(void) strncat(comm, ">", COMSIZ - 1);
564 	comm[COMSIZ - 1] = '\0';
565     }
566 
567 #if 0
568     /* This does not produce the correct results */
569     cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
570 #endif
571     /* This does not count interrupts */
572     cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
573 
574     /* calculate the base for cpu percentages */
575     pct = pctdouble(PP(pp, p_pctcpu));
576 
577     /* generate "STATE" field */
578     switch (PP(pp, p_stat)) {
579 	case SRUN:
580 	    if (smpmode && PP(pp, p_oncpu) >= 0)
581 		sprintf(status, "CPU%d", PP(pp, p_oncpu));
582 	    else
583 		strcpy(status, "RUN");
584 	    break;
585 	case SSLEEP:
586 	    if (PP(pp, p_wmesg) != NULL) {
587 		sprintf(status, "%.6s", EP(pp, e_wmesg));
588 		break;
589 	    }
590 	    /* fall through */
591 	default:
592 	    sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
593 	    break;
594     }
595 
596     /* format this entry */
597     sprintf(fmt,
598 	    smpmode ? smp_Proc_format : up_Proc_format,
599 	    PP(pp, p_pid),
600 	    namelength, namelength,
601 	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
602 	    PP(pp, p_priority) - PZERO,
603 
604 	    /*
605 	     * normal time      -> nice value -20 - +20
606 	     * real time 0 - 31 -> nice value -52 - -21
607 	     * idle time 0 - 31 -> nice value +21 - +52
608 	     */
609 	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
610 	    	PP(pp, p_nice) - NZERO :
611 	    	(PP(pp, p_rtprio.type) ==  RTP_PRIO_REALTIME ?
612 		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
613 		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
614 	    format_k2(PROCSIZE(pp)),
615 	    format_k2(pagetok(VP(pp, vm_rssize))),
616 	    status,
617 	    smpmode ? PP(pp, p_lastcpu) : 0,
618 	    format_time(cputime),
619 	    10000.0 * weighted_cpu(pct, pp) / hz,
620 	    10000.0 * pct / hz,
621 	    cmdlength,
622 	    printable(PP(pp, p_comm)));
623 
624     /* return the result */
625     return(fmt);
626 }
627 
628 
629 /*
630  * check_nlist(nlst) - checks the nlist to see if any symbols were not
631  *		found.  For every symbol that was not found, a one-line
632  *		message is printed to stderr.  The routine returns the
633  *		number of symbols NOT found.
634  */
635 
636 static int check_nlist(nlst)
637 
638 register struct nlist *nlst;
639 
640 {
641     register int i;
642 
643     /* check to see if we got ALL the symbols we requested */
644     /* this will write one line to stderr for every symbol not found */
645 
646     i = 0;
647     while (nlst->n_name != NULL)
648     {
649 	if (nlst->n_type == 0)
650 	{
651 	    /* this one wasn't found */
652 	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
653 			   nlst->n_name);
654 	    i = 1;
655 	}
656 	nlst++;
657     }
658 
659     return(i);
660 }
661 
662 
663 /*
664  *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
665  *	"offset" is the byte offset into the kernel for the desired value,
666  *  	"ptr" points to a buffer into which the value is retrieved,
667  *  	"size" is the size of the buffer (and the object to retrieve),
668  *  	"refstr" is a reference string used when printing error meessages,
669  *	    if "refstr" starts with a '!', then a failure on read will not
670  *  	    be fatal (this may seem like a silly way to do things, but I
671  *  	    really didn't want the overhead of another argument).
672  *
673  */
674 
675 static int getkval(offset, ptr, size, refstr)
676 
677 unsigned long offset;
678 int *ptr;
679 int size;
680 char *refstr;
681 
682 {
683     if (kvm_read(kd, offset, (char *) ptr, size) != size)
684     {
685 	if (*refstr == '!')
686 	{
687 	    return(0);
688 	}
689 	else
690 	{
691 	    fprintf(stderr, "top: kvm_read for %s: %s\n",
692 		refstr, strerror(errno));
693 	    quit(23);
694 	}
695     }
696     return(1);
697 }
698 
699 /* comparison routine for qsort */
700 
701 /*
702  *  proc_compare - comparison function for "qsort"
703  *	Compares the resource consumption of two processes using five
704  *  	distinct keys.  The keys (in descending order of importance) are:
705  *  	percent cpu, cpu ticks, state, resident set size, total virtual
706  *  	memory usage.  The process states are ordered as follows (from least
707  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
708  *  	array declaration below maps a process state index into a number
709  *  	that reflects this ordering.
710  */
711 
712 static unsigned char sorted_state[] =
713 {
714     0,	/* not used		*/
715     3,	/* sleep		*/
716     1,	/* ABANDONED (WAIT)	*/
717     6,	/* run			*/
718     5,	/* start		*/
719     2,	/* zombie		*/
720     4	/* stop			*/
721 };
722 
723 int
724 proc_compare(pp1, pp2)
725 
726 struct proc **pp1;
727 struct proc **pp2;
728 
729 {
730     register struct kinfo_proc *p1;
731     register struct kinfo_proc *p2;
732     register int result;
733     register pctcpu lresult;
734 
735     /* remove one level of indirection */
736     p1 = *(struct kinfo_proc **) pp1;
737     p2 = *(struct kinfo_proc **) pp2;
738 
739     /* compare percent cpu (pctcpu) */
740     if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0)
741     {
742 	/* use lifetime CPU usage to break the tie */
743 	if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
744 	{
745 	    /* use process state to break the tie */
746 	    if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
747 			  sorted_state[(unsigned char) PP(p1, p_stat)])  == 0)
748 	    {
749 		/* use priority to break the tie */
750 		if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
751 		{
752 		    /* use resident set size (rssize) to break the tie */
753 		    if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
754 		    {
755 			/* use total memory to break the tie */
756 			result = PROCSIZE(p2) - PROCSIZE(p1);
757 		    }
758 		}
759 	    }
760 	}
761     }
762     else
763     {
764 	result = lresult < 0 ? -1 : 1;
765     }
766 
767     return(result);
768 }
769 
770 
771 /*
772  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
773  *		the process does not exist.
774  *		It is EXTREMLY IMPORTANT that this function work correctly.
775  *		If top runs setuid root (as in SVR4), then this function
776  *		is the only thing that stands in the way of a serious
777  *		security problem.  It validates requests for the "kill"
778  *		and "renice" commands.
779  */
780 
781 int proc_owner(pid)
782 
783 int pid;
784 
785 {
786     register int cnt;
787     register struct kinfo_proc **prefp;
788     register struct kinfo_proc *pp;
789 
790     prefp = pref;
791     cnt = pref_len;
792     while (--cnt >= 0)
793     {
794 	pp = *prefp++;
795 	if (PP(pp, p_pid) == (pid_t)pid)
796 	{
797 	    return((int)EP(pp, e_pcred.p_ruid));
798 	}
799     }
800     return(-1);
801 }
802 
803 
804 /*
805  * swapmode is based on a program called swapinfo written
806  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
807  */
808 
809 #define	SVAR(var) __STRING(var)	/* to force expansion */
810 #define	KGET(idx, var)							\
811 	KGET1(idx, &var, sizeof(var), SVAR(var))
812 #define	KGET1(idx, p, s, msg)						\
813 	KGET2(nlst[idx].n_value, p, s, msg)
814 #define	KGET2(addr, p, s, msg)						\
815 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
816 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
817 		return (0);                                             \
818        }
819 #define	KGETRET(addr, p, s, msg)					\
820 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
821 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
822 		return (0);						\
823 	}
824 
825 
826 int
827 swapmode(retavail, retfree)
828 	int *retavail;
829 	int *retfree;
830 {
831 	char *header;
832 	int hlen, nswap, nswdev, dmmax;
833 	int i, div, avail, nfree, npfree, used;
834 	struct swdevt *sw;
835 	long blocksize, *perdev;
836 	u_long ptr;
837 	struct rlist head;
838 #if __FreeBSD_version >= 220000
839 	struct rlisthdr swaplist;
840 #else
841 	struct rlist *swaplist;
842 #endif
843 	struct rlist *swapptr;
844 
845 	/*
846 	 * Counter for error messages. If we reach the limit,
847 	 * stop reading information from swap devices and
848 	 * return zero. This prevent endless 'bad address'
849 	 * messages.
850 	 */
851 	static warning = 10;
852 
853 	if (warning <= 0) {
854 	    /* a single warning */
855 	    if (!warning) {
856 		warning--;
857 		fprintf(stderr,
858 			"Too much errors, stop reading swap devices ...\n");
859 		(void)sleep(3);
860 	    }
861 	    return(0);
862 	}
863 	warning--; /* decrease counter, see end of function */
864 
865 	KGET(VM_NSWAP, nswap);
866 	if (!nswap) {
867 		fprintf(stderr, "No swap space available\n");
868 		return(0);
869 	}
870 
871 	KGET(VM_NSWDEV, nswdev);
872 	KGET(VM_DMMAX, dmmax);
873 	KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist");
874 	if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL ||
875 	    (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL)
876 		err(1, "malloc");
877 	KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt");
878 	KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt");
879 
880 	/* Count up swap space. */
881 	nfree = 0;
882 	memset(perdev, 0, nswdev * sizeof(*perdev));
883 #if  __FreeBSD_version >= 220000
884 	swapptr = swaplist.rlh_list;
885 	while (swapptr) {
886 #else
887 	while (swaplist) {
888 #endif
889 		int	top, bottom, next_block;
890 #if  __FreeBSD_version >= 220000
891 		KGET2(swapptr, &head, sizeof(struct rlist), "swapptr");
892 #else
893 		KGET2(swaplist, &head, sizeof(struct rlist), "swaplist");
894 #endif
895 
896 		top = head.rl_end;
897 		bottom = head.rl_start;
898 
899 		nfree += top - bottom + 1;
900 
901 		/*
902 		 * Swap space is split up among the configured disks.
903 		 *
904 		 * For interleaved swap devices, the first dmmax blocks
905 		 * of swap space some from the first disk, the next dmmax
906 		 * blocks from the next, and so on up to nswap blocks.
907 		 *
908 		 * The list of free space joins adjacent free blocks,
909 		 * ignoring device boundries.  If we want to keep track
910 		 * of this information per device, we'll just have to
911 		 * extract it ourselves.
912 		 */
913 		while (top / dmmax != bottom / dmmax) {
914 			next_block = ((bottom + dmmax) / dmmax);
915 			perdev[(bottom / dmmax) % nswdev] +=
916 				next_block * dmmax - bottom;
917 			bottom = next_block * dmmax;
918 		}
919 		perdev[(bottom / dmmax) % nswdev] +=
920 			top - bottom + 1;
921 
922 #if  __FreeBSD_version >= 220000
923 		swapptr = head.rl_next;
924 #else
925 		swaplist = head.rl_next;
926 #endif
927 	}
928 
929 	header = getbsize(&hlen, &blocksize);
930 	div = blocksize / 512;
931 	avail = npfree = 0;
932 	for (i = 0; i < nswdev; i++) {
933 		int xsize, xfree;
934 
935 		/*
936 		 * Don't report statistics for partitions which have not
937 		 * yet been activated via swapon(8).
938 		 */
939 
940 		xsize = sw[i].sw_nblks;
941 		xfree = perdev[i];
942 		used = xsize - xfree;
943 		npfree++;
944 		avail += xsize;
945 	}
946 
947 	/*
948 	 * If only one partition has been set up via swapon(8), we don't
949 	 * need to bother with totals.
950 	 */
951 	*retavail = avail / 2;
952 	*retfree = nfree / 2;
953 	used = avail - nfree;
954 	free(sw); free(perdev);
955 
956 	/* increase counter, no errors occurs */
957 	warning++;
958 
959 	return  (int)(((double)used / (double)avail * 100.0) + 0.5);
960 }
961