1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/systm.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/vnode.h> 81 #include <sys/mount.h> 82 #include <sys/kernel.h> 83 #include <sys/syscallsubr.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/taskqueue.h> 87 88 #include <security/audit/audit.h> 89 90 #include <geom/geom.h> 91 #include <geom/geom_vfs.h> 92 93 #include <ufs/ufs/dir.h> 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include <ufs/ffs/softdep.h> 103 104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 105 int size, int rsize); 106 107 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 108 static ufs2_daddr_t 109 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 110 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 111 struct vnode *, ufs2_daddr_t, long, ino_t, 112 struct workhead *); 113 static void ffs_blkfree_trim_completed(struct buf *); 114 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 115 #ifdef INVARIANTS 116 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 117 #endif 118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 119 static ino_t ffs_dirpref(struct inode *); 120 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 121 int, int); 122 static ufs2_daddr_t ffs_hashalloc 123 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 124 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 125 int); 126 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 127 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 128 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 129 static void ffs_ckhash_cg(struct buf *); 130 131 /* 132 * Allocate a block in the filesystem. 133 * 134 * The size of the requested block is given, which must be some 135 * multiple of fs_fsize and <= fs_bsize. 136 * A preference may be optionally specified. If a preference is given 137 * the following hierarchy is used to allocate a block: 138 * 1) allocate the requested block. 139 * 2) allocate a rotationally optimal block in the same cylinder. 140 * 3) allocate a block in the same cylinder group. 141 * 4) quadradically rehash into other cylinder groups, until an 142 * available block is located. 143 * If no block preference is given the following hierarchy is used 144 * to allocate a block: 145 * 1) allocate a block in the cylinder group that contains the 146 * inode for the file. 147 * 2) quadradically rehash into other cylinder groups, until an 148 * available block is located. 149 */ 150 int 151 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 152 struct inode *ip; 153 ufs2_daddr_t lbn, bpref; 154 int size, flags; 155 struct ucred *cred; 156 ufs2_daddr_t *bnp; 157 { 158 struct fs *fs; 159 struct ufsmount *ump; 160 ufs2_daddr_t bno; 161 u_int cg, reclaimed; 162 static struct timeval lastfail; 163 static int curfail; 164 int64_t delta; 165 #ifdef QUOTA 166 int error; 167 #endif 168 169 *bnp = 0; 170 ump = ITOUMP(ip); 171 fs = ump->um_fs; 172 mtx_assert(UFS_MTX(ump), MA_OWNED); 173 #ifdef INVARIANTS 174 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 175 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 176 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 177 fs->fs_fsmnt); 178 panic("ffs_alloc: bad size"); 179 } 180 if (cred == NOCRED) 181 panic("ffs_alloc: missing credential"); 182 #endif /* INVARIANTS */ 183 reclaimed = 0; 184 retry: 185 #ifdef QUOTA 186 UFS_UNLOCK(ump); 187 error = chkdq(ip, btodb(size), cred, 0); 188 if (error) 189 return (error); 190 UFS_LOCK(ump); 191 #endif 192 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 193 goto nospace; 194 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 195 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 196 goto nospace; 197 if (bpref >= fs->fs_size) 198 bpref = 0; 199 if (bpref == 0) 200 cg = ino_to_cg(fs, ip->i_number); 201 else 202 cg = dtog(fs, bpref); 203 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 204 if (bno > 0) { 205 delta = btodb(size); 206 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 207 if (flags & IO_EXT) 208 ip->i_flag |= IN_CHANGE; 209 else 210 ip->i_flag |= IN_CHANGE | IN_UPDATE; 211 *bnp = bno; 212 return (0); 213 } 214 nospace: 215 #ifdef QUOTA 216 UFS_UNLOCK(ump); 217 /* 218 * Restore user's disk quota because allocation failed. 219 */ 220 (void) chkdq(ip, -btodb(size), cred, FORCE); 221 UFS_LOCK(ump); 222 #endif 223 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 224 reclaimed = 1; 225 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 226 goto retry; 227 } 228 UFS_UNLOCK(ump); 229 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 230 ffs_fserr(fs, ip->i_number, "filesystem full"); 231 uprintf("\n%s: write failed, filesystem is full\n", 232 fs->fs_fsmnt); 233 } 234 return (ENOSPC); 235 } 236 237 /* 238 * Reallocate a fragment to a bigger size 239 * 240 * The number and size of the old block is given, and a preference 241 * and new size is also specified. The allocator attempts to extend 242 * the original block. Failing that, the regular block allocator is 243 * invoked to get an appropriate block. 244 */ 245 int 246 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 247 struct inode *ip; 248 ufs2_daddr_t lbprev; 249 ufs2_daddr_t bprev; 250 ufs2_daddr_t bpref; 251 int osize, nsize, flags; 252 struct ucred *cred; 253 struct buf **bpp; 254 { 255 struct vnode *vp; 256 struct fs *fs; 257 struct buf *bp; 258 struct ufsmount *ump; 259 u_int cg, request, reclaimed; 260 int error, gbflags; 261 ufs2_daddr_t bno; 262 static struct timeval lastfail; 263 static int curfail; 264 int64_t delta; 265 266 vp = ITOV(ip); 267 ump = ITOUMP(ip); 268 fs = ump->um_fs; 269 bp = NULL; 270 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 271 272 mtx_assert(UFS_MTX(ump), MA_OWNED); 273 #ifdef INVARIANTS 274 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 275 panic("ffs_realloccg: allocation on suspended filesystem"); 276 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 277 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 278 printf( 279 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 280 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 281 nsize, fs->fs_fsmnt); 282 panic("ffs_realloccg: bad size"); 283 } 284 if (cred == NOCRED) 285 panic("ffs_realloccg: missing credential"); 286 #endif /* INVARIANTS */ 287 reclaimed = 0; 288 retry: 289 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 290 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 291 goto nospace; 292 } 293 if (bprev == 0) { 294 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 295 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 296 fs->fs_fsmnt); 297 panic("ffs_realloccg: bad bprev"); 298 } 299 UFS_UNLOCK(ump); 300 /* 301 * Allocate the extra space in the buffer. 302 */ 303 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 304 if (error) { 305 brelse(bp); 306 return (error); 307 } 308 309 if (bp->b_blkno == bp->b_lblkno) { 310 if (lbprev >= UFS_NDADDR) 311 panic("ffs_realloccg: lbprev out of range"); 312 bp->b_blkno = fsbtodb(fs, bprev); 313 } 314 315 #ifdef QUOTA 316 error = chkdq(ip, btodb(nsize - osize), cred, 0); 317 if (error) { 318 brelse(bp); 319 return (error); 320 } 321 #endif 322 /* 323 * Check for extension in the existing location. 324 */ 325 *bpp = NULL; 326 cg = dtog(fs, bprev); 327 UFS_LOCK(ump); 328 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 329 if (bno) { 330 if (bp->b_blkno != fsbtodb(fs, bno)) 331 panic("ffs_realloccg: bad blockno"); 332 delta = btodb(nsize - osize); 333 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 334 if (flags & IO_EXT) 335 ip->i_flag |= IN_CHANGE; 336 else 337 ip->i_flag |= IN_CHANGE | IN_UPDATE; 338 allocbuf(bp, nsize); 339 bp->b_flags |= B_DONE; 340 vfs_bio_bzero_buf(bp, osize, nsize - osize); 341 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 342 vfs_bio_set_valid(bp, osize, nsize - osize); 343 *bpp = bp; 344 return (0); 345 } 346 /* 347 * Allocate a new disk location. 348 */ 349 if (bpref >= fs->fs_size) 350 bpref = 0; 351 switch ((int)fs->fs_optim) { 352 case FS_OPTSPACE: 353 /* 354 * Allocate an exact sized fragment. Although this makes 355 * best use of space, we will waste time relocating it if 356 * the file continues to grow. If the fragmentation is 357 * less than half of the minimum free reserve, we choose 358 * to begin optimizing for time. 359 */ 360 request = nsize; 361 if (fs->fs_minfree <= 5 || 362 fs->fs_cstotal.cs_nffree > 363 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 364 break; 365 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 366 fs->fs_fsmnt); 367 fs->fs_optim = FS_OPTTIME; 368 break; 369 case FS_OPTTIME: 370 /* 371 * At this point we have discovered a file that is trying to 372 * grow a small fragment to a larger fragment. To save time, 373 * we allocate a full sized block, then free the unused portion. 374 * If the file continues to grow, the `ffs_fragextend' call 375 * above will be able to grow it in place without further 376 * copying. If aberrant programs cause disk fragmentation to 377 * grow within 2% of the free reserve, we choose to begin 378 * optimizing for space. 379 */ 380 request = fs->fs_bsize; 381 if (fs->fs_cstotal.cs_nffree < 382 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 383 break; 384 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 385 fs->fs_fsmnt); 386 fs->fs_optim = FS_OPTSPACE; 387 break; 388 default: 389 printf("dev = %s, optim = %ld, fs = %s\n", 390 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 391 panic("ffs_realloccg: bad optim"); 392 /* NOTREACHED */ 393 } 394 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 395 if (bno > 0) { 396 bp->b_blkno = fsbtodb(fs, bno); 397 if (!DOINGSOFTDEP(vp)) 398 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 399 ip->i_number, vp->v_type, NULL); 400 delta = btodb(nsize - osize); 401 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 402 if (flags & IO_EXT) 403 ip->i_flag |= IN_CHANGE; 404 else 405 ip->i_flag |= IN_CHANGE | IN_UPDATE; 406 allocbuf(bp, nsize); 407 bp->b_flags |= B_DONE; 408 vfs_bio_bzero_buf(bp, osize, nsize - osize); 409 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 410 vfs_bio_set_valid(bp, osize, nsize - osize); 411 *bpp = bp; 412 return (0); 413 } 414 #ifdef QUOTA 415 UFS_UNLOCK(ump); 416 /* 417 * Restore user's disk quota because allocation failed. 418 */ 419 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 420 UFS_LOCK(ump); 421 #endif 422 nospace: 423 /* 424 * no space available 425 */ 426 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 427 reclaimed = 1; 428 UFS_UNLOCK(ump); 429 if (bp) { 430 brelse(bp); 431 bp = NULL; 432 } 433 UFS_LOCK(ump); 434 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 435 goto retry; 436 } 437 UFS_UNLOCK(ump); 438 if (bp) 439 brelse(bp); 440 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 441 ffs_fserr(fs, ip->i_number, "filesystem full"); 442 uprintf("\n%s: write failed, filesystem is full\n", 443 fs->fs_fsmnt); 444 } 445 return (ENOSPC); 446 } 447 448 /* 449 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 450 * 451 * The vnode and an array of buffer pointers for a range of sequential 452 * logical blocks to be made contiguous is given. The allocator attempts 453 * to find a range of sequential blocks starting as close as possible 454 * from the end of the allocation for the logical block immediately 455 * preceding the current range. If successful, the physical block numbers 456 * in the buffer pointers and in the inode are changed to reflect the new 457 * allocation. If unsuccessful, the allocation is left unchanged. The 458 * success in doing the reallocation is returned. Note that the error 459 * return is not reflected back to the user. Rather the previous block 460 * allocation will be used. 461 */ 462 463 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 464 465 static int doasyncfree = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 467 "do not force synchronous writes when blocks are reallocated"); 468 469 static int doreallocblks = 1; 470 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 471 "enable block reallocation"); 472 473 static int maxclustersearch = 10; 474 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 475 0, "max number of cylinder group to search for contigous blocks"); 476 477 #ifdef DEBUG 478 static volatile int prtrealloc = 0; 479 #endif 480 481 int 482 ffs_reallocblks(ap) 483 struct vop_reallocblks_args /* { 484 struct vnode *a_vp; 485 struct cluster_save *a_buflist; 486 } */ *ap; 487 { 488 struct ufsmount *ump; 489 490 /* 491 * If the underlying device can do deletes, then skip reallocating 492 * the blocks of this file into contiguous sequences. Devices that 493 * benefit from BIO_DELETE also benefit from not moving the data. 494 * These devices are flash and therefore work less well with this 495 * optimization. Also skip if reallocblks has been disabled globally. 496 */ 497 ump = ap->a_vp->v_mount->mnt_data; 498 if (ump->um_candelete || doreallocblks == 0) 499 return (ENOSPC); 500 501 /* 502 * We can't wait in softdep prealloc as it may fsync and recurse 503 * here. Instead we simply fail to reallocate blocks if this 504 * rare condition arises. 505 */ 506 if (DOINGSOFTDEP(ap->a_vp)) 507 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 508 return (ENOSPC); 509 if (ump->um_fstype == UFS1) 510 return (ffs_reallocblks_ufs1(ap)); 511 return (ffs_reallocblks_ufs2(ap)); 512 } 513 514 static int 515 ffs_reallocblks_ufs1(ap) 516 struct vop_reallocblks_args /* { 517 struct vnode *a_vp; 518 struct cluster_save *a_buflist; 519 } */ *ap; 520 { 521 struct fs *fs; 522 struct inode *ip; 523 struct vnode *vp; 524 struct buf *sbp, *ebp; 525 ufs1_daddr_t *bap, *sbap, *ebap; 526 struct cluster_save *buflist; 527 struct ufsmount *ump; 528 ufs_lbn_t start_lbn, end_lbn; 529 ufs1_daddr_t soff, newblk, blkno; 530 ufs2_daddr_t pref; 531 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 532 int i, cg, len, start_lvl, end_lvl, ssize; 533 534 vp = ap->a_vp; 535 ip = VTOI(vp); 536 ump = ITOUMP(ip); 537 fs = ump->um_fs; 538 /* 539 * If we are not tracking block clusters or if we have less than 4% 540 * free blocks left, then do not attempt to cluster. Running with 541 * less than 5% free block reserve is not recommended and those that 542 * choose to do so do not expect to have good file layout. 543 */ 544 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 545 return (ENOSPC); 546 buflist = ap->a_buflist; 547 len = buflist->bs_nchildren; 548 start_lbn = buflist->bs_children[0]->b_lblkno; 549 end_lbn = start_lbn + len - 1; 550 #ifdef INVARIANTS 551 for (i = 0; i < len; i++) 552 if (!ffs_checkblk(ip, 553 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 554 panic("ffs_reallocblks: unallocated block 1"); 555 for (i = 1; i < len; i++) 556 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 557 panic("ffs_reallocblks: non-logical cluster"); 558 blkno = buflist->bs_children[0]->b_blkno; 559 ssize = fsbtodb(fs, fs->fs_frag); 560 for (i = 1; i < len - 1; i++) 561 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 562 panic("ffs_reallocblks: non-physical cluster %d", i); 563 #endif 564 /* 565 * If the cluster crosses the boundary for the first indirect 566 * block, leave space for the indirect block. Indirect blocks 567 * are initially laid out in a position after the last direct 568 * block. Block reallocation would usually destroy locality by 569 * moving the indirect block out of the way to make room for 570 * data blocks if we didn't compensate here. We should also do 571 * this for other indirect block boundaries, but it is only 572 * important for the first one. 573 */ 574 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 575 return (ENOSPC); 576 /* 577 * If the latest allocation is in a new cylinder group, assume that 578 * the filesystem has decided to move and do not force it back to 579 * the previous cylinder group. 580 */ 581 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 582 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 583 return (ENOSPC); 584 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 585 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 586 return (ENOSPC); 587 /* 588 * Get the starting offset and block map for the first block. 589 */ 590 if (start_lvl == 0) { 591 sbap = &ip->i_din1->di_db[0]; 592 soff = start_lbn; 593 } else { 594 idp = &start_ap[start_lvl - 1]; 595 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 596 brelse(sbp); 597 return (ENOSPC); 598 } 599 sbap = (ufs1_daddr_t *)sbp->b_data; 600 soff = idp->in_off; 601 } 602 /* 603 * If the block range spans two block maps, get the second map. 604 */ 605 ebap = NULL; 606 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 607 ssize = len; 608 } else { 609 #ifdef INVARIANTS 610 if (start_lvl > 0 && 611 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 612 panic("ffs_reallocblk: start == end"); 613 #endif 614 ssize = len - (idp->in_off + 1); 615 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 616 goto fail; 617 ebap = (ufs1_daddr_t *)ebp->b_data; 618 } 619 /* 620 * Find the preferred location for the cluster. If we have not 621 * previously failed at this endeavor, then follow our standard 622 * preference calculation. If we have failed at it, then pick up 623 * where we last ended our search. 624 */ 625 UFS_LOCK(ump); 626 if (ip->i_nextclustercg == -1) 627 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 628 else 629 pref = cgdata(fs, ip->i_nextclustercg); 630 /* 631 * Search the block map looking for an allocation of the desired size. 632 * To avoid wasting too much time, we limit the number of cylinder 633 * groups that we will search. 634 */ 635 cg = dtog(fs, pref); 636 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 637 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 638 break; 639 cg += 1; 640 if (cg >= fs->fs_ncg) 641 cg = 0; 642 } 643 /* 644 * If we have failed in our search, record where we gave up for 645 * next time. Otherwise, fall back to our usual search citerion. 646 */ 647 if (newblk == 0) { 648 ip->i_nextclustercg = cg; 649 UFS_UNLOCK(ump); 650 goto fail; 651 } 652 ip->i_nextclustercg = -1; 653 /* 654 * We have found a new contiguous block. 655 * 656 * First we have to replace the old block pointers with the new 657 * block pointers in the inode and indirect blocks associated 658 * with the file. 659 */ 660 #ifdef DEBUG 661 if (prtrealloc) 662 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 663 (uintmax_t)ip->i_number, 664 (intmax_t)start_lbn, (intmax_t)end_lbn); 665 #endif 666 blkno = newblk; 667 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 668 if (i == ssize) { 669 bap = ebap; 670 soff = -i; 671 } 672 #ifdef INVARIANTS 673 if (!ffs_checkblk(ip, 674 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 675 panic("ffs_reallocblks: unallocated block 2"); 676 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 677 panic("ffs_reallocblks: alloc mismatch"); 678 #endif 679 #ifdef DEBUG 680 if (prtrealloc) 681 printf(" %d,", *bap); 682 #endif 683 if (DOINGSOFTDEP(vp)) { 684 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 685 softdep_setup_allocdirect(ip, start_lbn + i, 686 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 687 buflist->bs_children[i]); 688 else 689 softdep_setup_allocindir_page(ip, start_lbn + i, 690 i < ssize ? sbp : ebp, soff + i, blkno, 691 *bap, buflist->bs_children[i]); 692 } 693 *bap++ = blkno; 694 } 695 /* 696 * Next we must write out the modified inode and indirect blocks. 697 * For strict correctness, the writes should be synchronous since 698 * the old block values may have been written to disk. In practise 699 * they are almost never written, but if we are concerned about 700 * strict correctness, the `doasyncfree' flag should be set to zero. 701 * 702 * The test on `doasyncfree' should be changed to test a flag 703 * that shows whether the associated buffers and inodes have 704 * been written. The flag should be set when the cluster is 705 * started and cleared whenever the buffer or inode is flushed. 706 * We can then check below to see if it is set, and do the 707 * synchronous write only when it has been cleared. 708 */ 709 if (sbap != &ip->i_din1->di_db[0]) { 710 if (doasyncfree) 711 bdwrite(sbp); 712 else 713 bwrite(sbp); 714 } else { 715 ip->i_flag |= IN_CHANGE | IN_UPDATE; 716 if (!doasyncfree) 717 ffs_update(vp, 1); 718 } 719 if (ssize < len) { 720 if (doasyncfree) 721 bdwrite(ebp); 722 else 723 bwrite(ebp); 724 } 725 /* 726 * Last, free the old blocks and assign the new blocks to the buffers. 727 */ 728 #ifdef DEBUG 729 if (prtrealloc) 730 printf("\n\tnew:"); 731 #endif 732 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 733 if (!DOINGSOFTDEP(vp)) 734 ffs_blkfree(ump, fs, ump->um_devvp, 735 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 736 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 737 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 738 #ifdef INVARIANTS 739 if (!ffs_checkblk(ip, 740 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 741 panic("ffs_reallocblks: unallocated block 3"); 742 #endif 743 #ifdef DEBUG 744 if (prtrealloc) 745 printf(" %d,", blkno); 746 #endif 747 } 748 #ifdef DEBUG 749 if (prtrealloc) { 750 prtrealloc--; 751 printf("\n"); 752 } 753 #endif 754 return (0); 755 756 fail: 757 if (ssize < len) 758 brelse(ebp); 759 if (sbap != &ip->i_din1->di_db[0]) 760 brelse(sbp); 761 return (ENOSPC); 762 } 763 764 static int 765 ffs_reallocblks_ufs2(ap) 766 struct vop_reallocblks_args /* { 767 struct vnode *a_vp; 768 struct cluster_save *a_buflist; 769 } */ *ap; 770 { 771 struct fs *fs; 772 struct inode *ip; 773 struct vnode *vp; 774 struct buf *sbp, *ebp; 775 ufs2_daddr_t *bap, *sbap, *ebap; 776 struct cluster_save *buflist; 777 struct ufsmount *ump; 778 ufs_lbn_t start_lbn, end_lbn; 779 ufs2_daddr_t soff, newblk, blkno, pref; 780 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 781 int i, cg, len, start_lvl, end_lvl, ssize; 782 783 vp = ap->a_vp; 784 ip = VTOI(vp); 785 ump = ITOUMP(ip); 786 fs = ump->um_fs; 787 /* 788 * If we are not tracking block clusters or if we have less than 4% 789 * free blocks left, then do not attempt to cluster. Running with 790 * less than 5% free block reserve is not recommended and those that 791 * choose to do so do not expect to have good file layout. 792 */ 793 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 794 return (ENOSPC); 795 buflist = ap->a_buflist; 796 len = buflist->bs_nchildren; 797 start_lbn = buflist->bs_children[0]->b_lblkno; 798 end_lbn = start_lbn + len - 1; 799 #ifdef INVARIANTS 800 for (i = 0; i < len; i++) 801 if (!ffs_checkblk(ip, 802 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 803 panic("ffs_reallocblks: unallocated block 1"); 804 for (i = 1; i < len; i++) 805 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 806 panic("ffs_reallocblks: non-logical cluster"); 807 blkno = buflist->bs_children[0]->b_blkno; 808 ssize = fsbtodb(fs, fs->fs_frag); 809 for (i = 1; i < len - 1; i++) 810 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 811 panic("ffs_reallocblks: non-physical cluster %d", i); 812 #endif 813 /* 814 * If the cluster crosses the boundary for the first indirect 815 * block, do not move anything in it. Indirect blocks are 816 * usually initially laid out in a position between the data 817 * blocks. Block reallocation would usually destroy locality by 818 * moving the indirect block out of the way to make room for 819 * data blocks if we didn't compensate here. We should also do 820 * this for other indirect block boundaries, but it is only 821 * important for the first one. 822 */ 823 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 824 return (ENOSPC); 825 /* 826 * If the latest allocation is in a new cylinder group, assume that 827 * the filesystem has decided to move and do not force it back to 828 * the previous cylinder group. 829 */ 830 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 831 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 832 return (ENOSPC); 833 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 834 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 835 return (ENOSPC); 836 /* 837 * Get the starting offset and block map for the first block. 838 */ 839 if (start_lvl == 0) { 840 sbap = &ip->i_din2->di_db[0]; 841 soff = start_lbn; 842 } else { 843 idp = &start_ap[start_lvl - 1]; 844 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 845 brelse(sbp); 846 return (ENOSPC); 847 } 848 sbap = (ufs2_daddr_t *)sbp->b_data; 849 soff = idp->in_off; 850 } 851 /* 852 * If the block range spans two block maps, get the second map. 853 */ 854 ebap = NULL; 855 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 856 ssize = len; 857 } else { 858 #ifdef INVARIANTS 859 if (start_lvl > 0 && 860 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 861 panic("ffs_reallocblk: start == end"); 862 #endif 863 ssize = len - (idp->in_off + 1); 864 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 865 goto fail; 866 ebap = (ufs2_daddr_t *)ebp->b_data; 867 } 868 /* 869 * Find the preferred location for the cluster. If we have not 870 * previously failed at this endeavor, then follow our standard 871 * preference calculation. If we have failed at it, then pick up 872 * where we last ended our search. 873 */ 874 UFS_LOCK(ump); 875 if (ip->i_nextclustercg == -1) 876 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 877 else 878 pref = cgdata(fs, ip->i_nextclustercg); 879 /* 880 * Search the block map looking for an allocation of the desired size. 881 * To avoid wasting too much time, we limit the number of cylinder 882 * groups that we will search. 883 */ 884 cg = dtog(fs, pref); 885 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 886 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 887 break; 888 cg += 1; 889 if (cg >= fs->fs_ncg) 890 cg = 0; 891 } 892 /* 893 * If we have failed in our search, record where we gave up for 894 * next time. Otherwise, fall back to our usual search citerion. 895 */ 896 if (newblk == 0) { 897 ip->i_nextclustercg = cg; 898 UFS_UNLOCK(ump); 899 goto fail; 900 } 901 ip->i_nextclustercg = -1; 902 /* 903 * We have found a new contiguous block. 904 * 905 * First we have to replace the old block pointers with the new 906 * block pointers in the inode and indirect blocks associated 907 * with the file. 908 */ 909 #ifdef DEBUG 910 if (prtrealloc) 911 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 912 (intmax_t)start_lbn, (intmax_t)end_lbn); 913 #endif 914 blkno = newblk; 915 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 916 if (i == ssize) { 917 bap = ebap; 918 soff = -i; 919 } 920 #ifdef INVARIANTS 921 if (!ffs_checkblk(ip, 922 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 923 panic("ffs_reallocblks: unallocated block 2"); 924 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 925 panic("ffs_reallocblks: alloc mismatch"); 926 #endif 927 #ifdef DEBUG 928 if (prtrealloc) 929 printf(" %jd,", (intmax_t)*bap); 930 #endif 931 if (DOINGSOFTDEP(vp)) { 932 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 933 softdep_setup_allocdirect(ip, start_lbn + i, 934 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 935 buflist->bs_children[i]); 936 else 937 softdep_setup_allocindir_page(ip, start_lbn + i, 938 i < ssize ? sbp : ebp, soff + i, blkno, 939 *bap, buflist->bs_children[i]); 940 } 941 *bap++ = blkno; 942 } 943 /* 944 * Next we must write out the modified inode and indirect blocks. 945 * For strict correctness, the writes should be synchronous since 946 * the old block values may have been written to disk. In practise 947 * they are almost never written, but if we are concerned about 948 * strict correctness, the `doasyncfree' flag should be set to zero. 949 * 950 * The test on `doasyncfree' should be changed to test a flag 951 * that shows whether the associated buffers and inodes have 952 * been written. The flag should be set when the cluster is 953 * started and cleared whenever the buffer or inode is flushed. 954 * We can then check below to see if it is set, and do the 955 * synchronous write only when it has been cleared. 956 */ 957 if (sbap != &ip->i_din2->di_db[0]) { 958 if (doasyncfree) 959 bdwrite(sbp); 960 else 961 bwrite(sbp); 962 } else { 963 ip->i_flag |= IN_CHANGE | IN_UPDATE; 964 if (!doasyncfree) 965 ffs_update(vp, 1); 966 } 967 if (ssize < len) { 968 if (doasyncfree) 969 bdwrite(ebp); 970 else 971 bwrite(ebp); 972 } 973 /* 974 * Last, free the old blocks and assign the new blocks to the buffers. 975 */ 976 #ifdef DEBUG 977 if (prtrealloc) 978 printf("\n\tnew:"); 979 #endif 980 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 981 if (!DOINGSOFTDEP(vp)) 982 ffs_blkfree(ump, fs, ump->um_devvp, 983 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 984 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 985 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 986 #ifdef INVARIANTS 987 if (!ffs_checkblk(ip, 988 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 989 panic("ffs_reallocblks: unallocated block 3"); 990 #endif 991 #ifdef DEBUG 992 if (prtrealloc) 993 printf(" %jd,", (intmax_t)blkno); 994 #endif 995 } 996 #ifdef DEBUG 997 if (prtrealloc) { 998 prtrealloc--; 999 printf("\n"); 1000 } 1001 #endif 1002 return (0); 1003 1004 fail: 1005 if (ssize < len) 1006 brelse(ebp); 1007 if (sbap != &ip->i_din2->di_db[0]) 1008 brelse(sbp); 1009 return (ENOSPC); 1010 } 1011 1012 /* 1013 * Allocate an inode in the filesystem. 1014 * 1015 * If allocating a directory, use ffs_dirpref to select the inode. 1016 * If allocating in a directory, the following hierarchy is followed: 1017 * 1) allocate the preferred inode. 1018 * 2) allocate an inode in the same cylinder group. 1019 * 3) quadradically rehash into other cylinder groups, until an 1020 * available inode is located. 1021 * If no inode preference is given the following hierarchy is used 1022 * to allocate an inode: 1023 * 1) allocate an inode in cylinder group 0. 1024 * 2) quadradically rehash into other cylinder groups, until an 1025 * available inode is located. 1026 */ 1027 int 1028 ffs_valloc(pvp, mode, cred, vpp) 1029 struct vnode *pvp; 1030 int mode; 1031 struct ucred *cred; 1032 struct vnode **vpp; 1033 { 1034 struct inode *pip; 1035 struct fs *fs; 1036 struct inode *ip; 1037 struct timespec ts; 1038 struct ufsmount *ump; 1039 ino_t ino, ipref; 1040 u_int cg; 1041 int error, error1, reclaimed; 1042 static struct timeval lastfail; 1043 static int curfail; 1044 1045 *vpp = NULL; 1046 pip = VTOI(pvp); 1047 ump = ITOUMP(pip); 1048 fs = ump->um_fs; 1049 1050 UFS_LOCK(ump); 1051 reclaimed = 0; 1052 retry: 1053 if (fs->fs_cstotal.cs_nifree == 0) 1054 goto noinodes; 1055 1056 if ((mode & IFMT) == IFDIR) 1057 ipref = ffs_dirpref(pip); 1058 else 1059 ipref = pip->i_number; 1060 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1061 ipref = 0; 1062 cg = ino_to_cg(fs, ipref); 1063 /* 1064 * Track number of dirs created one after another 1065 * in a same cg without intervening by files. 1066 */ 1067 if ((mode & IFMT) == IFDIR) { 1068 if (fs->fs_contigdirs[cg] < 255) 1069 fs->fs_contigdirs[cg]++; 1070 } else { 1071 if (fs->fs_contigdirs[cg] > 0) 1072 fs->fs_contigdirs[cg]--; 1073 } 1074 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1075 (allocfcn_t *)ffs_nodealloccg); 1076 if (ino == 0) 1077 goto noinodes; 1078 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1079 if (error) { 1080 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1081 FFSV_FORCEINSMQ); 1082 ffs_vfree(pvp, ino, mode); 1083 if (error1 == 0) { 1084 ip = VTOI(*vpp); 1085 if (ip->i_mode) 1086 goto dup_alloc; 1087 ip->i_flag |= IN_MODIFIED; 1088 vput(*vpp); 1089 } 1090 return (error); 1091 } 1092 ip = VTOI(*vpp); 1093 if (ip->i_mode) { 1094 dup_alloc: 1095 printf("mode = 0%o, inum = %ju, fs = %s\n", 1096 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1097 panic("ffs_valloc: dup alloc"); 1098 } 1099 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1100 printf("free inode %s/%lu had %ld blocks\n", 1101 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1102 DIP_SET(ip, i_blocks, 0); 1103 } 1104 ip->i_flags = 0; 1105 DIP_SET(ip, i_flags, 0); 1106 /* 1107 * Set up a new generation number for this inode. 1108 */ 1109 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1110 ip->i_gen = arc4random(); 1111 DIP_SET(ip, i_gen, ip->i_gen); 1112 if (fs->fs_magic == FS_UFS2_MAGIC) { 1113 vfs_timestamp(&ts); 1114 ip->i_din2->di_birthtime = ts.tv_sec; 1115 ip->i_din2->di_birthnsec = ts.tv_nsec; 1116 } 1117 ufs_prepare_reclaim(*vpp); 1118 ip->i_flag = 0; 1119 (*vpp)->v_vflag = 0; 1120 (*vpp)->v_type = VNON; 1121 if (fs->fs_magic == FS_UFS2_MAGIC) { 1122 (*vpp)->v_op = &ffs_vnodeops2; 1123 ip->i_flag |= IN_UFS2; 1124 } else { 1125 (*vpp)->v_op = &ffs_vnodeops1; 1126 } 1127 return (0); 1128 noinodes: 1129 if (reclaimed == 0) { 1130 reclaimed = 1; 1131 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1132 goto retry; 1133 } 1134 UFS_UNLOCK(ump); 1135 if (ppsratecheck(&lastfail, &curfail, 1)) { 1136 ffs_fserr(fs, pip->i_number, "out of inodes"); 1137 uprintf("\n%s: create/symlink failed, no inodes free\n", 1138 fs->fs_fsmnt); 1139 } 1140 return (ENOSPC); 1141 } 1142 1143 /* 1144 * Find a cylinder group to place a directory. 1145 * 1146 * The policy implemented by this algorithm is to allocate a 1147 * directory inode in the same cylinder group as its parent 1148 * directory, but also to reserve space for its files inodes 1149 * and data. Restrict the number of directories which may be 1150 * allocated one after another in the same cylinder group 1151 * without intervening allocation of files. 1152 * 1153 * If we allocate a first level directory then force allocation 1154 * in another cylinder group. 1155 */ 1156 static ino_t 1157 ffs_dirpref(pip) 1158 struct inode *pip; 1159 { 1160 struct fs *fs; 1161 int cg, prefcg, dirsize, cgsize; 1162 u_int avgifree, avgbfree, avgndir, curdirsize; 1163 u_int minifree, minbfree, maxndir; 1164 u_int mincg, minndir; 1165 u_int maxcontigdirs; 1166 1167 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1168 fs = ITOFS(pip); 1169 1170 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1171 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1172 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1173 1174 /* 1175 * Force allocation in another cg if creating a first level dir. 1176 */ 1177 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1178 if (ITOV(pip)->v_vflag & VV_ROOT) { 1179 prefcg = arc4random() % fs->fs_ncg; 1180 mincg = prefcg; 1181 minndir = fs->fs_ipg; 1182 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1183 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1184 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1185 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1186 mincg = cg; 1187 minndir = fs->fs_cs(fs, cg).cs_ndir; 1188 } 1189 for (cg = 0; cg < prefcg; cg++) 1190 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1191 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1192 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1193 mincg = cg; 1194 minndir = fs->fs_cs(fs, cg).cs_ndir; 1195 } 1196 return ((ino_t)(fs->fs_ipg * mincg)); 1197 } 1198 1199 /* 1200 * Count various limits which used for 1201 * optimal allocation of a directory inode. 1202 */ 1203 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1204 minifree = avgifree - avgifree / 4; 1205 if (minifree < 1) 1206 minifree = 1; 1207 minbfree = avgbfree - avgbfree / 4; 1208 if (minbfree < 1) 1209 minbfree = 1; 1210 cgsize = fs->fs_fsize * fs->fs_fpg; 1211 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1212 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1213 if (dirsize < curdirsize) 1214 dirsize = curdirsize; 1215 if (dirsize <= 0) 1216 maxcontigdirs = 0; /* dirsize overflowed */ 1217 else 1218 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1219 if (fs->fs_avgfpdir > 0) 1220 maxcontigdirs = min(maxcontigdirs, 1221 fs->fs_ipg / fs->fs_avgfpdir); 1222 if (maxcontigdirs == 0) 1223 maxcontigdirs = 1; 1224 1225 /* 1226 * Limit number of dirs in one cg and reserve space for 1227 * regular files, but only if we have no deficit in 1228 * inodes or space. 1229 * 1230 * We are trying to find a suitable cylinder group nearby 1231 * our preferred cylinder group to place a new directory. 1232 * We scan from our preferred cylinder group forward looking 1233 * for a cylinder group that meets our criterion. If we get 1234 * to the final cylinder group and do not find anything, 1235 * we start scanning forwards from the beginning of the 1236 * filesystem. While it might seem sensible to start scanning 1237 * backwards or even to alternate looking forward and backward, 1238 * this approach fails badly when the filesystem is nearly full. 1239 * Specifically, we first search all the areas that have no space 1240 * and finally try the one preceding that. We repeat this on 1241 * every request and in the case of the final block end up 1242 * searching the entire filesystem. By jumping to the front 1243 * of the filesystem, our future forward searches always look 1244 * in new cylinder groups so finds every possible block after 1245 * one pass over the filesystem. 1246 */ 1247 prefcg = ino_to_cg(fs, pip->i_number); 1248 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1249 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1250 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1251 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1252 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1253 return ((ino_t)(fs->fs_ipg * cg)); 1254 } 1255 for (cg = 0; cg < prefcg; cg++) 1256 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1257 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1258 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1259 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1260 return ((ino_t)(fs->fs_ipg * cg)); 1261 } 1262 /* 1263 * This is a backstop when we have deficit in space. 1264 */ 1265 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1266 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1267 return ((ino_t)(fs->fs_ipg * cg)); 1268 for (cg = 0; cg < prefcg; cg++) 1269 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1270 break; 1271 return ((ino_t)(fs->fs_ipg * cg)); 1272 } 1273 1274 /* 1275 * Select the desired position for the next block in a file. The file is 1276 * logically divided into sections. The first section is composed of the 1277 * direct blocks and the next fs_maxbpg blocks. Each additional section 1278 * contains fs_maxbpg blocks. 1279 * 1280 * If no blocks have been allocated in the first section, the policy is to 1281 * request a block in the same cylinder group as the inode that describes 1282 * the file. The first indirect is allocated immediately following the last 1283 * direct block and the data blocks for the first indirect immediately 1284 * follow it. 1285 * 1286 * If no blocks have been allocated in any other section, the indirect 1287 * block(s) are allocated in the same cylinder group as its inode in an 1288 * area reserved immediately following the inode blocks. The policy for 1289 * the data blocks is to place them in a cylinder group with a greater than 1290 * average number of free blocks. An appropriate cylinder group is found 1291 * by using a rotor that sweeps the cylinder groups. When a new group of 1292 * blocks is needed, the sweep begins in the cylinder group following the 1293 * cylinder group from which the previous allocation was made. The sweep 1294 * continues until a cylinder group with greater than the average number 1295 * of free blocks is found. If the allocation is for the first block in an 1296 * indirect block or the previous block is a hole, then the information on 1297 * the previous allocation is unavailable; here a best guess is made based 1298 * on the logical block number being allocated. 1299 * 1300 * If a section is already partially allocated, the policy is to 1301 * allocate blocks contiguously within the section if possible. 1302 */ 1303 ufs2_daddr_t 1304 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1305 struct inode *ip; 1306 ufs_lbn_t lbn; 1307 int indx; 1308 ufs1_daddr_t *bap; 1309 { 1310 struct fs *fs; 1311 u_int cg, inocg; 1312 u_int avgbfree, startcg; 1313 ufs2_daddr_t pref; 1314 1315 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1316 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1317 fs = ITOFS(ip); 1318 /* 1319 * Allocation of indirect blocks is indicated by passing negative 1320 * values in indx: -1 for single indirect, -2 for double indirect, 1321 * -3 for triple indirect. As noted below, we attempt to allocate 1322 * the first indirect inline with the file data. For all later 1323 * indirect blocks, the data is often allocated in other cylinder 1324 * groups. However to speed random file access and to speed up 1325 * fsck, the filesystem reserves the first fs_metaspace blocks 1326 * (typically half of fs_minfree) of the data area of each cylinder 1327 * group to hold these later indirect blocks. 1328 */ 1329 inocg = ino_to_cg(fs, ip->i_number); 1330 if (indx < 0) { 1331 /* 1332 * Our preference for indirect blocks is the zone at the 1333 * beginning of the inode's cylinder group data area that 1334 * we try to reserve for indirect blocks. 1335 */ 1336 pref = cgmeta(fs, inocg); 1337 /* 1338 * If we are allocating the first indirect block, try to 1339 * place it immediately following the last direct block. 1340 */ 1341 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1342 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1343 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1344 return (pref); 1345 } 1346 /* 1347 * If we are allocating the first data block in the first indirect 1348 * block and the indirect has been allocated in the data block area, 1349 * try to place it immediately following the indirect block. 1350 */ 1351 if (lbn == UFS_NDADDR) { 1352 pref = ip->i_din1->di_ib[0]; 1353 if (pref != 0 && pref >= cgdata(fs, inocg) && 1354 pref < cgbase(fs, inocg + 1)) 1355 return (pref + fs->fs_frag); 1356 } 1357 /* 1358 * If we are at the beginning of a file, or we have already allocated 1359 * the maximum number of blocks per cylinder group, or we do not 1360 * have a block allocated immediately preceding us, then we need 1361 * to decide where to start allocating new blocks. 1362 */ 1363 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1364 /* 1365 * If we are allocating a directory data block, we want 1366 * to place it in the metadata area. 1367 */ 1368 if ((ip->i_mode & IFMT) == IFDIR) 1369 return (cgmeta(fs, inocg)); 1370 /* 1371 * Until we fill all the direct and all the first indirect's 1372 * blocks, we try to allocate in the data area of the inode's 1373 * cylinder group. 1374 */ 1375 if (lbn < UFS_NDADDR + NINDIR(fs)) 1376 return (cgdata(fs, inocg)); 1377 /* 1378 * Find a cylinder with greater than average number of 1379 * unused data blocks. 1380 */ 1381 if (indx == 0 || bap[indx - 1] == 0) 1382 startcg = inocg + lbn / fs->fs_maxbpg; 1383 else 1384 startcg = dtog(fs, bap[indx - 1]) + 1; 1385 startcg %= fs->fs_ncg; 1386 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1387 for (cg = startcg; cg < fs->fs_ncg; cg++) 1388 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1389 fs->fs_cgrotor = cg; 1390 return (cgdata(fs, cg)); 1391 } 1392 for (cg = 0; cg <= startcg; cg++) 1393 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1394 fs->fs_cgrotor = cg; 1395 return (cgdata(fs, cg)); 1396 } 1397 return (0); 1398 } 1399 /* 1400 * Otherwise, we just always try to lay things out contiguously. 1401 */ 1402 return (bap[indx - 1] + fs->fs_frag); 1403 } 1404 1405 /* 1406 * Same as above, but for UFS2 1407 */ 1408 ufs2_daddr_t 1409 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1410 struct inode *ip; 1411 ufs_lbn_t lbn; 1412 int indx; 1413 ufs2_daddr_t *bap; 1414 { 1415 struct fs *fs; 1416 u_int cg, inocg; 1417 u_int avgbfree, startcg; 1418 ufs2_daddr_t pref; 1419 1420 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1421 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1422 fs = ITOFS(ip); 1423 /* 1424 * Allocation of indirect blocks is indicated by passing negative 1425 * values in indx: -1 for single indirect, -2 for double indirect, 1426 * -3 for triple indirect. As noted below, we attempt to allocate 1427 * the first indirect inline with the file data. For all later 1428 * indirect blocks, the data is often allocated in other cylinder 1429 * groups. However to speed random file access and to speed up 1430 * fsck, the filesystem reserves the first fs_metaspace blocks 1431 * (typically half of fs_minfree) of the data area of each cylinder 1432 * group to hold these later indirect blocks. 1433 */ 1434 inocg = ino_to_cg(fs, ip->i_number); 1435 if (indx < 0) { 1436 /* 1437 * Our preference for indirect blocks is the zone at the 1438 * beginning of the inode's cylinder group data area that 1439 * we try to reserve for indirect blocks. 1440 */ 1441 pref = cgmeta(fs, inocg); 1442 /* 1443 * If we are allocating the first indirect block, try to 1444 * place it immediately following the last direct block. 1445 */ 1446 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1447 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1448 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1449 return (pref); 1450 } 1451 /* 1452 * If we are allocating the first data block in the first indirect 1453 * block and the indirect has been allocated in the data block area, 1454 * try to place it immediately following the indirect block. 1455 */ 1456 if (lbn == UFS_NDADDR) { 1457 pref = ip->i_din2->di_ib[0]; 1458 if (pref != 0 && pref >= cgdata(fs, inocg) && 1459 pref < cgbase(fs, inocg + 1)) 1460 return (pref + fs->fs_frag); 1461 } 1462 /* 1463 * If we are at the beginning of a file, or we have already allocated 1464 * the maximum number of blocks per cylinder group, or we do not 1465 * have a block allocated immediately preceding us, then we need 1466 * to decide where to start allocating new blocks. 1467 */ 1468 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1469 /* 1470 * If we are allocating a directory data block, we want 1471 * to place it in the metadata area. 1472 */ 1473 if ((ip->i_mode & IFMT) == IFDIR) 1474 return (cgmeta(fs, inocg)); 1475 /* 1476 * Until we fill all the direct and all the first indirect's 1477 * blocks, we try to allocate in the data area of the inode's 1478 * cylinder group. 1479 */ 1480 if (lbn < UFS_NDADDR + NINDIR(fs)) 1481 return (cgdata(fs, inocg)); 1482 /* 1483 * Find a cylinder with greater than average number of 1484 * unused data blocks. 1485 */ 1486 if (indx == 0 || bap[indx - 1] == 0) 1487 startcg = inocg + lbn / fs->fs_maxbpg; 1488 else 1489 startcg = dtog(fs, bap[indx - 1]) + 1; 1490 startcg %= fs->fs_ncg; 1491 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1492 for (cg = startcg; cg < fs->fs_ncg; cg++) 1493 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1494 fs->fs_cgrotor = cg; 1495 return (cgdata(fs, cg)); 1496 } 1497 for (cg = 0; cg <= startcg; cg++) 1498 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1499 fs->fs_cgrotor = cg; 1500 return (cgdata(fs, cg)); 1501 } 1502 return (0); 1503 } 1504 /* 1505 * Otherwise, we just always try to lay things out contiguously. 1506 */ 1507 return (bap[indx - 1] + fs->fs_frag); 1508 } 1509 1510 /* 1511 * Implement the cylinder overflow algorithm. 1512 * 1513 * The policy implemented by this algorithm is: 1514 * 1) allocate the block in its requested cylinder group. 1515 * 2) quadradically rehash on the cylinder group number. 1516 * 3) brute force search for a free block. 1517 * 1518 * Must be called with the UFS lock held. Will release the lock on success 1519 * and return with it held on failure. 1520 */ 1521 /*VARARGS5*/ 1522 static ufs2_daddr_t 1523 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1524 struct inode *ip; 1525 u_int cg; 1526 ufs2_daddr_t pref; 1527 int size; /* Search size for data blocks, mode for inodes */ 1528 int rsize; /* Real allocated size. */ 1529 allocfcn_t *allocator; 1530 { 1531 struct fs *fs; 1532 ufs2_daddr_t result; 1533 u_int i, icg = cg; 1534 1535 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1536 #ifdef INVARIANTS 1537 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1538 panic("ffs_hashalloc: allocation on suspended filesystem"); 1539 #endif 1540 fs = ITOFS(ip); 1541 /* 1542 * 1: preferred cylinder group 1543 */ 1544 result = (*allocator)(ip, cg, pref, size, rsize); 1545 if (result) 1546 return (result); 1547 /* 1548 * 2: quadratic rehash 1549 */ 1550 for (i = 1; i < fs->fs_ncg; i *= 2) { 1551 cg += i; 1552 if (cg >= fs->fs_ncg) 1553 cg -= fs->fs_ncg; 1554 result = (*allocator)(ip, cg, 0, size, rsize); 1555 if (result) 1556 return (result); 1557 } 1558 /* 1559 * 3: brute force search 1560 * Note that we start at i == 2, since 0 was checked initially, 1561 * and 1 is always checked in the quadratic rehash. 1562 */ 1563 cg = (icg + 2) % fs->fs_ncg; 1564 for (i = 2; i < fs->fs_ncg; i++) { 1565 result = (*allocator)(ip, cg, 0, size, rsize); 1566 if (result) 1567 return (result); 1568 cg++; 1569 if (cg == fs->fs_ncg) 1570 cg = 0; 1571 } 1572 return (0); 1573 } 1574 1575 /* 1576 * Determine whether a fragment can be extended. 1577 * 1578 * Check to see if the necessary fragments are available, and 1579 * if they are, allocate them. 1580 */ 1581 static ufs2_daddr_t 1582 ffs_fragextend(ip, cg, bprev, osize, nsize) 1583 struct inode *ip; 1584 u_int cg; 1585 ufs2_daddr_t bprev; 1586 int osize, nsize; 1587 { 1588 struct fs *fs; 1589 struct cg *cgp; 1590 struct buf *bp; 1591 struct ufsmount *ump; 1592 int nffree; 1593 long bno; 1594 int frags, bbase; 1595 int i, error; 1596 u_int8_t *blksfree; 1597 1598 ump = ITOUMP(ip); 1599 fs = ump->um_fs; 1600 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1601 return (0); 1602 frags = numfrags(fs, nsize); 1603 bbase = fragnum(fs, bprev); 1604 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1605 /* cannot extend across a block boundary */ 1606 return (0); 1607 } 1608 UFS_UNLOCK(ump); 1609 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1610 goto fail; 1611 bno = dtogd(fs, bprev); 1612 blksfree = cg_blksfree(cgp); 1613 for (i = numfrags(fs, osize); i < frags; i++) 1614 if (isclr(blksfree, bno + i)) 1615 goto fail; 1616 /* 1617 * the current fragment can be extended 1618 * deduct the count on fragment being extended into 1619 * increase the count on the remaining fragment (if any) 1620 * allocate the extended piece 1621 */ 1622 for (i = frags; i < fs->fs_frag - bbase; i++) 1623 if (isclr(blksfree, bno + i)) 1624 break; 1625 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1626 if (i != frags) 1627 cgp->cg_frsum[i - frags]++; 1628 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1629 clrbit(blksfree, bno + i); 1630 cgp->cg_cs.cs_nffree--; 1631 nffree++; 1632 } 1633 UFS_LOCK(ump); 1634 fs->fs_cstotal.cs_nffree -= nffree; 1635 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1636 fs->fs_fmod = 1; 1637 ACTIVECLEAR(fs, cg); 1638 UFS_UNLOCK(ump); 1639 if (DOINGSOFTDEP(ITOV(ip))) 1640 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1641 frags, numfrags(fs, osize)); 1642 bdwrite(bp); 1643 return (bprev); 1644 1645 fail: 1646 brelse(bp); 1647 UFS_LOCK(ump); 1648 return (0); 1649 1650 } 1651 1652 /* 1653 * Determine whether a block can be allocated. 1654 * 1655 * Check to see if a block of the appropriate size is available, 1656 * and if it is, allocate it. 1657 */ 1658 static ufs2_daddr_t 1659 ffs_alloccg(ip, cg, bpref, size, rsize) 1660 struct inode *ip; 1661 u_int cg; 1662 ufs2_daddr_t bpref; 1663 int size; 1664 int rsize; 1665 { 1666 struct fs *fs; 1667 struct cg *cgp; 1668 struct buf *bp; 1669 struct ufsmount *ump; 1670 ufs1_daddr_t bno; 1671 ufs2_daddr_t blkno; 1672 int i, allocsiz, error, frags; 1673 u_int8_t *blksfree; 1674 1675 ump = ITOUMP(ip); 1676 fs = ump->um_fs; 1677 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1678 return (0); 1679 UFS_UNLOCK(ump); 1680 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1681 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1682 goto fail; 1683 if (size == fs->fs_bsize) { 1684 UFS_LOCK(ump); 1685 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1686 ACTIVECLEAR(fs, cg); 1687 UFS_UNLOCK(ump); 1688 bdwrite(bp); 1689 return (blkno); 1690 } 1691 /* 1692 * check to see if any fragments are already available 1693 * allocsiz is the size which will be allocated, hacking 1694 * it down to a smaller size if necessary 1695 */ 1696 blksfree = cg_blksfree(cgp); 1697 frags = numfrags(fs, size); 1698 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1699 if (cgp->cg_frsum[allocsiz] != 0) 1700 break; 1701 if (allocsiz == fs->fs_frag) { 1702 /* 1703 * no fragments were available, so a block will be 1704 * allocated, and hacked up 1705 */ 1706 if (cgp->cg_cs.cs_nbfree == 0) 1707 goto fail; 1708 UFS_LOCK(ump); 1709 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1710 ACTIVECLEAR(fs, cg); 1711 UFS_UNLOCK(ump); 1712 bdwrite(bp); 1713 return (blkno); 1714 } 1715 KASSERT(size == rsize, 1716 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1717 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1718 if (bno < 0) 1719 goto fail; 1720 for (i = 0; i < frags; i++) 1721 clrbit(blksfree, bno + i); 1722 cgp->cg_cs.cs_nffree -= frags; 1723 cgp->cg_frsum[allocsiz]--; 1724 if (frags != allocsiz) 1725 cgp->cg_frsum[allocsiz - frags]++; 1726 UFS_LOCK(ump); 1727 fs->fs_cstotal.cs_nffree -= frags; 1728 fs->fs_cs(fs, cg).cs_nffree -= frags; 1729 fs->fs_fmod = 1; 1730 blkno = cgbase(fs, cg) + bno; 1731 ACTIVECLEAR(fs, cg); 1732 UFS_UNLOCK(ump); 1733 if (DOINGSOFTDEP(ITOV(ip))) 1734 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1735 bdwrite(bp); 1736 return (blkno); 1737 1738 fail: 1739 brelse(bp); 1740 UFS_LOCK(ump); 1741 return (0); 1742 } 1743 1744 /* 1745 * Allocate a block in a cylinder group. 1746 * 1747 * This algorithm implements the following policy: 1748 * 1) allocate the requested block. 1749 * 2) allocate a rotationally optimal block in the same cylinder. 1750 * 3) allocate the next available block on the block rotor for the 1751 * specified cylinder group. 1752 * Note that this routine only allocates fs_bsize blocks; these 1753 * blocks may be fragmented by the routine that allocates them. 1754 */ 1755 static ufs2_daddr_t 1756 ffs_alloccgblk(ip, bp, bpref, size) 1757 struct inode *ip; 1758 struct buf *bp; 1759 ufs2_daddr_t bpref; 1760 int size; 1761 { 1762 struct fs *fs; 1763 struct cg *cgp; 1764 struct ufsmount *ump; 1765 ufs1_daddr_t bno; 1766 ufs2_daddr_t blkno; 1767 u_int8_t *blksfree; 1768 int i, cgbpref; 1769 1770 ump = ITOUMP(ip); 1771 fs = ump->um_fs; 1772 mtx_assert(UFS_MTX(ump), MA_OWNED); 1773 cgp = (struct cg *)bp->b_data; 1774 blksfree = cg_blksfree(cgp); 1775 if (bpref == 0) { 1776 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1777 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1778 /* map bpref to correct zone in this cg */ 1779 if (bpref < cgdata(fs, cgbpref)) 1780 bpref = cgmeta(fs, cgp->cg_cgx); 1781 else 1782 bpref = cgdata(fs, cgp->cg_cgx); 1783 } 1784 /* 1785 * if the requested block is available, use it 1786 */ 1787 bno = dtogd(fs, blknum(fs, bpref)); 1788 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1789 goto gotit; 1790 /* 1791 * Take the next available block in this cylinder group. 1792 */ 1793 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1794 if (bno < 0) 1795 return (0); 1796 /* Update cg_rotor only if allocated from the data zone */ 1797 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1798 cgp->cg_rotor = bno; 1799 gotit: 1800 blkno = fragstoblks(fs, bno); 1801 ffs_clrblock(fs, blksfree, (long)blkno); 1802 ffs_clusteracct(fs, cgp, blkno, -1); 1803 cgp->cg_cs.cs_nbfree--; 1804 fs->fs_cstotal.cs_nbfree--; 1805 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1806 fs->fs_fmod = 1; 1807 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1808 /* 1809 * If the caller didn't want the whole block free the frags here. 1810 */ 1811 size = numfrags(fs, size); 1812 if (size != fs->fs_frag) { 1813 bno = dtogd(fs, blkno); 1814 for (i = size; i < fs->fs_frag; i++) 1815 setbit(blksfree, bno + i); 1816 i = fs->fs_frag - size; 1817 cgp->cg_cs.cs_nffree += i; 1818 fs->fs_cstotal.cs_nffree += i; 1819 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1820 fs->fs_fmod = 1; 1821 cgp->cg_frsum[i]++; 1822 } 1823 /* XXX Fixme. */ 1824 UFS_UNLOCK(ump); 1825 if (DOINGSOFTDEP(ITOV(ip))) 1826 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1827 size, 0); 1828 UFS_LOCK(ump); 1829 return (blkno); 1830 } 1831 1832 /* 1833 * Determine whether a cluster can be allocated. 1834 * 1835 * We do not currently check for optimal rotational layout if there 1836 * are multiple choices in the same cylinder group. Instead we just 1837 * take the first one that we find following bpref. 1838 */ 1839 static ufs2_daddr_t 1840 ffs_clusteralloc(ip, cg, bpref, len) 1841 struct inode *ip; 1842 u_int cg; 1843 ufs2_daddr_t bpref; 1844 int len; 1845 { 1846 struct fs *fs; 1847 struct cg *cgp; 1848 struct buf *bp; 1849 struct ufsmount *ump; 1850 int i, run, bit, map, got, error; 1851 ufs2_daddr_t bno; 1852 u_char *mapp; 1853 int32_t *lp; 1854 u_int8_t *blksfree; 1855 1856 ump = ITOUMP(ip); 1857 fs = ump->um_fs; 1858 if (fs->fs_maxcluster[cg] < len) 1859 return (0); 1860 UFS_UNLOCK(ump); 1861 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1862 UFS_LOCK(ump); 1863 return (0); 1864 } 1865 /* 1866 * Check to see if a cluster of the needed size (or bigger) is 1867 * available in this cylinder group. 1868 */ 1869 lp = &cg_clustersum(cgp)[len]; 1870 for (i = len; i <= fs->fs_contigsumsize; i++) 1871 if (*lp++ > 0) 1872 break; 1873 if (i > fs->fs_contigsumsize) { 1874 /* 1875 * This is the first time looking for a cluster in this 1876 * cylinder group. Update the cluster summary information 1877 * to reflect the true maximum sized cluster so that 1878 * future cluster allocation requests can avoid reading 1879 * the cylinder group map only to find no clusters. 1880 */ 1881 lp = &cg_clustersum(cgp)[len - 1]; 1882 for (i = len - 1; i > 0; i--) 1883 if (*lp-- > 0) 1884 break; 1885 UFS_LOCK(ump); 1886 fs->fs_maxcluster[cg] = i; 1887 brelse(bp); 1888 return (0); 1889 } 1890 /* 1891 * Search the cluster map to find a big enough cluster. 1892 * We take the first one that we find, even if it is larger 1893 * than we need as we prefer to get one close to the previous 1894 * block allocation. We do not search before the current 1895 * preference point as we do not want to allocate a block 1896 * that is allocated before the previous one (as we will 1897 * then have to wait for another pass of the elevator 1898 * algorithm before it will be read). We prefer to fail and 1899 * be recalled to try an allocation in the next cylinder group. 1900 */ 1901 if (dtog(fs, bpref) != cg) 1902 bpref = cgdata(fs, cg); 1903 else 1904 bpref = blknum(fs, bpref); 1905 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1906 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1907 map = *mapp++; 1908 bit = 1 << (bpref % NBBY); 1909 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1910 if ((map & bit) == 0) { 1911 run = 0; 1912 } else { 1913 run++; 1914 if (run == len) 1915 break; 1916 } 1917 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1918 bit <<= 1; 1919 } else { 1920 map = *mapp++; 1921 bit = 1; 1922 } 1923 } 1924 if (got >= cgp->cg_nclusterblks) { 1925 UFS_LOCK(ump); 1926 brelse(bp); 1927 return (0); 1928 } 1929 /* 1930 * Allocate the cluster that we have found. 1931 */ 1932 blksfree = cg_blksfree(cgp); 1933 for (i = 1; i <= len; i++) 1934 if (!ffs_isblock(fs, blksfree, got - run + i)) 1935 panic("ffs_clusteralloc: map mismatch"); 1936 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1937 if (dtog(fs, bno) != cg) 1938 panic("ffs_clusteralloc: allocated out of group"); 1939 len = blkstofrags(fs, len); 1940 UFS_LOCK(ump); 1941 for (i = 0; i < len; i += fs->fs_frag) 1942 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1943 panic("ffs_clusteralloc: lost block"); 1944 ACTIVECLEAR(fs, cg); 1945 UFS_UNLOCK(ump); 1946 bdwrite(bp); 1947 return (bno); 1948 } 1949 1950 static inline struct buf * 1951 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1952 { 1953 struct fs *fs; 1954 1955 fs = ITOFS(ip); 1956 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 1957 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1958 gbflags)); 1959 } 1960 1961 /* 1962 * Synchronous inode initialization is needed only when barrier writes do not 1963 * work as advertised, and will impose a heavy cost on file creation in a newly 1964 * created filesystem. 1965 */ 1966 static int doasyncinodeinit = 1; 1967 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 1968 &doasyncinodeinit, 0, 1969 "Perform inode block initialization using asynchronous writes"); 1970 1971 /* 1972 * Determine whether an inode can be allocated. 1973 * 1974 * Check to see if an inode is available, and if it is, 1975 * allocate it using the following policy: 1976 * 1) allocate the requested inode. 1977 * 2) allocate the next available inode after the requested 1978 * inode in the specified cylinder group. 1979 */ 1980 static ufs2_daddr_t 1981 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1982 struct inode *ip; 1983 u_int cg; 1984 ufs2_daddr_t ipref; 1985 int mode; 1986 int unused; 1987 { 1988 struct fs *fs; 1989 struct cg *cgp; 1990 struct buf *bp, *ibp; 1991 struct ufsmount *ump; 1992 u_int8_t *inosused, *loc; 1993 struct ufs2_dinode *dp2; 1994 int error, start, len, i; 1995 u_int32_t old_initediblk; 1996 1997 ump = ITOUMP(ip); 1998 fs = ump->um_fs; 1999 check_nifree: 2000 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2001 return (0); 2002 UFS_UNLOCK(ump); 2003 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2004 UFS_LOCK(ump); 2005 return (0); 2006 } 2007 restart: 2008 if (cgp->cg_cs.cs_nifree == 0) { 2009 brelse(bp); 2010 UFS_LOCK(ump); 2011 return (0); 2012 } 2013 inosused = cg_inosused(cgp); 2014 if (ipref) { 2015 ipref %= fs->fs_ipg; 2016 if (isclr(inosused, ipref)) 2017 goto gotit; 2018 } 2019 start = cgp->cg_irotor / NBBY; 2020 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2021 loc = memcchr(&inosused[start], 0xff, len); 2022 if (loc == NULL) { 2023 len = start + 1; 2024 start = 0; 2025 loc = memcchr(&inosused[start], 0xff, len); 2026 if (loc == NULL) { 2027 printf("cg = %d, irotor = %ld, fs = %s\n", 2028 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2029 panic("ffs_nodealloccg: map corrupted"); 2030 /* NOTREACHED */ 2031 } 2032 } 2033 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2034 gotit: 2035 /* 2036 * Check to see if we need to initialize more inodes. 2037 */ 2038 if (fs->fs_magic == FS_UFS2_MAGIC && 2039 ipref + INOPB(fs) > cgp->cg_initediblk && 2040 cgp->cg_initediblk < cgp->cg_niblk) { 2041 old_initediblk = cgp->cg_initediblk; 2042 2043 /* 2044 * Free the cylinder group lock before writing the 2045 * initialized inode block. Entering the 2046 * babarrierwrite() with the cylinder group lock 2047 * causes lock order violation between the lock and 2048 * snaplk. 2049 * 2050 * Another thread can decide to initialize the same 2051 * inode block, but whichever thread first gets the 2052 * cylinder group lock after writing the newly 2053 * allocated inode block will update it and the other 2054 * will realize that it has lost and leave the 2055 * cylinder group unchanged. 2056 */ 2057 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2058 brelse(bp); 2059 if (ibp == NULL) { 2060 /* 2061 * The inode block buffer is already owned by 2062 * another thread, which must initialize it. 2063 * Wait on the buffer to allow another thread 2064 * to finish the updates, with dropped cg 2065 * buffer lock, then retry. 2066 */ 2067 ibp = getinobuf(ip, cg, old_initediblk, 0); 2068 brelse(ibp); 2069 UFS_LOCK(ump); 2070 goto check_nifree; 2071 } 2072 bzero(ibp->b_data, (int)fs->fs_bsize); 2073 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2074 for (i = 0; i < INOPB(fs); i++) { 2075 while (dp2->di_gen == 0) 2076 dp2->di_gen = arc4random(); 2077 dp2++; 2078 } 2079 2080 /* 2081 * Rather than adding a soft updates dependency to ensure 2082 * that the new inode block is written before it is claimed 2083 * by the cylinder group map, we just do a barrier write 2084 * here. The barrier write will ensure that the inode block 2085 * gets written before the updated cylinder group map can be 2086 * written. The barrier write should only slow down bulk 2087 * loading of newly created filesystems. 2088 */ 2089 if (doasyncinodeinit) 2090 babarrierwrite(ibp); 2091 else 2092 bwrite(ibp); 2093 2094 /* 2095 * After the inode block is written, try to update the 2096 * cg initediblk pointer. If another thread beat us 2097 * to it, then leave it unchanged as the other thread 2098 * has already set it correctly. 2099 */ 2100 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2101 UFS_LOCK(ump); 2102 ACTIVECLEAR(fs, cg); 2103 UFS_UNLOCK(ump); 2104 if (error != 0) 2105 return (error); 2106 if (cgp->cg_initediblk == old_initediblk) 2107 cgp->cg_initediblk += INOPB(fs); 2108 goto restart; 2109 } 2110 cgp->cg_irotor = ipref; 2111 UFS_LOCK(ump); 2112 ACTIVECLEAR(fs, cg); 2113 setbit(inosused, ipref); 2114 cgp->cg_cs.cs_nifree--; 2115 fs->fs_cstotal.cs_nifree--; 2116 fs->fs_cs(fs, cg).cs_nifree--; 2117 fs->fs_fmod = 1; 2118 if ((mode & IFMT) == IFDIR) { 2119 cgp->cg_cs.cs_ndir++; 2120 fs->fs_cstotal.cs_ndir++; 2121 fs->fs_cs(fs, cg).cs_ndir++; 2122 } 2123 UFS_UNLOCK(ump); 2124 if (DOINGSOFTDEP(ITOV(ip))) 2125 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2126 bdwrite(bp); 2127 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2128 } 2129 2130 /* 2131 * Free a block or fragment. 2132 * 2133 * The specified block or fragment is placed back in the 2134 * free map. If a fragment is deallocated, a possible 2135 * block reassembly is checked. 2136 */ 2137 static void 2138 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2139 struct ufsmount *ump; 2140 struct fs *fs; 2141 struct vnode *devvp; 2142 ufs2_daddr_t bno; 2143 long size; 2144 ino_t inum; 2145 struct workhead *dephd; 2146 { 2147 struct mount *mp; 2148 struct cg *cgp; 2149 struct buf *bp; 2150 ufs1_daddr_t fragno, cgbno; 2151 int i, blk, frags, bbase, error; 2152 u_int cg; 2153 u_int8_t *blksfree; 2154 struct cdev *dev; 2155 2156 cg = dtog(fs, bno); 2157 if (devvp->v_type == VREG) { 2158 /* devvp is a snapshot */ 2159 MPASS(devvp->v_mount->mnt_data == ump); 2160 dev = ump->um_devvp->v_rdev; 2161 } else if (devvp->v_type == VCHR) { 2162 /* devvp is a normal disk device */ 2163 dev = devvp->v_rdev; 2164 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2165 } else 2166 return; 2167 #ifdef INVARIANTS 2168 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2169 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2170 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2171 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2172 size, fs->fs_fsmnt); 2173 panic("ffs_blkfree_cg: bad size"); 2174 } 2175 #endif 2176 if ((u_int)bno >= fs->fs_size) { 2177 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2178 (u_long)inum); 2179 ffs_fserr(fs, inum, "bad block"); 2180 return; 2181 } 2182 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2183 return; 2184 cgbno = dtogd(fs, bno); 2185 blksfree = cg_blksfree(cgp); 2186 UFS_LOCK(ump); 2187 if (size == fs->fs_bsize) { 2188 fragno = fragstoblks(fs, cgbno); 2189 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2190 if (devvp->v_type == VREG) { 2191 UFS_UNLOCK(ump); 2192 /* devvp is a snapshot */ 2193 brelse(bp); 2194 return; 2195 } 2196 printf("dev = %s, block = %jd, fs = %s\n", 2197 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2198 panic("ffs_blkfree_cg: freeing free block"); 2199 } 2200 ffs_setblock(fs, blksfree, fragno); 2201 ffs_clusteracct(fs, cgp, fragno, 1); 2202 cgp->cg_cs.cs_nbfree++; 2203 fs->fs_cstotal.cs_nbfree++; 2204 fs->fs_cs(fs, cg).cs_nbfree++; 2205 } else { 2206 bbase = cgbno - fragnum(fs, cgbno); 2207 /* 2208 * decrement the counts associated with the old frags 2209 */ 2210 blk = blkmap(fs, blksfree, bbase); 2211 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2212 /* 2213 * deallocate the fragment 2214 */ 2215 frags = numfrags(fs, size); 2216 for (i = 0; i < frags; i++) { 2217 if (isset(blksfree, cgbno + i)) { 2218 printf("dev = %s, block = %jd, fs = %s\n", 2219 devtoname(dev), (intmax_t)(bno + i), 2220 fs->fs_fsmnt); 2221 panic("ffs_blkfree_cg: freeing free frag"); 2222 } 2223 setbit(blksfree, cgbno + i); 2224 } 2225 cgp->cg_cs.cs_nffree += i; 2226 fs->fs_cstotal.cs_nffree += i; 2227 fs->fs_cs(fs, cg).cs_nffree += i; 2228 /* 2229 * add back in counts associated with the new frags 2230 */ 2231 blk = blkmap(fs, blksfree, bbase); 2232 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2233 /* 2234 * if a complete block has been reassembled, account for it 2235 */ 2236 fragno = fragstoblks(fs, bbase); 2237 if (ffs_isblock(fs, blksfree, fragno)) { 2238 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2239 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2240 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2241 ffs_clusteracct(fs, cgp, fragno, 1); 2242 cgp->cg_cs.cs_nbfree++; 2243 fs->fs_cstotal.cs_nbfree++; 2244 fs->fs_cs(fs, cg).cs_nbfree++; 2245 } 2246 } 2247 fs->fs_fmod = 1; 2248 ACTIVECLEAR(fs, cg); 2249 UFS_UNLOCK(ump); 2250 mp = UFSTOVFS(ump); 2251 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2252 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2253 numfrags(fs, size), dephd); 2254 bdwrite(bp); 2255 } 2256 2257 struct ffs_blkfree_trim_params { 2258 struct task task; 2259 struct ufsmount *ump; 2260 struct vnode *devvp; 2261 ufs2_daddr_t bno; 2262 long size; 2263 ino_t inum; 2264 struct workhead *pdephd; 2265 struct workhead dephd; 2266 }; 2267 2268 static void 2269 ffs_blkfree_trim_task(ctx, pending) 2270 void *ctx; 2271 int pending; 2272 { 2273 struct ffs_blkfree_trim_params *tp; 2274 2275 tp = ctx; 2276 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2277 tp->inum, tp->pdephd); 2278 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2279 atomic_add_int(&tp->ump->um_trim_inflight, -1); 2280 free(tp, M_TEMP); 2281 } 2282 2283 static void 2284 ffs_blkfree_trim_completed(bp) 2285 struct buf *bp; 2286 { 2287 struct ffs_blkfree_trim_params *tp; 2288 2289 tp = bp->b_fsprivate1; 2290 free(bp, M_TEMP); 2291 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2292 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2293 } 2294 2295 void 2296 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2297 struct ufsmount *ump; 2298 struct fs *fs; 2299 struct vnode *devvp; 2300 ufs2_daddr_t bno; 2301 long size; 2302 ino_t inum; 2303 enum vtype vtype; 2304 struct workhead *dephd; 2305 { 2306 struct mount *mp; 2307 struct buf *bp; 2308 struct ffs_blkfree_trim_params *tp; 2309 2310 /* 2311 * Check to see if a snapshot wants to claim the block. 2312 * Check that devvp is a normal disk device, not a snapshot, 2313 * it has a snapshot(s) associated with it, and one of the 2314 * snapshots wants to claim the block. 2315 */ 2316 if (devvp->v_type == VCHR && 2317 (devvp->v_vflag & VV_COPYONWRITE) && 2318 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2319 return; 2320 } 2321 /* 2322 * Nothing to delay if TRIM is disabled, or the operation is 2323 * performed on the snapshot. 2324 */ 2325 if (!ump->um_candelete || devvp->v_type == VREG) { 2326 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2327 return; 2328 } 2329 2330 /* 2331 * Postpone the set of the free bit in the cg bitmap until the 2332 * BIO_DELETE is completed. Otherwise, due to disk queue 2333 * reordering, TRIM might be issued after we reuse the block 2334 * and write some new data into it. 2335 */ 2336 atomic_add_int(&ump->um_trim_inflight, 1); 2337 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2338 tp->ump = ump; 2339 tp->devvp = devvp; 2340 tp->bno = bno; 2341 tp->size = size; 2342 tp->inum = inum; 2343 if (dephd != NULL) { 2344 LIST_INIT(&tp->dephd); 2345 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2346 tp->pdephd = &tp->dephd; 2347 } else 2348 tp->pdephd = NULL; 2349 2350 bp = malloc(sizeof(*bp), M_TEMP, M_WAITOK | M_ZERO); 2351 bp->b_iocmd = BIO_DELETE; 2352 bp->b_iooffset = dbtob(fsbtodb(fs, bno)); 2353 bp->b_iodone = ffs_blkfree_trim_completed; 2354 bp->b_bcount = size; 2355 bp->b_fsprivate1 = tp; 2356 2357 mp = UFSTOVFS(ump); 2358 vn_start_secondary_write(NULL, &mp, 0); 2359 g_vfs_strategy(ump->um_bo, bp); 2360 } 2361 2362 #ifdef INVARIANTS 2363 /* 2364 * Verify allocation of a block or fragment. Returns true if block or 2365 * fragment is allocated, false if it is free. 2366 */ 2367 static int 2368 ffs_checkblk(ip, bno, size) 2369 struct inode *ip; 2370 ufs2_daddr_t bno; 2371 long size; 2372 { 2373 struct fs *fs; 2374 struct cg *cgp; 2375 struct buf *bp; 2376 ufs1_daddr_t cgbno; 2377 int i, error, frags, free; 2378 u_int8_t *blksfree; 2379 2380 fs = ITOFS(ip); 2381 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2382 printf("bsize = %ld, size = %ld, fs = %s\n", 2383 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2384 panic("ffs_checkblk: bad size"); 2385 } 2386 if ((u_int)bno >= fs->fs_size) 2387 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2388 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2389 if (error) 2390 panic("ffs_checkblk: cylinder group read failed"); 2391 blksfree = cg_blksfree(cgp); 2392 cgbno = dtogd(fs, bno); 2393 if (size == fs->fs_bsize) { 2394 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2395 } else { 2396 frags = numfrags(fs, size); 2397 for (free = 0, i = 0; i < frags; i++) 2398 if (isset(blksfree, cgbno + i)) 2399 free++; 2400 if (free != 0 && free != frags) 2401 panic("ffs_checkblk: partially free fragment"); 2402 } 2403 brelse(bp); 2404 return (!free); 2405 } 2406 #endif /* INVARIANTS */ 2407 2408 /* 2409 * Free an inode. 2410 */ 2411 int 2412 ffs_vfree(pvp, ino, mode) 2413 struct vnode *pvp; 2414 ino_t ino; 2415 int mode; 2416 { 2417 struct ufsmount *ump; 2418 2419 if (DOINGSOFTDEP(pvp)) { 2420 softdep_freefile(pvp, ino, mode); 2421 return (0); 2422 } 2423 ump = VFSTOUFS(pvp->v_mount); 2424 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2425 } 2426 2427 /* 2428 * Do the actual free operation. 2429 * The specified inode is placed back in the free map. 2430 */ 2431 int 2432 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2433 struct ufsmount *ump; 2434 struct fs *fs; 2435 struct vnode *devvp; 2436 ino_t ino; 2437 int mode; 2438 struct workhead *wkhd; 2439 { 2440 struct cg *cgp; 2441 struct buf *bp; 2442 int error; 2443 u_int cg; 2444 u_int8_t *inosused; 2445 struct cdev *dev; 2446 2447 cg = ino_to_cg(fs, ino); 2448 if (devvp->v_type == VREG) { 2449 /* devvp is a snapshot */ 2450 MPASS(devvp->v_mount->mnt_data == ump); 2451 dev = ump->um_devvp->v_rdev; 2452 } else if (devvp->v_type == VCHR) { 2453 /* devvp is a normal disk device */ 2454 dev = devvp->v_rdev; 2455 } else { 2456 bp = NULL; 2457 return (0); 2458 } 2459 if (ino >= fs->fs_ipg * fs->fs_ncg) 2460 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2461 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2462 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2463 return (error); 2464 inosused = cg_inosused(cgp); 2465 ino %= fs->fs_ipg; 2466 if (isclr(inosused, ino)) { 2467 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2468 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2469 if (fs->fs_ronly == 0) 2470 panic("ffs_freefile: freeing free inode"); 2471 } 2472 clrbit(inosused, ino); 2473 if (ino < cgp->cg_irotor) 2474 cgp->cg_irotor = ino; 2475 cgp->cg_cs.cs_nifree++; 2476 UFS_LOCK(ump); 2477 fs->fs_cstotal.cs_nifree++; 2478 fs->fs_cs(fs, cg).cs_nifree++; 2479 if ((mode & IFMT) == IFDIR) { 2480 cgp->cg_cs.cs_ndir--; 2481 fs->fs_cstotal.cs_ndir--; 2482 fs->fs_cs(fs, cg).cs_ndir--; 2483 } 2484 fs->fs_fmod = 1; 2485 ACTIVECLEAR(fs, cg); 2486 UFS_UNLOCK(ump); 2487 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2488 softdep_setup_inofree(UFSTOVFS(ump), bp, 2489 ino + cg * fs->fs_ipg, wkhd); 2490 bdwrite(bp); 2491 return (0); 2492 } 2493 2494 /* 2495 * Check to see if a file is free. 2496 * Used to check for allocated files in snapshots. 2497 */ 2498 int 2499 ffs_checkfreefile(fs, devvp, ino) 2500 struct fs *fs; 2501 struct vnode *devvp; 2502 ino_t ino; 2503 { 2504 struct cg *cgp; 2505 struct buf *bp; 2506 int ret, error; 2507 u_int cg; 2508 u_int8_t *inosused; 2509 2510 cg = ino_to_cg(fs, ino); 2511 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2512 return (1); 2513 if (ino >= fs->fs_ipg * fs->fs_ncg) 2514 return (1); 2515 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2516 return (1); 2517 inosused = cg_inosused(cgp); 2518 ino %= fs->fs_ipg; 2519 ret = isclr(inosused, ino); 2520 brelse(bp); 2521 return (ret); 2522 } 2523 2524 /* 2525 * Find a block of the specified size in the specified cylinder group. 2526 * 2527 * It is a panic if a request is made to find a block if none are 2528 * available. 2529 */ 2530 static ufs1_daddr_t 2531 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2532 struct fs *fs; 2533 struct cg *cgp; 2534 ufs2_daddr_t bpref; 2535 int allocsiz; 2536 { 2537 ufs1_daddr_t bno; 2538 int start, len, loc, i; 2539 int blk, field, subfield, pos; 2540 u_int8_t *blksfree; 2541 2542 /* 2543 * find the fragment by searching through the free block 2544 * map for an appropriate bit pattern 2545 */ 2546 if (bpref) 2547 start = dtogd(fs, bpref) / NBBY; 2548 else 2549 start = cgp->cg_frotor / NBBY; 2550 blksfree = cg_blksfree(cgp); 2551 len = howmany(fs->fs_fpg, NBBY) - start; 2552 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2553 fragtbl[fs->fs_frag], 2554 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2555 if (loc == 0) { 2556 len = start + 1; 2557 start = 0; 2558 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2559 fragtbl[fs->fs_frag], 2560 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2561 if (loc == 0) { 2562 printf("start = %d, len = %d, fs = %s\n", 2563 start, len, fs->fs_fsmnt); 2564 panic("ffs_alloccg: map corrupted"); 2565 /* NOTREACHED */ 2566 } 2567 } 2568 bno = (start + len - loc) * NBBY; 2569 cgp->cg_frotor = bno; 2570 /* 2571 * found the byte in the map 2572 * sift through the bits to find the selected frag 2573 */ 2574 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2575 blk = blkmap(fs, blksfree, bno); 2576 blk <<= 1; 2577 field = around[allocsiz]; 2578 subfield = inside[allocsiz]; 2579 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2580 if ((blk & field) == subfield) 2581 return (bno + pos); 2582 field <<= 1; 2583 subfield <<= 1; 2584 } 2585 } 2586 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2587 panic("ffs_alloccg: block not in map"); 2588 return (-1); 2589 } 2590 2591 static const struct statfs * 2592 ffs_getmntstat(struct vnode *devvp) 2593 { 2594 2595 if (devvp->v_type == VCHR) 2596 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2597 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2598 } 2599 2600 /* 2601 * Fetch and verify a cylinder group. 2602 */ 2603 int 2604 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2605 struct fs *fs; 2606 struct vnode *devvp; 2607 u_int cg; 2608 struct buf **bpp; 2609 struct cg **cgpp; 2610 { 2611 struct buf *bp; 2612 struct cg *cgp; 2613 const struct statfs *sfs; 2614 int flags, error; 2615 2616 *bpp = NULL; 2617 *cgpp = NULL; 2618 flags = 0; 2619 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2620 flags |= GB_CKHASH; 2621 error = breadn_flags(devvp, devvp->v_type == VREG ? 2622 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2623 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2624 ffs_ckhash_cg, &bp); 2625 if (error != 0) 2626 return (error); 2627 cgp = (struct cg *)bp->b_data; 2628 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2629 (bp->b_flags & B_CKHASH) != 0 && 2630 cgp->cg_ckhash != bp->b_ckhash) { 2631 sfs = ffs_getmntstat(devvp); 2632 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2633 "0x%x != bp: 0x%jx\n", 2634 devvp->v_type == VCHR ? "" : "snapshot of ", 2635 sfs->f_mntfromname, sfs->f_mntonname, 2636 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2637 bp->b_flags &= ~B_CKHASH; 2638 bp->b_flags |= B_INVAL | B_NOCACHE; 2639 brelse(bp); 2640 return (EIO); 2641 } 2642 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2643 sfs = ffs_getmntstat(devvp); 2644 printf("UFS %s%s (%s)", 2645 devvp->v_type == VCHR ? "" : "snapshot of ", 2646 sfs->f_mntfromname, sfs->f_mntonname); 2647 if (!cg_chkmagic(cgp)) 2648 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2649 cg, cgp->cg_magic, CG_MAGIC); 2650 else 2651 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2652 cgp->cg_cgx); 2653 bp->b_flags &= ~B_CKHASH; 2654 bp->b_flags |= B_INVAL | B_NOCACHE; 2655 brelse(bp); 2656 return (EIO); 2657 } 2658 bp->b_flags &= ~B_CKHASH; 2659 bp->b_xflags |= BX_BKGRDWRITE; 2660 /* 2661 * If we are using check hashes on the cylinder group then we want 2662 * to limit changing the cylinder group time to when we are actually 2663 * going to write it to disk so that its check hash remains correct 2664 * in memory. If the CK_CYLGRP flag is set the time is updated in 2665 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 2666 * update the time here as we have done historically. 2667 */ 2668 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2669 bp->b_xflags |= BX_CYLGRP; 2670 else 2671 cgp->cg_old_time = cgp->cg_time = time_second; 2672 *bpp = bp; 2673 *cgpp = cgp; 2674 return (0); 2675 } 2676 2677 static void 2678 ffs_ckhash_cg(bp) 2679 struct buf *bp; 2680 { 2681 uint32_t ckhash; 2682 struct cg *cgp; 2683 2684 cgp = (struct cg *)bp->b_data; 2685 ckhash = cgp->cg_ckhash; 2686 cgp->cg_ckhash = 0; 2687 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2688 cgp->cg_ckhash = ckhash; 2689 } 2690 2691 /* 2692 * Fserr prints the name of a filesystem with an error diagnostic. 2693 * 2694 * The form of the error message is: 2695 * fs: error message 2696 */ 2697 void 2698 ffs_fserr(fs, inum, cp) 2699 struct fs *fs; 2700 ino_t inum; 2701 char *cp; 2702 { 2703 struct thread *td = curthread; /* XXX */ 2704 struct proc *p = td->td_proc; 2705 2706 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2707 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2708 fs->fs_fsmnt, cp); 2709 } 2710 2711 /* 2712 * This function provides the capability for the fsck program to 2713 * update an active filesystem. Fourteen operations are provided: 2714 * 2715 * adjrefcnt(inode, amt) - adjusts the reference count on the 2716 * specified inode by the specified amount. Under normal 2717 * operation the count should always go down. Decrementing 2718 * the count to zero will cause the inode to be freed. 2719 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2720 * inode by the specified amount. 2721 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2722 * adjust the superblock summary. 2723 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2724 * are marked as free. Inodes should never have to be marked 2725 * as in use. 2726 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2727 * are marked as free. Inodes should never have to be marked 2728 * as in use. 2729 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2730 * are marked as free. Blocks should never have to be marked 2731 * as in use. 2732 * setflags(flags, set/clear) - the fs_flags field has the specified 2733 * flags set (second parameter +1) or cleared (second parameter -1). 2734 * setcwd(dirinode) - set the current directory to dirinode in the 2735 * filesystem associated with the snapshot. 2736 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2737 * in the current directory is oldvalue then change it to newvalue. 2738 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2739 * with nameptr in the current directory is oldvalue then unlink it. 2740 * 2741 * The following functions may only be used on a quiescent filesystem 2742 * by the soft updates journal. They are not safe to be run on an active 2743 * filesystem. 2744 * 2745 * setinode(inode, dip) - the specified disk inode is replaced with the 2746 * contents pointed to by dip. 2747 * setbufoutput(fd, flags) - output associated with the specified file 2748 * descriptor (which must reference the character device supporting 2749 * the filesystem) switches from using physio to running through the 2750 * buffer cache when flags is set to 1. The descriptor reverts to 2751 * physio for output when flags is set to zero. 2752 */ 2753 2754 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2755 2756 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2757 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2758 2759 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2760 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2761 2762 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2763 sysctl_ffs_fsck, "Adjust number of directories"); 2764 2765 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2766 sysctl_ffs_fsck, "Adjust number of free blocks"); 2767 2768 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2769 sysctl_ffs_fsck, "Adjust number of free inodes"); 2770 2771 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2772 sysctl_ffs_fsck, "Adjust number of free frags"); 2773 2774 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2775 sysctl_ffs_fsck, "Adjust number of free clusters"); 2776 2777 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2778 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2779 2780 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2781 sysctl_ffs_fsck, "Free Range of File Inodes"); 2782 2783 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2784 sysctl_ffs_fsck, "Free Range of Blocks"); 2785 2786 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2787 sysctl_ffs_fsck, "Change Filesystem Flags"); 2788 2789 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2790 sysctl_ffs_fsck, "Set Current Working Directory"); 2791 2792 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2793 sysctl_ffs_fsck, "Change Value of .. Entry"); 2794 2795 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2796 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2797 2798 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2799 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2800 2801 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2802 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2803 2804 #define DEBUG 1 2805 #ifdef DEBUG 2806 static int fsckcmds = 0; 2807 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2808 #endif /* DEBUG */ 2809 2810 static int buffered_write(struct file *, struct uio *, struct ucred *, 2811 int, struct thread *); 2812 2813 static int 2814 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2815 { 2816 struct thread *td = curthread; 2817 struct fsck_cmd cmd; 2818 struct ufsmount *ump; 2819 struct vnode *vp, *dvp, *fdvp; 2820 struct inode *ip, *dp; 2821 struct mount *mp; 2822 struct fs *fs; 2823 ufs2_daddr_t blkno; 2824 long blkcnt, blksize; 2825 struct file *fp, *vfp; 2826 cap_rights_t rights; 2827 int filetype, error; 2828 static struct fileops *origops, bufferedops; 2829 2830 if (req->newlen > sizeof cmd) 2831 return (EBADRPC); 2832 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2833 return (error); 2834 if (cmd.version != FFS_CMD_VERSION) 2835 return (ERPCMISMATCH); 2836 if ((error = getvnode(td, cmd.handle, 2837 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2838 return (error); 2839 vp = fp->f_data; 2840 if (vp->v_type != VREG && vp->v_type != VDIR) { 2841 fdrop(fp, td); 2842 return (EINVAL); 2843 } 2844 vn_start_write(vp, &mp, V_WAIT); 2845 if (mp == NULL || 2846 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2847 vn_finished_write(mp); 2848 fdrop(fp, td); 2849 return (EINVAL); 2850 } 2851 ump = VFSTOUFS(mp); 2852 if ((mp->mnt_flag & MNT_RDONLY) && 2853 ump->um_fsckpid != td->td_proc->p_pid) { 2854 vn_finished_write(mp); 2855 fdrop(fp, td); 2856 return (EROFS); 2857 } 2858 fs = ump->um_fs; 2859 filetype = IFREG; 2860 2861 switch (oidp->oid_number) { 2862 2863 case FFS_SET_FLAGS: 2864 #ifdef DEBUG 2865 if (fsckcmds) 2866 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2867 cmd.size > 0 ? "set" : "clear"); 2868 #endif /* DEBUG */ 2869 if (cmd.size > 0) 2870 fs->fs_flags |= (long)cmd.value; 2871 else 2872 fs->fs_flags &= ~(long)cmd.value; 2873 break; 2874 2875 case FFS_ADJ_REFCNT: 2876 #ifdef DEBUG 2877 if (fsckcmds) { 2878 printf("%s: adjust inode %jd link count by %jd\n", 2879 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2880 (intmax_t)cmd.size); 2881 } 2882 #endif /* DEBUG */ 2883 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2884 break; 2885 ip = VTOI(vp); 2886 ip->i_nlink += cmd.size; 2887 DIP_SET(ip, i_nlink, ip->i_nlink); 2888 ip->i_effnlink += cmd.size; 2889 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2890 error = ffs_update(vp, 1); 2891 if (DOINGSOFTDEP(vp)) 2892 softdep_change_linkcnt(ip); 2893 vput(vp); 2894 break; 2895 2896 case FFS_ADJ_BLKCNT: 2897 #ifdef DEBUG 2898 if (fsckcmds) { 2899 printf("%s: adjust inode %jd block count by %jd\n", 2900 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2901 (intmax_t)cmd.size); 2902 } 2903 #endif /* DEBUG */ 2904 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2905 break; 2906 ip = VTOI(vp); 2907 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2908 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2909 error = ffs_update(vp, 1); 2910 vput(vp); 2911 break; 2912 2913 case FFS_DIR_FREE: 2914 filetype = IFDIR; 2915 /* fall through */ 2916 2917 case FFS_FILE_FREE: 2918 #ifdef DEBUG 2919 if (fsckcmds) { 2920 if (cmd.size == 1) 2921 printf("%s: free %s inode %ju\n", 2922 mp->mnt_stat.f_mntonname, 2923 filetype == IFDIR ? "directory" : "file", 2924 (uintmax_t)cmd.value); 2925 else 2926 printf("%s: free %s inodes %ju-%ju\n", 2927 mp->mnt_stat.f_mntonname, 2928 filetype == IFDIR ? "directory" : "file", 2929 (uintmax_t)cmd.value, 2930 (uintmax_t)(cmd.value + cmd.size - 1)); 2931 } 2932 #endif /* DEBUG */ 2933 while (cmd.size > 0) { 2934 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2935 cmd.value, filetype, NULL))) 2936 break; 2937 cmd.size -= 1; 2938 cmd.value += 1; 2939 } 2940 break; 2941 2942 case FFS_BLK_FREE: 2943 #ifdef DEBUG 2944 if (fsckcmds) { 2945 if (cmd.size == 1) 2946 printf("%s: free block %jd\n", 2947 mp->mnt_stat.f_mntonname, 2948 (intmax_t)cmd.value); 2949 else 2950 printf("%s: free blocks %jd-%jd\n", 2951 mp->mnt_stat.f_mntonname, 2952 (intmax_t)cmd.value, 2953 (intmax_t)cmd.value + cmd.size - 1); 2954 } 2955 #endif /* DEBUG */ 2956 blkno = cmd.value; 2957 blkcnt = cmd.size; 2958 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2959 while (blkcnt > 0) { 2960 if (blksize > blkcnt) 2961 blksize = blkcnt; 2962 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2963 blksize * fs->fs_fsize, UFS_ROOTINO, VDIR, NULL); 2964 blkno += blksize; 2965 blkcnt -= blksize; 2966 blksize = fs->fs_frag; 2967 } 2968 break; 2969 2970 /* 2971 * Adjust superblock summaries. fsck(8) is expected to 2972 * submit deltas when necessary. 2973 */ 2974 case FFS_ADJ_NDIR: 2975 #ifdef DEBUG 2976 if (fsckcmds) { 2977 printf("%s: adjust number of directories by %jd\n", 2978 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2979 } 2980 #endif /* DEBUG */ 2981 fs->fs_cstotal.cs_ndir += cmd.value; 2982 break; 2983 2984 case FFS_ADJ_NBFREE: 2985 #ifdef DEBUG 2986 if (fsckcmds) { 2987 printf("%s: adjust number of free blocks by %+jd\n", 2988 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2989 } 2990 #endif /* DEBUG */ 2991 fs->fs_cstotal.cs_nbfree += cmd.value; 2992 break; 2993 2994 case FFS_ADJ_NIFREE: 2995 #ifdef DEBUG 2996 if (fsckcmds) { 2997 printf("%s: adjust number of free inodes by %+jd\n", 2998 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2999 } 3000 #endif /* DEBUG */ 3001 fs->fs_cstotal.cs_nifree += cmd.value; 3002 break; 3003 3004 case FFS_ADJ_NFFREE: 3005 #ifdef DEBUG 3006 if (fsckcmds) { 3007 printf("%s: adjust number of free frags by %+jd\n", 3008 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3009 } 3010 #endif /* DEBUG */ 3011 fs->fs_cstotal.cs_nffree += cmd.value; 3012 break; 3013 3014 case FFS_ADJ_NUMCLUSTERS: 3015 #ifdef DEBUG 3016 if (fsckcmds) { 3017 printf("%s: adjust number of free clusters by %+jd\n", 3018 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3019 } 3020 #endif /* DEBUG */ 3021 fs->fs_cstotal.cs_numclusters += cmd.value; 3022 break; 3023 3024 case FFS_SET_CWD: 3025 #ifdef DEBUG 3026 if (fsckcmds) { 3027 printf("%s: set current directory to inode %jd\n", 3028 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3029 } 3030 #endif /* DEBUG */ 3031 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3032 break; 3033 AUDIT_ARG_VNODE1(vp); 3034 if ((error = change_dir(vp, td)) != 0) { 3035 vput(vp); 3036 break; 3037 } 3038 VOP_UNLOCK(vp, 0); 3039 pwd_chdir(td, vp); 3040 break; 3041 3042 case FFS_SET_DOTDOT: 3043 #ifdef DEBUG 3044 if (fsckcmds) { 3045 printf("%s: change .. in cwd from %jd to %jd\n", 3046 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3047 (intmax_t)cmd.size); 3048 } 3049 #endif /* DEBUG */ 3050 /* 3051 * First we have to get and lock the parent directory 3052 * to which ".." points. 3053 */ 3054 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3055 if (error) 3056 break; 3057 /* 3058 * Now we get and lock the child directory containing "..". 3059 */ 3060 FILEDESC_SLOCK(td->td_proc->p_fd); 3061 dvp = td->td_proc->p_fd->fd_cdir; 3062 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3063 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3064 vput(fdvp); 3065 break; 3066 } 3067 dp = VTOI(dvp); 3068 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3069 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3070 DT_DIR, 0); 3071 cache_purge(fdvp); 3072 cache_purge(dvp); 3073 vput(dvp); 3074 vput(fdvp); 3075 break; 3076 3077 case FFS_UNLINK: 3078 #ifdef DEBUG 3079 if (fsckcmds) { 3080 char buf[32]; 3081 3082 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3083 strncpy(buf, "Name_too_long", 32); 3084 printf("%s: unlink %s (inode %jd)\n", 3085 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3086 } 3087 #endif /* DEBUG */ 3088 /* 3089 * kern_unlinkat will do its own start/finish writes and 3090 * they do not nest, so drop ours here. Setting mp == NULL 3091 * indicates that vn_finished_write is not needed down below. 3092 */ 3093 vn_finished_write(mp); 3094 mp = NULL; 3095 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3096 UIO_USERSPACE, (ino_t)cmd.size); 3097 break; 3098 3099 case FFS_SET_INODE: 3100 if (ump->um_fsckpid != td->td_proc->p_pid) { 3101 error = EPERM; 3102 break; 3103 } 3104 #ifdef DEBUG 3105 if (fsckcmds) { 3106 printf("%s: update inode %jd\n", 3107 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3108 } 3109 #endif /* DEBUG */ 3110 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3111 break; 3112 AUDIT_ARG_VNODE1(vp); 3113 ip = VTOI(vp); 3114 if (I_IS_UFS1(ip)) 3115 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3116 sizeof(struct ufs1_dinode)); 3117 else 3118 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3119 sizeof(struct ufs2_dinode)); 3120 if (error) { 3121 vput(vp); 3122 break; 3123 } 3124 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3125 error = ffs_update(vp, 1); 3126 vput(vp); 3127 break; 3128 3129 case FFS_SET_BUFOUTPUT: 3130 if (ump->um_fsckpid != td->td_proc->p_pid) { 3131 error = EPERM; 3132 break; 3133 } 3134 if (ITOUMP(VTOI(vp)) != ump) { 3135 error = EINVAL; 3136 break; 3137 } 3138 #ifdef DEBUG 3139 if (fsckcmds) { 3140 printf("%s: %s buffered output for descriptor %jd\n", 3141 mp->mnt_stat.f_mntonname, 3142 cmd.size == 1 ? "enable" : "disable", 3143 (intmax_t)cmd.value); 3144 } 3145 #endif /* DEBUG */ 3146 if ((error = getvnode(td, cmd.value, 3147 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3148 break; 3149 if (vfp->f_vnode->v_type != VCHR) { 3150 fdrop(vfp, td); 3151 error = EINVAL; 3152 break; 3153 } 3154 if (origops == NULL) { 3155 origops = vfp->f_ops; 3156 bcopy((void *)origops, (void *)&bufferedops, 3157 sizeof(bufferedops)); 3158 bufferedops.fo_write = buffered_write; 3159 } 3160 if (cmd.size == 1) 3161 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3162 (uintptr_t)&bufferedops); 3163 else 3164 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3165 (uintptr_t)origops); 3166 fdrop(vfp, td); 3167 break; 3168 3169 default: 3170 #ifdef DEBUG 3171 if (fsckcmds) { 3172 printf("Invalid request %d from fsck\n", 3173 oidp->oid_number); 3174 } 3175 #endif /* DEBUG */ 3176 error = EINVAL; 3177 break; 3178 3179 } 3180 fdrop(fp, td); 3181 vn_finished_write(mp); 3182 return (error); 3183 } 3184 3185 /* 3186 * Function to switch a descriptor to use the buffer cache to stage 3187 * its I/O. This is needed so that writes to the filesystem device 3188 * will give snapshots a chance to copy modified blocks for which it 3189 * needs to retain copies. 3190 */ 3191 static int 3192 buffered_write(fp, uio, active_cred, flags, td) 3193 struct file *fp; 3194 struct uio *uio; 3195 struct ucred *active_cred; 3196 int flags; 3197 struct thread *td; 3198 { 3199 struct vnode *devvp, *vp; 3200 struct inode *ip; 3201 struct buf *bp; 3202 struct fs *fs; 3203 struct filedesc *fdp; 3204 int error; 3205 daddr_t lbn; 3206 3207 /* 3208 * The devvp is associated with the /dev filesystem. To discover 3209 * the filesystem with which the device is associated, we depend 3210 * on the application setting the current directory to a location 3211 * within the filesystem being written. Yes, this is an ugly hack. 3212 */ 3213 devvp = fp->f_vnode; 3214 if (!vn_isdisk(devvp, NULL)) 3215 return (EINVAL); 3216 fdp = td->td_proc->p_fd; 3217 FILEDESC_SLOCK(fdp); 3218 vp = fdp->fd_cdir; 3219 vref(vp); 3220 FILEDESC_SUNLOCK(fdp); 3221 vn_lock(vp, LK_SHARED | LK_RETRY); 3222 /* 3223 * Check that the current directory vnode indeed belongs to 3224 * UFS before trying to dereference UFS-specific v_data fields. 3225 */ 3226 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3227 vput(vp); 3228 return (EINVAL); 3229 } 3230 ip = VTOI(vp); 3231 if (ITODEVVP(ip) != devvp) { 3232 vput(vp); 3233 return (EINVAL); 3234 } 3235 fs = ITOFS(ip); 3236 vput(vp); 3237 foffset_lock_uio(fp, uio, flags); 3238 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3239 #ifdef DEBUG 3240 if (fsckcmds) { 3241 printf("%s: buffered write for block %jd\n", 3242 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3243 } 3244 #endif /* DEBUG */ 3245 /* 3246 * All I/O must be contained within a filesystem block, start on 3247 * a fragment boundary, and be a multiple of fragments in length. 3248 */ 3249 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3250 fragoff(fs, uio->uio_offset) != 0 || 3251 fragoff(fs, uio->uio_resid) != 0) { 3252 error = EINVAL; 3253 goto out; 3254 } 3255 lbn = numfrags(fs, uio->uio_offset); 3256 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3257 bp->b_flags |= B_RELBUF; 3258 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3259 brelse(bp); 3260 goto out; 3261 } 3262 error = bwrite(bp); 3263 out: 3264 VOP_UNLOCK(devvp, 0); 3265 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3266 return (error); 3267 } 3268