1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 /* TOP_JID_LEN based on max of 999999 */ 71 #define TOP_JID_LEN 7 72 #define TOP_SWAP_LEN 6 73 static int jidlength; 74 static int swaplength; 75 static int cmdlengthdelta; 76 77 /* Prototypes for top internals */ 78 void quit(int); 79 80 /* get_process_info passes back a handle. This is what it looks like: */ 81 82 struct handle { 83 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 84 int remaining; /* number of pointers remaining */ 85 }; 86 87 /* declarations for load_avg */ 88 #include "loadavg.h" 89 90 /* define what weighted cpu is. */ 91 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 92 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 93 94 /* what we consider to be process size: */ 95 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 96 97 #define RU(pp) (&(pp)->ki_rusage) 98 #define RUTOT(pp) \ 99 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 100 101 #define PCTCPU(pp) (pcpu[pp - pbase]) 102 103 /* definitions for indices in the nlist array */ 104 105 /* 106 * These definitions control the format of the per-process area 107 */ 108 109 static char io_header[] = 110 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 111 112 #define io_Proc_format \ 113 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 114 115 static char smp_header_thr[] = 116 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 117 static char smp_header[] = 118 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 119 120 #define smp_Proc_format \ 121 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s" 122 123 static char up_header_thr[] = 124 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 125 static char up_header[] = 126 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 127 128 #define up_Proc_format \ 129 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s" 130 131 132 /* process state names for the "STATE" column of the display */ 133 /* the extra nulls in the string "run" are for adding a slash and 134 the processor number when needed */ 135 136 char *state_abbrev[] = { 137 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 138 }; 139 140 141 static kvm_t *kd; 142 143 /* values that we stash away in _init and use in later routines */ 144 145 static double logcpu; 146 147 /* these are retrieved from the kernel in _init */ 148 149 static load_avg ccpu; 150 151 /* these are used in the get_ functions */ 152 153 static int lastpid; 154 155 /* these are for calculating cpu state percentages */ 156 157 static long cp_time[CPUSTATES]; 158 static long cp_old[CPUSTATES]; 159 static long cp_diff[CPUSTATES]; 160 161 /* these are for detailing the process states */ 162 163 int process_states[8]; 164 char *procstatenames[] = { 165 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 166 " zombie, ", " waiting, ", " lock, ", 167 NULL 168 }; 169 170 /* these are for detailing the cpu states */ 171 172 int cpu_states[CPUSTATES]; 173 char *cpustatenames[] = { 174 "user", "nice", "system", "interrupt", "idle", NULL 175 }; 176 177 /* these are for detailing the memory statistics */ 178 179 int memory_stats[7]; 180 char *memorynames[] = { 181 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 182 "K Free", NULL 183 }; 184 185 int arc_stats[7]; 186 char *arcnames[] = { 187 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 188 NULL 189 }; 190 191 int carc_stats[5]; 192 char *carcnames[] = { 193 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", "K Overhead", 194 NULL 195 }; 196 197 int swap_stats[7]; 198 char *swapnames[] = { 199 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 200 NULL 201 }; 202 203 204 /* these are for keeping track of the proc array */ 205 206 static int nproc; 207 static int onproc = -1; 208 static int pref_len; 209 static struct kinfo_proc *pbase; 210 static struct kinfo_proc **pref; 211 static struct kinfo_proc *previous_procs; 212 static struct kinfo_proc **previous_pref; 213 static int previous_proc_count = 0; 214 static int previous_proc_count_max = 0; 215 static int previous_thread; 216 217 /* data used for recalculating pctcpu */ 218 static double *pcpu; 219 static struct timespec proc_uptime; 220 static struct timeval proc_wall_time; 221 static struct timeval previous_wall_time; 222 static uint64_t previous_interval = 0; 223 224 /* total number of io operations */ 225 static long total_inblock; 226 static long total_oublock; 227 static long total_majflt; 228 229 /* these are for getting the memory statistics */ 230 231 static int arc_enabled; 232 static int carc_enabled; 233 static int pageshift; /* log base 2 of the pagesize */ 234 235 /* define pagetok in terms of pageshift */ 236 237 #define pagetok(size) ((size) << pageshift) 238 239 /* swap usage */ 240 #define ki_swap(kip) \ 241 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 242 243 /* useful externals */ 244 long percentages(int cnt, int *out, long *new, long *old, long *diffs); 245 246 #ifdef ORDER 247 /* 248 * Sorting orders. The first element is the default. 249 */ 250 char *ordernames[] = { 251 "cpu", "size", "res", "time", "pri", "threads", 252 "total", "read", "write", "fault", "vcsw", "ivcsw", 253 "jid", "swap", "pid", NULL 254 }; 255 #endif 256 257 /* Per-cpu time states */ 258 static int maxcpu; 259 static int maxid; 260 static int ncpus; 261 static u_long cpumask; 262 static long *times; 263 static long *pcpu_cp_time; 264 static long *pcpu_cp_old; 265 static long *pcpu_cp_diff; 266 static int *pcpu_cpu_states; 267 268 static int compare_swap(const void *a, const void *b); 269 static int compare_jid(const void *a, const void *b); 270 static int compare_pid(const void *a, const void *b); 271 static int compare_tid(const void *a, const void *b); 272 static const char *format_nice(const struct kinfo_proc *pp); 273 static void getsysctl(const char *name, void *ptr, size_t len); 274 static int swapmode(int *retavail, int *retfree); 275 static void update_layout(void); 276 277 void 278 toggle_pcpustats(void) 279 { 280 281 if (ncpus == 1) 282 return; 283 update_layout(); 284 } 285 286 /* Adjust display based on ncpus and the ARC state. */ 287 static void 288 update_layout(void) 289 { 290 291 y_mem = 3; 292 y_arc = 4; 293 y_carc = 5; 294 y_swap = 4 + arc_enabled + carc_enabled; 295 y_idlecursor = 5 + arc_enabled + carc_enabled; 296 y_message = 5 + arc_enabled + carc_enabled; 297 y_header = 6 + arc_enabled + carc_enabled; 298 y_procs = 7 + arc_enabled + carc_enabled; 299 Header_lines = 7 + arc_enabled + carc_enabled; 300 301 if (pcpu_stats) { 302 y_mem += ncpus - 1; 303 y_arc += ncpus - 1; 304 y_carc += ncpus - 1; 305 y_swap += ncpus - 1; 306 y_idlecursor += ncpus - 1; 307 y_message += ncpus - 1; 308 y_header += ncpus - 1; 309 y_procs += ncpus - 1; 310 Header_lines += ncpus - 1; 311 } 312 } 313 314 int 315 machine_init(struct statics *statics, char do_unames) 316 { 317 int i, j, empty, pagesize; 318 uint64_t arc_size; 319 boolean_t carc_en; 320 size_t size; 321 struct passwd *pw; 322 323 size = sizeof(smpmode); 324 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 325 NULL, 0) != 0 && 326 sysctlbyname("kern.smp.active", &smpmode, &size, 327 NULL, 0) != 0) || 328 size != sizeof(smpmode)) 329 smpmode = 0; 330 331 size = sizeof(carc_en); 332 if (sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 333 NULL, 0) == 0 && carc_en == 1) 334 carc_enabled = 1; 335 size = sizeof(arc_size); 336 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 337 NULL, 0) == 0 && arc_size != 0) 338 arc_enabled = 1; 339 340 if (do_unames) { 341 while ((pw = getpwent()) != NULL) { 342 if (strlen(pw->pw_name) > namelength) 343 namelength = strlen(pw->pw_name); 344 } 345 } 346 if (smpmode && namelength > SMPUNAMELEN) 347 namelength = SMPUNAMELEN; 348 else if (namelength > UPUNAMELEN) 349 namelength = UPUNAMELEN; 350 351 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 352 if (kd == NULL) 353 return (-1); 354 355 GETSYSCTL("kern.ccpu", ccpu); 356 357 /* this is used in calculating WCPU -- calculate it ahead of time */ 358 logcpu = log(loaddouble(ccpu)); 359 360 pbase = NULL; 361 pref = NULL; 362 pcpu = NULL; 363 nproc = 0; 364 onproc = -1; 365 366 /* get the page size and calculate pageshift from it */ 367 pagesize = getpagesize(); 368 pageshift = 0; 369 while (pagesize > 1) { 370 pageshift++; 371 pagesize >>= 1; 372 } 373 374 /* we only need the amount of log(2)1024 for our conversion */ 375 pageshift -= LOG1024; 376 377 /* fill in the statics information */ 378 statics->procstate_names = procstatenames; 379 statics->cpustate_names = cpustatenames; 380 statics->memory_names = memorynames; 381 if (arc_enabled) 382 statics->arc_names = arcnames; 383 else 384 statics->arc_names = NULL; 385 if (carc_enabled) 386 statics->carc_names = carcnames; 387 else 388 statics->carc_names = NULL; 389 statics->swap_names = swapnames; 390 #ifdef ORDER 391 statics->order_names = ordernames; 392 #endif 393 394 /* Allocate state for per-CPU stats. */ 395 cpumask = 0; 396 ncpus = 0; 397 GETSYSCTL("kern.smp.maxcpus", maxcpu); 398 size = sizeof(long) * maxcpu * CPUSTATES; 399 times = malloc(size); 400 if (times == NULL) 401 err(1, "malloc %zu bytes", size); 402 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 403 err(1, "sysctlbyname kern.cp_times"); 404 pcpu_cp_time = calloc(1, size); 405 maxid = (size / CPUSTATES / sizeof(long)) - 1; 406 for (i = 0; i <= maxid; i++) { 407 empty = 1; 408 for (j = 0; empty && j < CPUSTATES; j++) { 409 if (times[i * CPUSTATES + j] != 0) 410 empty = 0; 411 } 412 if (!empty) { 413 cpumask |= (1ul << i); 414 ncpus++; 415 } 416 } 417 size = sizeof(long) * ncpus * CPUSTATES; 418 pcpu_cp_old = calloc(1, size); 419 pcpu_cp_diff = calloc(1, size); 420 pcpu_cpu_states = calloc(1, size); 421 statics->ncpus = ncpus; 422 423 update_layout(); 424 425 /* all done! */ 426 return (0); 427 } 428 429 char * 430 format_header(char *uname_field) 431 { 432 static char Header[128]; 433 const char *prehead; 434 435 if (ps.jail) 436 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 437 else 438 jidlength = 0; 439 440 if (ps.swap) 441 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 442 else 443 swaplength = 0; 444 445 switch (displaymode) { 446 case DISP_CPU: 447 /* 448 * The logic of picking the right header format seems reverse 449 * here because we only want to display a THR column when 450 * "thread mode" is off (and threads are not listed as 451 * separate lines). 452 */ 453 prehead = smpmode ? 454 (ps.thread ? smp_header : smp_header_thr) : 455 (ps.thread ? up_header : up_header_thr); 456 snprintf(Header, sizeof(Header), prehead, 457 jidlength, ps.jail ? " JID" : "", 458 namelength, namelength, uname_field, 459 swaplength, ps.swap ? " SWAP" : "", 460 ps.wcpu ? "WCPU" : "CPU"); 461 break; 462 case DISP_IO: 463 prehead = io_header; 464 snprintf(Header, sizeof(Header), prehead, 465 jidlength, ps.jail ? " JID" : "", 466 namelength, namelength, uname_field); 467 break; 468 } 469 cmdlengthdelta = strlen(Header) - 7; 470 return (Header); 471 } 472 473 static int swappgsin = -1; 474 static int swappgsout = -1; 475 extern struct timeval timeout; 476 477 478 void 479 get_system_info(struct system_info *si) 480 { 481 long total; 482 struct loadavg sysload; 483 int mib[2]; 484 struct timeval boottime; 485 uint64_t arc_stat, arc_stat2; 486 int i, j; 487 size_t size; 488 489 /* get the CPU stats */ 490 size = (maxid + 1) * CPUSTATES * sizeof(long); 491 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 492 err(1, "sysctlbyname kern.cp_times"); 493 GETSYSCTL("kern.cp_time", cp_time); 494 GETSYSCTL("vm.loadavg", sysload); 495 GETSYSCTL("kern.lastpid", lastpid); 496 497 /* convert load averages to doubles */ 498 for (i = 0; i < 3; i++) 499 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 500 501 /* convert cp_time counts to percentages */ 502 for (i = j = 0; i <= maxid; i++) { 503 if ((cpumask & (1ul << i)) == 0) 504 continue; 505 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 506 &pcpu_cp_time[j * CPUSTATES], 507 &pcpu_cp_old[j * CPUSTATES], 508 &pcpu_cp_diff[j * CPUSTATES]); 509 j++; 510 } 511 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 512 513 /* sum memory & swap statistics */ 514 { 515 static unsigned int swap_delay = 0; 516 static int swapavail = 0; 517 static int swapfree = 0; 518 static long bufspace = 0; 519 static uint64_t nspgsin, nspgsout; 520 521 GETSYSCTL("vfs.bufspace", bufspace); 522 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 523 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 524 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 525 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 526 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 527 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 528 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 529 /* convert memory stats to Kbytes */ 530 memory_stats[0] = pagetok(memory_stats[0]); 531 memory_stats[1] = pagetok(memory_stats[1]); 532 memory_stats[2] = pagetok(memory_stats[2]); 533 memory_stats[3] = pagetok(memory_stats[3]); 534 memory_stats[4] = bufspace / 1024; 535 memory_stats[5] = pagetok(memory_stats[5]); 536 memory_stats[6] = -1; 537 538 /* first interval */ 539 if (swappgsin < 0) { 540 swap_stats[4] = 0; 541 swap_stats[5] = 0; 542 } 543 544 /* compute differences between old and new swap statistic */ 545 else { 546 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 547 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 548 } 549 550 swappgsin = nspgsin; 551 swappgsout = nspgsout; 552 553 /* call CPU heavy swapmode() only for changes */ 554 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 555 swap_stats[3] = swapmode(&swapavail, &swapfree); 556 swap_stats[0] = swapavail; 557 swap_stats[1] = swapavail - swapfree; 558 swap_stats[2] = swapfree; 559 } 560 swap_delay = 1; 561 swap_stats[6] = -1; 562 } 563 564 if (arc_enabled) { 565 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 566 arc_stats[0] = arc_stat >> 10; 567 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 568 arc_stats[1] = arc_stat >> 10; 569 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 570 arc_stats[2] = arc_stat >> 10; 571 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 572 arc_stats[3] = arc_stat >> 10; 573 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 574 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 575 arc_stats[4] = arc_stat + arc_stat2 >> 10; 576 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 577 arc_stats[5] = arc_stat >> 10; 578 si->arc = arc_stats; 579 } 580 if (carc_enabled) { 581 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 582 carc_stats[0] = arc_stat >> 10; 583 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 584 carc_stats[1] = arc_stat >> 10; 585 carc_stats[2] = arc_stats[0]; /* ARC Total */ 586 GETSYSCTL("kstat.zfs.misc.arcstats.overhead_size", arc_stat); 587 carc_stats[3] = arc_stat >> 10; 588 si->carc = carc_stats; 589 } 590 591 /* set arrays and strings */ 592 if (pcpu_stats) { 593 si->cpustates = pcpu_cpu_states; 594 si->ncpus = ncpus; 595 } else { 596 si->cpustates = cpu_states; 597 si->ncpus = 1; 598 } 599 si->memory = memory_stats; 600 si->swap = swap_stats; 601 602 603 if (lastpid > 0) { 604 si->last_pid = lastpid; 605 } else { 606 si->last_pid = -1; 607 } 608 609 /* 610 * Print how long system has been up. 611 * (Found by looking getting "boottime" from the kernel) 612 */ 613 mib[0] = CTL_KERN; 614 mib[1] = KERN_BOOTTIME; 615 size = sizeof(boottime); 616 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 617 boottime.tv_sec != 0) { 618 si->boottime = boottime; 619 } else { 620 si->boottime.tv_sec = -1; 621 } 622 } 623 624 #define NOPROC ((void *)-1) 625 626 /* 627 * We need to compare data from the old process entry with the new 628 * process entry. 629 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 630 * structure to cache the mapping. We also use a negative cache pointer 631 * of NOPROC to avoid duplicate lookups. 632 * XXX: this could be done when the actual processes are fetched, we do 633 * it here out of laziness. 634 */ 635 const struct kinfo_proc * 636 get_old_proc(struct kinfo_proc *pp) 637 { 638 struct kinfo_proc **oldpp, *oldp; 639 640 /* 641 * If this is the first fetch of the kinfo_procs then we don't have 642 * any previous entries. 643 */ 644 if (previous_proc_count == 0) 645 return (NULL); 646 /* negative cache? */ 647 if (pp->ki_udata == NOPROC) 648 return (NULL); 649 /* cached? */ 650 if (pp->ki_udata != NULL) 651 return (pp->ki_udata); 652 /* 653 * Not cached, 654 * 1) look up based on pid. 655 * 2) compare process start. 656 * If we fail here, then setup a negative cache entry, otherwise 657 * cache it. 658 */ 659 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 660 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 661 if (oldpp == NULL) { 662 pp->ki_udata = NOPROC; 663 return (NULL); 664 } 665 oldp = *oldpp; 666 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 667 pp->ki_udata = NOPROC; 668 return (NULL); 669 } 670 pp->ki_udata = oldp; 671 return (oldp); 672 } 673 674 /* 675 * Return the total amount of IO done in blocks in/out and faults. 676 * store the values individually in the pointers passed in. 677 */ 678 long 679 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 680 long *vcsw, long *ivcsw) 681 { 682 const struct kinfo_proc *oldp; 683 static struct kinfo_proc dummy; 684 long ret; 685 686 oldp = get_old_proc(pp); 687 if (oldp == NULL) { 688 bzero(&dummy, sizeof(dummy)); 689 oldp = &dummy; 690 } 691 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 692 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 693 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 694 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 695 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 696 ret = 697 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 698 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 699 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 700 return (ret); 701 } 702 703 /* 704 * If there was a previous update, use the delta in ki_runtime over 705 * the previous interval to calculate pctcpu. Otherwise, fall back 706 * to using the kernel's ki_pctcpu. 707 */ 708 static double 709 proc_calc_pctcpu(struct kinfo_proc *pp) 710 { 711 const struct kinfo_proc *oldp; 712 713 if (previous_interval != 0) { 714 oldp = get_old_proc(pp); 715 if (oldp != NULL) 716 return ((double)(pp->ki_runtime - oldp->ki_runtime) 717 / previous_interval); 718 719 /* 720 * If this process/thread was created during the previous 721 * interval, charge it's total runtime to the previous 722 * interval. 723 */ 724 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 725 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 726 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 727 return ((double)pp->ki_runtime / previous_interval); 728 } 729 return (pctdouble(pp->ki_pctcpu)); 730 } 731 732 /* 733 * Return true if this process has used any CPU time since the 734 * previous update. 735 */ 736 static int 737 proc_used_cpu(struct kinfo_proc *pp) 738 { 739 const struct kinfo_proc *oldp; 740 741 oldp = get_old_proc(pp); 742 if (oldp == NULL) 743 return (PCTCPU(pp) != 0); 744 return (pp->ki_runtime != oldp->ki_runtime || 745 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 746 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 747 } 748 749 /* 750 * Return the total number of block in/out and faults by a process. 751 */ 752 long 753 get_io_total(struct kinfo_proc *pp) 754 { 755 long dummy; 756 757 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 758 } 759 760 static struct handle handle; 761 762 caddr_t 763 get_process_info(struct system_info *si, struct process_select *sel, 764 int (*compare)(const void *, const void *)) 765 { 766 int i; 767 int total_procs; 768 long p_io; 769 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 770 long nsec; 771 int active_procs; 772 struct kinfo_proc **prefp; 773 struct kinfo_proc *pp; 774 struct timespec previous_proc_uptime; 775 776 /* these are copied out of sel for speed */ 777 int show_idle; 778 int show_jid; 779 int show_self; 780 int show_system; 781 int show_uid; 782 int show_command; 783 int show_kidle; 784 785 /* 786 * If thread state was toggled, don't cache the previous processes. 787 */ 788 if (previous_thread != sel->thread) 789 nproc = 0; 790 previous_thread = sel->thread; 791 792 /* 793 * Save the previous process info. 794 */ 795 if (previous_proc_count_max < nproc) { 796 free(previous_procs); 797 previous_procs = malloc(nproc * sizeof(*previous_procs)); 798 free(previous_pref); 799 previous_pref = malloc(nproc * sizeof(*previous_pref)); 800 if (previous_procs == NULL || previous_pref == NULL) { 801 (void) fprintf(stderr, "top: Out of memory.\n"); 802 quit(23); 803 } 804 previous_proc_count_max = nproc; 805 } 806 if (nproc) { 807 for (i = 0; i < nproc; i++) 808 previous_pref[i] = &previous_procs[i]; 809 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 810 qsort(previous_pref, nproc, sizeof(*previous_pref), 811 ps.thread ? compare_tid : compare_pid); 812 } 813 previous_proc_count = nproc; 814 previous_proc_uptime = proc_uptime; 815 previous_wall_time = proc_wall_time; 816 previous_interval = 0; 817 818 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 819 0, &nproc); 820 (void)gettimeofday(&proc_wall_time, NULL); 821 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 822 memset(&proc_uptime, 0, sizeof(proc_uptime)); 823 else if (previous_proc_uptime.tv_sec != 0 && 824 previous_proc_uptime.tv_nsec != 0) { 825 previous_interval = (proc_uptime.tv_sec - 826 previous_proc_uptime.tv_sec) * 1000000; 827 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 828 if (nsec < 0) { 829 previous_interval -= 1000000; 830 nsec += 1000000000; 831 } 832 previous_interval += nsec / 1000; 833 } 834 if (nproc > onproc) { 835 pref = realloc(pref, sizeof(*pref) * nproc); 836 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 837 onproc = nproc; 838 } 839 if (pref == NULL || pbase == NULL || pcpu == NULL) { 840 (void) fprintf(stderr, "top: Out of memory.\n"); 841 quit(23); 842 } 843 /* get a pointer to the states summary array */ 844 si->procstates = process_states; 845 846 /* set up flags which define what we are going to select */ 847 show_idle = sel->idle; 848 show_jid = sel->jid != -1; 849 show_self = sel->self == -1; 850 show_system = sel->system; 851 show_uid = sel->uid != -1; 852 show_command = sel->command != NULL; 853 show_kidle = sel->kidle; 854 855 /* count up process states and get pointers to interesting procs */ 856 total_procs = 0; 857 active_procs = 0; 858 total_inblock = 0; 859 total_oublock = 0; 860 total_majflt = 0; 861 memset((char *)process_states, 0, sizeof(process_states)); 862 prefp = pref; 863 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 864 865 if (pp->ki_stat == 0) 866 /* not in use */ 867 continue; 868 869 if (!show_self && pp->ki_pid == sel->self) 870 /* skip self */ 871 continue; 872 873 if (!show_system && (pp->ki_flag & P_SYSTEM)) 874 /* skip system process */ 875 continue; 876 877 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 878 &p_vcsw, &p_ivcsw); 879 total_inblock += p_inblock; 880 total_oublock += p_oublock; 881 total_majflt += p_majflt; 882 total_procs++; 883 process_states[pp->ki_stat]++; 884 885 if (pp->ki_stat == SZOMB) 886 /* skip zombies */ 887 continue; 888 889 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 890 /* skip kernel idle process */ 891 continue; 892 893 PCTCPU(pp) = proc_calc_pctcpu(pp); 894 if (sel->thread && PCTCPU(pp) > 1.0) 895 PCTCPU(pp) = 1.0; 896 if (displaymode == DISP_CPU && !show_idle && 897 (!proc_used_cpu(pp) || 898 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 899 /* skip idle or non-running processes */ 900 continue; 901 902 if (displaymode == DISP_IO && !show_idle && p_io == 0) 903 /* skip processes that aren't doing I/O */ 904 continue; 905 906 if (show_jid && pp->ki_jid != sel->jid) 907 /* skip proc. that don't belong to the selected JID */ 908 continue; 909 910 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 911 /* skip proc. that don't belong to the selected UID */ 912 continue; 913 914 *prefp++ = pp; 915 active_procs++; 916 } 917 918 /* if requested, sort the "interesting" processes */ 919 if (compare != NULL) 920 qsort(pref, active_procs, sizeof(*pref), compare); 921 922 /* remember active and total counts */ 923 si->p_total = total_procs; 924 si->p_active = pref_len = active_procs; 925 926 /* pass back a handle */ 927 handle.next_proc = pref; 928 handle.remaining = active_procs; 929 return ((caddr_t)&handle); 930 } 931 932 static char fmt[512]; /* static area where result is built */ 933 934 char * 935 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 936 { 937 struct kinfo_proc *pp; 938 const struct kinfo_proc *oldp; 939 long cputime; 940 double pct; 941 struct handle *hp; 942 char status[16]; 943 int cpu, state; 944 struct rusage ru, *rup; 945 long p_tot, s_tot; 946 char *proc_fmt, thr_buf[6]; 947 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 948 char *cmdbuf = NULL; 949 char **args; 950 const int cmdlen = 128; 951 952 /* find and remember the next proc structure */ 953 hp = (struct handle *)handle; 954 pp = *(hp->next_proc++); 955 hp->remaining--; 956 957 /* get the process's command name */ 958 if ((pp->ki_flag & P_INMEM) == 0) { 959 /* 960 * Print swapped processes as <pname> 961 */ 962 size_t len; 963 964 len = strlen(pp->ki_comm); 965 if (len > sizeof(pp->ki_comm) - 3) 966 len = sizeof(pp->ki_comm) - 3; 967 memmove(pp->ki_comm + 1, pp->ki_comm, len); 968 pp->ki_comm[0] = '<'; 969 pp->ki_comm[len + 1] = '>'; 970 pp->ki_comm[len + 2] = '\0'; 971 } 972 973 /* 974 * Convert the process's runtime from microseconds to seconds. This 975 * time includes the interrupt time although that is not wanted here. 976 * ps(1) is similarly sloppy. 977 */ 978 cputime = (pp->ki_runtime + 500000) / 1000000; 979 980 /* calculate the base for cpu percentages */ 981 pct = PCTCPU(pp); 982 983 /* generate "STATE" field */ 984 switch (state = pp->ki_stat) { 985 case SRUN: 986 if (smpmode && pp->ki_oncpu != NOCPU) 987 sprintf(status, "CPU%d", pp->ki_oncpu); 988 else 989 strcpy(status, "RUN"); 990 break; 991 case SLOCK: 992 if (pp->ki_kiflag & KI_LOCKBLOCK) { 993 sprintf(status, "*%.6s", pp->ki_lockname); 994 break; 995 } 996 /* fall through */ 997 case SSLEEP: 998 if (pp->ki_wmesg != NULL) { 999 sprintf(status, "%.6s", pp->ki_wmesg); 1000 break; 1001 } 1002 /* FALLTHROUGH */ 1003 default: 1004 1005 if (state >= 0 && 1006 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 1007 sprintf(status, "%.6s", state_abbrev[state]); 1008 else 1009 sprintf(status, "?%5d", state); 1010 break; 1011 } 1012 1013 cmdbuf = (char *)malloc(cmdlen + 1); 1014 if (cmdbuf == NULL) { 1015 warn("malloc(%d)", cmdlen + 1); 1016 return NULL; 1017 } 1018 1019 if (!(flags & FMT_SHOWARGS)) { 1020 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1021 pp->ki_tdname[0]) { 1022 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1023 pp->ki_tdname, pp->ki_moretdname); 1024 } else { 1025 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1026 } 1027 } else { 1028 if (pp->ki_flag & P_SYSTEM || 1029 pp->ki_args == NULL || 1030 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1031 !(*args)) { 1032 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1033 pp->ki_tdname[0]) { 1034 snprintf(cmdbuf, cmdlen, 1035 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1036 pp->ki_moretdname); 1037 } else { 1038 snprintf(cmdbuf, cmdlen, 1039 "[%s]", pp->ki_comm); 1040 } 1041 } else { 1042 char *src, *dst, *argbuf; 1043 char *cmd; 1044 size_t argbuflen; 1045 size_t len; 1046 1047 argbuflen = cmdlen * 4; 1048 argbuf = (char *)malloc(argbuflen + 1); 1049 if (argbuf == NULL) { 1050 warn("malloc(%zu)", argbuflen + 1); 1051 free(cmdbuf); 1052 return NULL; 1053 } 1054 1055 dst = argbuf; 1056 1057 /* Extract cmd name from argv */ 1058 cmd = strrchr(*args, '/'); 1059 if (cmd == NULL) 1060 cmd = *args; 1061 else 1062 cmd++; 1063 1064 for (; (src = *args++) != NULL; ) { 1065 if (*src == '\0') 1066 continue; 1067 len = (argbuflen - (dst - argbuf) - 1) / 4; 1068 strvisx(dst, src, 1069 MIN(strlen(src), len), 1070 VIS_NL | VIS_CSTYLE); 1071 while (*dst != '\0') 1072 dst++; 1073 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1074 *dst++ = ' '; /* add delimiting space */ 1075 } 1076 if (dst != argbuf && dst[-1] == ' ') 1077 dst--; 1078 *dst = '\0'; 1079 1080 if (strcmp(cmd, pp->ki_comm) != 0) { 1081 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1082 pp->ki_tdname[0]) 1083 snprintf(cmdbuf, cmdlen, 1084 "%s (%s){%s%s}", argbuf, 1085 pp->ki_comm, pp->ki_tdname, 1086 pp->ki_moretdname); 1087 else 1088 snprintf(cmdbuf, cmdlen, 1089 "%s (%s)", argbuf, pp->ki_comm); 1090 } else { 1091 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1092 pp->ki_tdname[0]) 1093 snprintf(cmdbuf, cmdlen, 1094 "%s{%s%s}", argbuf, pp->ki_tdname, 1095 pp->ki_moretdname); 1096 else 1097 strlcpy(cmdbuf, argbuf, cmdlen); 1098 } 1099 free(argbuf); 1100 } 1101 } 1102 1103 if (ps.jail == 0) 1104 jid_buf[0] = '\0'; 1105 else 1106 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1107 jidlength - 1, pp->ki_jid); 1108 1109 if (ps.swap == 0) 1110 swap_buf[0] = '\0'; 1111 else 1112 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1113 swaplength - 1, 1114 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1115 1116 if (displaymode == DISP_IO) { 1117 oldp = get_old_proc(pp); 1118 if (oldp != NULL) { 1119 ru.ru_inblock = RU(pp)->ru_inblock - 1120 RU(oldp)->ru_inblock; 1121 ru.ru_oublock = RU(pp)->ru_oublock - 1122 RU(oldp)->ru_oublock; 1123 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1124 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1125 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1126 rup = &ru; 1127 } else { 1128 rup = RU(pp); 1129 } 1130 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1131 s_tot = total_inblock + total_oublock + total_majflt; 1132 1133 snprintf(fmt, sizeof(fmt), io_Proc_format, 1134 pp->ki_pid, 1135 jidlength, jid_buf, 1136 namelength, namelength, (*get_userid)(pp->ki_ruid), 1137 rup->ru_nvcsw, 1138 rup->ru_nivcsw, 1139 rup->ru_inblock, 1140 rup->ru_oublock, 1141 rup->ru_majflt, 1142 p_tot, 1143 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1144 screen_width > cmdlengthdelta ? 1145 screen_width - cmdlengthdelta : 0, 1146 printable(cmdbuf)); 1147 1148 free(cmdbuf); 1149 1150 return (fmt); 1151 } 1152 1153 /* format this entry */ 1154 if (smpmode) { 1155 if (state == SRUN && pp->ki_oncpu != NOCPU) 1156 cpu = pp->ki_oncpu; 1157 else 1158 cpu = pp->ki_lastcpu; 1159 } else 1160 cpu = 0; 1161 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1162 if (ps.thread != 0) 1163 thr_buf[0] = '\0'; 1164 else 1165 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1166 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1167 1168 snprintf(fmt, sizeof(fmt), proc_fmt, 1169 pp->ki_pid, 1170 jidlength, jid_buf, 1171 namelength, namelength, (*get_userid)(pp->ki_ruid), 1172 thr_buf, 1173 pp->ki_pri.pri_level - PZERO, 1174 format_nice(pp), 1175 format_k2(PROCSIZE(pp)), 1176 format_k2(pagetok(pp->ki_rssize)), 1177 swaplength, swaplength, swap_buf, 1178 status, 1179 cpu, 1180 format_time(cputime), 1181 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1182 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1183 printable(cmdbuf)); 1184 1185 free(cmdbuf); 1186 1187 /* return the result */ 1188 return (fmt); 1189 } 1190 1191 static void 1192 getsysctl(const char *name, void *ptr, size_t len) 1193 { 1194 size_t nlen = len; 1195 1196 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1197 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1198 strerror(errno)); 1199 quit(23); 1200 } 1201 if (nlen != len) { 1202 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1203 name, (unsigned long)len, (unsigned long)nlen); 1204 quit(23); 1205 } 1206 } 1207 1208 static const char * 1209 format_nice(const struct kinfo_proc *pp) 1210 { 1211 const char *fifo, *kproc; 1212 int rtpri; 1213 static char nicebuf[4 + 1]; 1214 1215 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1216 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1217 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1218 case PRI_ITHD: 1219 return ("-"); 1220 case PRI_REALTIME: 1221 /* 1222 * XXX: the kernel doesn't tell us the original rtprio and 1223 * doesn't really know what it was, so to recover it we 1224 * must be more chummy with the implementation than the 1225 * implementation is with itself. pri_user gives a 1226 * constant "base" priority, but is only initialized 1227 * properly for user threads. pri_native gives what the 1228 * kernel calls the "base" priority, but it isn't constant 1229 * since it is changed by priority propagation. pri_native 1230 * also isn't properly initialized for all threads, but it 1231 * is properly initialized for kernel realtime and idletime 1232 * threads. Thus we use pri_user for the base priority of 1233 * user threads (it is always correct) and pri_native for 1234 * the base priority of kernel realtime and idletime threads 1235 * (there is nothing better, and it is usually correct). 1236 * 1237 * The field width and thus the buffer are too small for 1238 * values like "kr31F", but such values shouldn't occur, 1239 * and if they do then the tailing "F" is not displayed. 1240 */ 1241 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1242 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1243 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1244 kproc, rtpri, fifo); 1245 break; 1246 case PRI_TIMESHARE: 1247 if (pp->ki_flag & P_KPROC) 1248 return ("-"); 1249 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1250 break; 1251 case PRI_IDLE: 1252 /* XXX: as above. */ 1253 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1254 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1255 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1256 kproc, rtpri, fifo); 1257 break; 1258 default: 1259 return ("?"); 1260 } 1261 return (nicebuf); 1262 } 1263 1264 /* comparison routines for qsort */ 1265 1266 static int 1267 compare_pid(const void *p1, const void *p2) 1268 { 1269 const struct kinfo_proc * const *pp1 = p1; 1270 const struct kinfo_proc * const *pp2 = p2; 1271 1272 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1273 abort(); 1274 1275 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1276 } 1277 1278 static int 1279 compare_tid(const void *p1, const void *p2) 1280 { 1281 const struct kinfo_proc * const *pp1 = p1; 1282 const struct kinfo_proc * const *pp2 = p2; 1283 1284 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1285 abort(); 1286 1287 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1288 } 1289 1290 /* 1291 * proc_compare - comparison function for "qsort" 1292 * Compares the resource consumption of two processes using five 1293 * distinct keys. The keys (in descending order of importance) are: 1294 * percent cpu, cpu ticks, state, resident set size, total virtual 1295 * memory usage. The process states are ordered as follows (from least 1296 * to most important): WAIT, zombie, sleep, stop, start, run. The 1297 * array declaration below maps a process state index into a number 1298 * that reflects this ordering. 1299 */ 1300 1301 static int sorted_state[] = { 1302 0, /* not used */ 1303 3, /* sleep */ 1304 1, /* ABANDONED (WAIT) */ 1305 6, /* run */ 1306 5, /* start */ 1307 2, /* zombie */ 1308 4 /* stop */ 1309 }; 1310 1311 1312 #define ORDERKEY_PCTCPU(a, b) do { \ 1313 double diff; \ 1314 if (ps.wcpu) \ 1315 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1316 weighted_cpu(PCTCPU((a)), (a)); \ 1317 else \ 1318 diff = PCTCPU((b)) - PCTCPU((a)); \ 1319 if (diff != 0) \ 1320 return (diff > 0 ? 1 : -1); \ 1321 } while (0) 1322 1323 #define ORDERKEY_CPTICKS(a, b) do { \ 1324 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1325 if (diff != 0) \ 1326 return (diff > 0 ? 1 : -1); \ 1327 } while (0) 1328 1329 #define ORDERKEY_STATE(a, b) do { \ 1330 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1331 if (diff != 0) \ 1332 return (diff > 0 ? 1 : -1); \ 1333 } while (0) 1334 1335 #define ORDERKEY_PRIO(a, b) do { \ 1336 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1337 if (diff != 0) \ 1338 return (diff > 0 ? 1 : -1); \ 1339 } while (0) 1340 1341 #define ORDERKEY_THREADS(a, b) do { \ 1342 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1343 if (diff != 0) \ 1344 return (diff > 0 ? 1 : -1); \ 1345 } while (0) 1346 1347 #define ORDERKEY_RSSIZE(a, b) do { \ 1348 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1349 if (diff != 0) \ 1350 return (diff > 0 ? 1 : -1); \ 1351 } while (0) 1352 1353 #define ORDERKEY_MEM(a, b) do { \ 1354 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1355 if (diff != 0) \ 1356 return (diff > 0 ? 1 : -1); \ 1357 } while (0) 1358 1359 #define ORDERKEY_JID(a, b) do { \ 1360 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1361 if (diff != 0) \ 1362 return (diff > 0 ? 1 : -1); \ 1363 } while (0) 1364 1365 #define ORDERKEY_SWAP(a, b) do { \ 1366 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1367 if (diff != 0) \ 1368 return (diff > 0 ? 1 : -1); \ 1369 } while (0) 1370 1371 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1372 1373 int 1374 #ifdef ORDER 1375 compare_cpu(void *arg1, void *arg2) 1376 #else 1377 proc_compare(void *arg1, void *arg2) 1378 #endif 1379 { 1380 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1381 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1382 1383 ORDERKEY_PCTCPU(p1, p2); 1384 ORDERKEY_CPTICKS(p1, p2); 1385 ORDERKEY_STATE(p1, p2); 1386 ORDERKEY_PRIO(p1, p2); 1387 ORDERKEY_RSSIZE(p1, p2); 1388 ORDERKEY_MEM(p1, p2); 1389 1390 return (0); 1391 } 1392 1393 #ifdef ORDER 1394 /* "cpu" compare routines */ 1395 int compare_size(), compare_res(), compare_time(), compare_prio(), 1396 compare_threads(); 1397 1398 /* 1399 * "io" compare routines. Context switches aren't i/o, but are displayed 1400 * on the "io" display. 1401 */ 1402 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1403 compare_vcsw(), compare_ivcsw(); 1404 1405 int (*compares[])() = { 1406 compare_cpu, 1407 compare_size, 1408 compare_res, 1409 compare_time, 1410 compare_prio, 1411 compare_threads, 1412 compare_iototal, 1413 compare_ioread, 1414 compare_iowrite, 1415 compare_iofault, 1416 compare_vcsw, 1417 compare_ivcsw, 1418 compare_jid, 1419 compare_swap, 1420 NULL 1421 }; 1422 1423 /* compare_size - the comparison function for sorting by total memory usage */ 1424 1425 int 1426 compare_size(void *arg1, void *arg2) 1427 { 1428 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1429 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1430 1431 ORDERKEY_MEM(p1, p2); 1432 ORDERKEY_RSSIZE(p1, p2); 1433 ORDERKEY_PCTCPU(p1, p2); 1434 ORDERKEY_CPTICKS(p1, p2); 1435 ORDERKEY_STATE(p1, p2); 1436 ORDERKEY_PRIO(p1, p2); 1437 1438 return (0); 1439 } 1440 1441 /* compare_res - the comparison function for sorting by resident set size */ 1442 1443 int 1444 compare_res(void *arg1, void *arg2) 1445 { 1446 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1447 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1448 1449 ORDERKEY_RSSIZE(p1, p2); 1450 ORDERKEY_MEM(p1, p2); 1451 ORDERKEY_PCTCPU(p1, p2); 1452 ORDERKEY_CPTICKS(p1, p2); 1453 ORDERKEY_STATE(p1, p2); 1454 ORDERKEY_PRIO(p1, p2); 1455 1456 return (0); 1457 } 1458 1459 /* compare_time - the comparison function for sorting by total cpu time */ 1460 1461 int 1462 compare_time(void *arg1, void *arg2) 1463 { 1464 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1465 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1466 1467 ORDERKEY_CPTICKS(p1, p2); 1468 ORDERKEY_PCTCPU(p1, p2); 1469 ORDERKEY_STATE(p1, p2); 1470 ORDERKEY_PRIO(p1, p2); 1471 ORDERKEY_RSSIZE(p1, p2); 1472 ORDERKEY_MEM(p1, p2); 1473 1474 return (0); 1475 } 1476 1477 /* compare_prio - the comparison function for sorting by priority */ 1478 1479 int 1480 compare_prio(void *arg1, void *arg2) 1481 { 1482 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1483 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1484 1485 ORDERKEY_PRIO(p1, p2); 1486 ORDERKEY_CPTICKS(p1, p2); 1487 ORDERKEY_PCTCPU(p1, p2); 1488 ORDERKEY_STATE(p1, p2); 1489 ORDERKEY_RSSIZE(p1, p2); 1490 ORDERKEY_MEM(p1, p2); 1491 1492 return (0); 1493 } 1494 1495 /* compare_threads - the comparison function for sorting by threads */ 1496 int 1497 compare_threads(void *arg1, void *arg2) 1498 { 1499 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1500 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1501 1502 ORDERKEY_THREADS(p1, p2); 1503 ORDERKEY_PCTCPU(p1, p2); 1504 ORDERKEY_CPTICKS(p1, p2); 1505 ORDERKEY_STATE(p1, p2); 1506 ORDERKEY_PRIO(p1, p2); 1507 ORDERKEY_RSSIZE(p1, p2); 1508 ORDERKEY_MEM(p1, p2); 1509 1510 return (0); 1511 } 1512 1513 /* compare_jid - the comparison function for sorting by jid */ 1514 static int 1515 compare_jid(const void *arg1, const void *arg2) 1516 { 1517 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1518 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1519 1520 ORDERKEY_JID(p1, p2); 1521 ORDERKEY_PCTCPU(p1, p2); 1522 ORDERKEY_CPTICKS(p1, p2); 1523 ORDERKEY_STATE(p1, p2); 1524 ORDERKEY_PRIO(p1, p2); 1525 ORDERKEY_RSSIZE(p1, p2); 1526 ORDERKEY_MEM(p1, p2); 1527 1528 return (0); 1529 } 1530 1531 /* compare_swap - the comparison function for sorting by swap */ 1532 static int 1533 compare_swap(const void *arg1, const void *arg2) 1534 { 1535 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1536 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1537 1538 ORDERKEY_SWAP(p1, p2); 1539 ORDERKEY_PCTCPU(p1, p2); 1540 ORDERKEY_CPTICKS(p1, p2); 1541 ORDERKEY_STATE(p1, p2); 1542 ORDERKEY_PRIO(p1, p2); 1543 ORDERKEY_RSSIZE(p1, p2); 1544 ORDERKEY_MEM(p1, p2); 1545 1546 return (0); 1547 } 1548 #endif /* ORDER */ 1549 1550 /* assorted comparison functions for sorting by i/o */ 1551 1552 int 1553 #ifdef ORDER 1554 compare_iototal(void *arg1, void *arg2) 1555 #else 1556 io_compare(void *arg1, void *arg2) 1557 #endif 1558 { 1559 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1560 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1561 1562 return (get_io_total(p2) - get_io_total(p1)); 1563 } 1564 1565 #ifdef ORDER 1566 int 1567 compare_ioread(void *arg1, void *arg2) 1568 { 1569 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1570 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1571 long dummy, inp1, inp2; 1572 1573 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1574 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1575 1576 return (inp2 - inp1); 1577 } 1578 1579 int 1580 compare_iowrite(void *arg1, void *arg2) 1581 { 1582 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1583 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1584 long dummy, oup1, oup2; 1585 1586 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1587 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1588 1589 return (oup2 - oup1); 1590 } 1591 1592 int 1593 compare_iofault(void *arg1, void *arg2) 1594 { 1595 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1596 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1597 long dummy, flp1, flp2; 1598 1599 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1600 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1601 1602 return (flp2 - flp1); 1603 } 1604 1605 int 1606 compare_vcsw(void *arg1, void *arg2) 1607 { 1608 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1609 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1610 long dummy, flp1, flp2; 1611 1612 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1613 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1614 1615 return (flp2 - flp1); 1616 } 1617 1618 int 1619 compare_ivcsw(void *arg1, void *arg2) 1620 { 1621 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1622 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1623 long dummy, flp1, flp2; 1624 1625 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1626 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1627 1628 return (flp2 - flp1); 1629 } 1630 #endif /* ORDER */ 1631 1632 /* 1633 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1634 * the process does not exist. 1635 * It is EXTREMELY IMPORTANT that this function work correctly. 1636 * If top runs setuid root (as in SVR4), then this function 1637 * is the only thing that stands in the way of a serious 1638 * security problem. It validates requests for the "kill" 1639 * and "renice" commands. 1640 */ 1641 1642 int 1643 proc_owner(int pid) 1644 { 1645 int cnt; 1646 struct kinfo_proc **prefp; 1647 struct kinfo_proc *pp; 1648 1649 prefp = pref; 1650 cnt = pref_len; 1651 while (--cnt >= 0) { 1652 pp = *prefp++; 1653 if (pp->ki_pid == (pid_t)pid) 1654 return ((int)pp->ki_ruid); 1655 } 1656 return (-1); 1657 } 1658 1659 static int 1660 swapmode(int *retavail, int *retfree) 1661 { 1662 int n; 1663 int pagesize = getpagesize(); 1664 struct kvm_swap swapary[1]; 1665 1666 *retavail = 0; 1667 *retfree = 0; 1668 1669 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1670 1671 n = kvm_getswapinfo(kd, swapary, 1, 0); 1672 if (n < 0 || swapary[0].ksw_total == 0) 1673 return (0); 1674 1675 *retavail = CONVERT(swapary[0].ksw_total); 1676 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1677 1678 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1679 return (n); 1680 } 1681