/*- * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) * * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, int size, int rsize); static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); static ufs2_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); static void ffs_blkfree_cg(struct ufsmount *, struct fs *, struct vnode *, ufs2_daddr_t, long, ino_t, struct workhead *); static void ffs_blkfree_trim_completed(struct buf *); static void ffs_blkfree_trim_task(void *ctx, int pending __unused); #ifdef INVARIANTS static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); #endif static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); static ino_t ffs_dirpref(struct inode *); static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, int, int); static ufs2_daddr_t ffs_hashalloc (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, int); static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); static void ffs_ckhash_cg(struct buf *); /* * Allocate a block in the filesystem. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following hierarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ int ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) struct inode *ip; ufs2_daddr_t lbn, bpref; int size, flags; struct ucred *cred; ufs2_daddr_t *bnp; { struct fs *fs; struct ufsmount *ump; ufs2_daddr_t bno; u_int cg, reclaimed; static struct timeval lastfail; static int curfail; int64_t delta; #ifdef QUOTA int error; #endif *bnp = 0; ump = ITOUMP(ip); fs = ump->um_fs; mtx_assert(UFS_MTX(ump), MA_OWNED); #ifdef INVARIANTS if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", devtoname(ump->um_dev), (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_alloc: bad size"); } if (cred == NOCRED) panic("ffs_alloc: missing credential"); #endif /* INVARIANTS */ reclaimed = 0; retry: #ifdef QUOTA UFS_UNLOCK(ump); error = chkdq(ip, btodb(size), cred, 0); if (error) return (error); UFS_LOCK(ump); #endif if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) goto nospace; if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = ino_to_cg(fs, ip->i_number); else cg = dtog(fs, bpref); bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); if (bno > 0) { delta = btodb(size); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); if (flags & IO_EXT) ip->i_flag |= IN_CHANGE; else ip->i_flag |= IN_CHANGE | IN_UPDATE; *bnp = bno; return (0); } nospace: #ifdef QUOTA UFS_UNLOCK(ump); /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, -btodb(size), cred, FORCE); UFS_LOCK(ump); #endif if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { reclaimed = 1; softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); goto retry; } UFS_UNLOCK(ump); if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { ffs_fserr(fs, ip->i_number, "filesystem full"); uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); } return (ENOSPC); } /* * Reallocate a fragment to a bigger size * * The number and size of the old block is given, and a preference * and new size is also specified. The allocator attempts to extend * the original block. Failing that, the regular block allocator is * invoked to get an appropriate block. */ int ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) struct inode *ip; ufs2_daddr_t lbprev; ufs2_daddr_t bprev; ufs2_daddr_t bpref; int osize, nsize, flags; struct ucred *cred; struct buf **bpp; { struct vnode *vp; struct fs *fs; struct buf *bp; struct ufsmount *ump; u_int cg, request, reclaimed; int error, gbflags; ufs2_daddr_t bno; static struct timeval lastfail; static int curfail; int64_t delta; vp = ITOV(ip); ump = ITOUMP(ip); fs = ump->um_fs; bp = NULL; gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; mtx_assert(UFS_MTX(ump), MA_OWNED); #ifdef INVARIANTS if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) panic("ffs_realloccg: allocation on suspended filesystem"); if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { printf( "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", devtoname(ump->um_dev), (long)fs->fs_bsize, osize, nsize, fs->fs_fsmnt); panic("ffs_realloccg: bad size"); } if (cred == NOCRED) panic("ffs_realloccg: missing credential"); #endif /* INVARIANTS */ reclaimed = 0; retry: if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { goto nospace; } if (bprev == 0) { printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, fs->fs_fsmnt); panic("ffs_realloccg: bad bprev"); } UFS_UNLOCK(ump); /* * Allocate the extra space in the buffer. */ error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); if (error) { brelse(bp); return (error); } if (bp->b_blkno == bp->b_lblkno) { if (lbprev >= UFS_NDADDR) panic("ffs_realloccg: lbprev out of range"); bp->b_blkno = fsbtodb(fs, bprev); } #ifdef QUOTA error = chkdq(ip, btodb(nsize - osize), cred, 0); if (error) { brelse(bp); return (error); } #endif /* * Check for extension in the existing location. */ *bpp = NULL; cg = dtog(fs, bprev); UFS_LOCK(ump); bno = ffs_fragextend(ip, cg, bprev, osize, nsize); if (bno) { if (bp->b_blkno != fsbtodb(fs, bno)) panic("ffs_realloccg: bad blockno"); delta = btodb(nsize - osize); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); if (flags & IO_EXT) ip->i_flag |= IN_CHANGE; else ip->i_flag |= IN_CHANGE | IN_UPDATE; allocbuf(bp, nsize); bp->b_flags |= B_DONE; vfs_bio_bzero_buf(bp, osize, nsize - osize); if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) vfs_bio_set_valid(bp, osize, nsize - osize); *bpp = bp; return (0); } /* * Allocate a new disk location. */ if (bpref >= fs->fs_size) bpref = 0; switch ((int)fs->fs_optim) { case FS_OPTSPACE: /* * Allocate an exact sized fragment. Although this makes * best use of space, we will waste time relocating it if * the file continues to grow. If the fragmentation is * less than half of the minimum free reserve, we choose * to begin optimizing for time. */ request = nsize; if (fs->fs_minfree <= 5 || fs->fs_cstotal.cs_nffree > (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) break; log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTTIME; break; case FS_OPTTIME: /* * At this point we have discovered a file that is trying to * grow a small fragment to a larger fragment. To save time, * we allocate a full sized block, then free the unused portion. * If the file continues to grow, the `ffs_fragextend' call * above will be able to grow it in place without further * copying. If aberrant programs cause disk fragmentation to * grow within 2% of the free reserve, we choose to begin * optimizing for space. */ request = fs->fs_bsize; if (fs->fs_cstotal.cs_nffree < (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) break; log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTSPACE; break; default: printf("dev = %s, optim = %ld, fs = %s\n", devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); panic("ffs_realloccg: bad optim"); /* NOTREACHED */ } bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); if (bno > 0) { bp->b_blkno = fsbtodb(fs, bno); if (!DOINGSOFTDEP(vp)) ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, ip->i_number, vp->v_type, NULL); delta = btodb(nsize - osize); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); if (flags & IO_EXT) ip->i_flag |= IN_CHANGE; else ip->i_flag |= IN_CHANGE | IN_UPDATE; allocbuf(bp, nsize); bp->b_flags |= B_DONE; vfs_bio_bzero_buf(bp, osize, nsize - osize); if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) vfs_bio_set_valid(bp, osize, nsize - osize); *bpp = bp; return (0); } #ifdef QUOTA UFS_UNLOCK(ump); /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); UFS_LOCK(ump); #endif nospace: /* * no space available */ if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { reclaimed = 1; UFS_UNLOCK(ump); if (bp) { brelse(bp); bp = NULL; } UFS_LOCK(ump); softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); goto retry; } UFS_UNLOCK(ump); if (bp) brelse(bp); if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { ffs_fserr(fs, ip->i_number, "filesystem full"); uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); } return (ENOSPC); } /* * Reallocate a sequence of blocks into a contiguous sequence of blocks. * * The vnode and an array of buffer pointers for a range of sequential * logical blocks to be made contiguous is given. The allocator attempts * to find a range of sequential blocks starting as close as possible * from the end of the allocation for the logical block immediately * preceding the current range. If successful, the physical block numbers * in the buffer pointers and in the inode are changed to reflect the new * allocation. If unsuccessful, the allocation is left unchanged. The * success in doing the reallocation is returned. Note that the error * return is not reflected back to the user. Rather the previous block * allocation will be used. */ SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); static int doasyncfree = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "do not force synchronous writes when blocks are reallocated"); static int doreallocblks = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "enable block reallocation"); static int maxclustersearch = 10; SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 0, "max number of cylinder group to search for contigous blocks"); #ifdef DEBUG static volatile int prtrealloc = 0; #endif int ffs_reallocblks(ap) struct vop_reallocblks_args /* { struct vnode *a_vp; struct cluster_save *a_buflist; } */ *ap; { struct ufsmount *ump; /* * If the underlying device can do deletes, then skip reallocating * the blocks of this file into contiguous sequences. Devices that * benefit from BIO_DELETE also benefit from not moving the data. * These devices are flash and therefore work less well with this * optimization. Also skip if reallocblks has been disabled globally. */ ump = ap->a_vp->v_mount->mnt_data; if (ump->um_candelete || doreallocblks == 0) return (ENOSPC); /* * We can't wait in softdep prealloc as it may fsync and recurse * here. Instead we simply fail to reallocate blocks if this * rare condition arises. */ if (DOINGSOFTDEP(ap->a_vp)) if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) return (ENOSPC); if (ump->um_fstype == UFS1) return (ffs_reallocblks_ufs1(ap)); return (ffs_reallocblks_ufs2(ap)); } static int ffs_reallocblks_ufs1(ap) struct vop_reallocblks_args /* { struct vnode *a_vp; struct cluster_save *a_buflist; } */ *ap; { struct fs *fs; struct inode *ip; struct vnode *vp; struct buf *sbp, *ebp; ufs1_daddr_t *bap, *sbap, *ebap; struct cluster_save *buflist; struct ufsmount *ump; ufs_lbn_t start_lbn, end_lbn; ufs1_daddr_t soff, newblk, blkno; ufs2_daddr_t pref; struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; int i, cg, len, start_lvl, end_lvl, ssize; vp = ap->a_vp; ip = VTOI(vp); ump = ITOUMP(ip); fs = ump->um_fs; /* * If we are not tracking block clusters or if we have less than 4% * free blocks left, then do not attempt to cluster. Running with * less than 5% free block reserve is not recommended and those that * choose to do so do not expect to have good file layout. */ if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) return (ENOSPC); buflist = ap->a_buflist; len = buflist->bs_nchildren; start_lbn = buflist->bs_children[0]->b_lblkno; end_lbn = start_lbn + len - 1; #ifdef INVARIANTS for (i = 0; i < len; i++) if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 1"); for (i = 1; i < len; i++) if (buflist->bs_children[i]->b_lblkno != start_lbn + i) panic("ffs_reallocblks: non-logical cluster"); blkno = buflist->bs_children[0]->b_blkno; ssize = fsbtodb(fs, fs->fs_frag); for (i = 1; i < len - 1; i++) if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) panic("ffs_reallocblks: non-physical cluster %d", i); #endif /* * If the cluster crosses the boundary for the first indirect * block, leave space for the indirect block. Indirect blocks * are initially laid out in a position after the last direct * block. Block reallocation would usually destroy locality by * moving the indirect block out of the way to make room for * data blocks if we didn't compensate here. We should also do * this for other indirect block boundaries, but it is only * important for the first one. */ if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) return (ENOSPC); /* * If the latest allocation is in a new cylinder group, assume that * the filesystem has decided to move and do not force it back to * the previous cylinder group. */ if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) return (ENOSPC); if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) return (ENOSPC); /* * Get the starting offset and block map for the first block. */ if (start_lvl == 0) { sbap = &ip->i_din1->di_db[0]; soff = start_lbn; } else { idp = &start_ap[start_lvl - 1]; if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { brelse(sbp); return (ENOSPC); } sbap = (ufs1_daddr_t *)sbp->b_data; soff = idp->in_off; } /* * If the block range spans two block maps, get the second map. */ ebap = NULL; if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { ssize = len; } else { #ifdef INVARIANTS if (start_lvl > 0 && start_ap[start_lvl - 1].in_lbn == idp->in_lbn) panic("ffs_reallocblk: start == end"); #endif ssize = len - (idp->in_off + 1); if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) goto fail; ebap = (ufs1_daddr_t *)ebp->b_data; } /* * Find the preferred location for the cluster. If we have not * previously failed at this endeavor, then follow our standard * preference calculation. If we have failed at it, then pick up * where we last ended our search. */ UFS_LOCK(ump); if (ip->i_nextclustercg == -1) pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); else pref = cgdata(fs, ip->i_nextclustercg); /* * Search the block map looking for an allocation of the desired size. * To avoid wasting too much time, we limit the number of cylinder * groups that we will search. */ cg = dtog(fs, pref); for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) break; cg += 1; if (cg >= fs->fs_ncg) cg = 0; } /* * If we have failed in our search, record where we gave up for * next time. Otherwise, fall back to our usual search citerion. */ if (newblk == 0) { ip->i_nextclustercg = cg; UFS_UNLOCK(ump); goto fail; } ip->i_nextclustercg = -1; /* * We have found a new contiguous block. * * First we have to replace the old block pointers with the new * block pointers in the inode and indirect blocks associated * with the file. */ #ifdef DEBUG if (prtrealloc) printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); #endif blkno = newblk; for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { if (i == ssize) { bap = ebap; soff = -i; } #ifdef INVARIANTS if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 2"); if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) panic("ffs_reallocblks: alloc mismatch"); #endif #ifdef DEBUG if (prtrealloc) printf(" %d,", *bap); #endif if (DOINGSOFTDEP(vp)) { if (sbap == &ip->i_din1->di_db[0] && i < ssize) softdep_setup_allocdirect(ip, start_lbn + i, blkno, *bap, fs->fs_bsize, fs->fs_bsize, buflist->bs_children[i]); else softdep_setup_allocindir_page(ip, start_lbn + i, i < ssize ? sbp : ebp, soff + i, blkno, *bap, buflist->bs_children[i]); } *bap++ = blkno; } /* * Next we must write out the modified inode and indirect blocks. * For strict correctness, the writes should be synchronous since * the old block values may have been written to disk. In practise * they are almost never written, but if we are concerned about * strict correctness, the `doasyncfree' flag should be set to zero. * * The test on `doasyncfree' should be changed to test a flag * that shows whether the associated buffers and inodes have * been written. The flag should be set when the cluster is * started and cleared whenever the buffer or inode is flushed. * We can then check below to see if it is set, and do the * synchronous write only when it has been cleared. */ if (sbap != &ip->i_din1->di_db[0]) { if (doasyncfree) bdwrite(sbp); else bwrite(sbp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (!doasyncfree) ffs_update(vp, 1); } if (ssize < len) { if (doasyncfree) bdwrite(ebp); else bwrite(ebp); } /* * Last, free the old blocks and assign the new blocks to the buffers. */ #ifdef DEBUG if (prtrealloc) printf("\n\tnew:"); #endif for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { if (!DOINGSOFTDEP(vp)) ffs_blkfree(ump, fs, ump->um_devvp, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize, ip->i_number, vp->v_type, NULL); buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); #ifdef INVARIANTS if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 3"); #endif #ifdef DEBUG if (prtrealloc) printf(" %d,", blkno); #endif } #ifdef DEBUG if (prtrealloc) { prtrealloc--; printf("\n"); } #endif return (0); fail: if (ssize < len) brelse(ebp); if (sbap != &ip->i_din1->di_db[0]) brelse(sbp); return (ENOSPC); } static int ffs_reallocblks_ufs2(ap) struct vop_reallocblks_args /* { struct vnode *a_vp; struct cluster_save *a_buflist; } */ *ap; { struct fs *fs; struct inode *ip; struct vnode *vp; struct buf *sbp, *ebp; ufs2_daddr_t *bap, *sbap, *ebap; struct cluster_save *buflist; struct ufsmount *ump; ufs_lbn_t start_lbn, end_lbn; ufs2_daddr_t soff, newblk, blkno, pref; struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; int i, cg, len, start_lvl, end_lvl, ssize; vp = ap->a_vp; ip = VTOI(vp); ump = ITOUMP(ip); fs = ump->um_fs; /* * If we are not tracking block clusters or if we have less than 4% * free blocks left, then do not attempt to cluster. Running with * less than 5% free block reserve is not recommended and those that * choose to do so do not expect to have good file layout. */ if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) return (ENOSPC); buflist = ap->a_buflist; len = buflist->bs_nchildren; start_lbn = buflist->bs_children[0]->b_lblkno; end_lbn = start_lbn + len - 1; #ifdef INVARIANTS for (i = 0; i < len; i++) if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 1"); for (i = 1; i < len; i++) if (buflist->bs_children[i]->b_lblkno != start_lbn + i) panic("ffs_reallocblks: non-logical cluster"); blkno = buflist->bs_children[0]->b_blkno; ssize = fsbtodb(fs, fs->fs_frag); for (i = 1; i < len - 1; i++) if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) panic("ffs_reallocblks: non-physical cluster %d", i); #endif /* * If the cluster crosses the boundary for the first indirect * block, do not move anything in it. Indirect blocks are * usually initially laid out in a position between the data * blocks. Block reallocation would usually destroy locality by * moving the indirect block out of the way to make room for * data blocks if we didn't compensate here. We should also do * this for other indirect block boundaries, but it is only * important for the first one. */ if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) return (ENOSPC); /* * If the latest allocation is in a new cylinder group, assume that * the filesystem has decided to move and do not force it back to * the previous cylinder group. */ if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) return (ENOSPC); if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) return (ENOSPC); /* * Get the starting offset and block map for the first block. */ if (start_lvl == 0) { sbap = &ip->i_din2->di_db[0]; soff = start_lbn; } else { idp = &start_ap[start_lvl - 1]; if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { brelse(sbp); return (ENOSPC); } sbap = (ufs2_daddr_t *)sbp->b_data; soff = idp->in_off; } /* * If the block range spans two block maps, get the second map. */ ebap = NULL; if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { ssize = len; } else { #ifdef INVARIANTS if (start_lvl > 0 && start_ap[start_lvl - 1].in_lbn == idp->in_lbn) panic("ffs_reallocblk: start == end"); #endif ssize = len - (idp->in_off + 1); if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) goto fail; ebap = (ufs2_daddr_t *)ebp->b_data; } /* * Find the preferred location for the cluster. If we have not * previously failed at this endeavor, then follow our standard * preference calculation. If we have failed at it, then pick up * where we last ended our search. */ UFS_LOCK(ump); if (ip->i_nextclustercg == -1) pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); else pref = cgdata(fs, ip->i_nextclustercg); /* * Search the block map looking for an allocation of the desired size. * To avoid wasting too much time, we limit the number of cylinder * groups that we will search. */ cg = dtog(fs, pref); for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) break; cg += 1; if (cg >= fs->fs_ncg) cg = 0; } /* * If we have failed in our search, record where we gave up for * next time. Otherwise, fall back to our usual search citerion. */ if (newblk == 0) { ip->i_nextclustercg = cg; UFS_UNLOCK(ump); goto fail; } ip->i_nextclustercg = -1; /* * We have found a new contiguous block. * * First we have to replace the old block pointers with the new * block pointers in the inode and indirect blocks associated * with the file. */ #ifdef DEBUG if (prtrealloc) printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); #endif blkno = newblk; for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { if (i == ssize) { bap = ebap; soff = -i; } #ifdef INVARIANTS if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 2"); if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) panic("ffs_reallocblks: alloc mismatch"); #endif #ifdef DEBUG if (prtrealloc) printf(" %jd,", (intmax_t)*bap); #endif if (DOINGSOFTDEP(vp)) { if (sbap == &ip->i_din2->di_db[0] && i < ssize) softdep_setup_allocdirect(ip, start_lbn + i, blkno, *bap, fs->fs_bsize, fs->fs_bsize, buflist->bs_children[i]); else softdep_setup_allocindir_page(ip, start_lbn + i, i < ssize ? sbp : ebp, soff + i, blkno, *bap, buflist->bs_children[i]); } *bap++ = blkno; } /* * Next we must write out the modified inode and indirect blocks. * For strict correctness, the writes should be synchronous since * the old block values may have been written to disk. In practise * they are almost never written, but if we are concerned about * strict correctness, the `doasyncfree' flag should be set to zero. * * The test on `doasyncfree' should be changed to test a flag * that shows whether the associated buffers and inodes have * been written. The flag should be set when the cluster is * started and cleared whenever the buffer or inode is flushed. * We can then check below to see if it is set, and do the * synchronous write only when it has been cleared. */ if (sbap != &ip->i_din2->di_db[0]) { if (doasyncfree) bdwrite(sbp); else bwrite(sbp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (!doasyncfree) ffs_update(vp, 1); } if (ssize < len) { if (doasyncfree) bdwrite(ebp); else bwrite(ebp); } /* * Last, free the old blocks and assign the new blocks to the buffers. */ #ifdef DEBUG if (prtrealloc) printf("\n\tnew:"); #endif for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { if (!DOINGSOFTDEP(vp)) ffs_blkfree(ump, fs, ump->um_devvp, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize, ip->i_number, vp->v_type, NULL); buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); #ifdef INVARIANTS if (!ffs_checkblk(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 3"); #endif #ifdef DEBUG if (prtrealloc) printf(" %jd,", (intmax_t)blkno); #endif } #ifdef DEBUG if (prtrealloc) { prtrealloc--; printf("\n"); } #endif return (0); fail: if (ssize < len) brelse(ebp); if (sbap != &ip->i_din2->di_db[0]) brelse(sbp); return (ENOSPC); } /* * Allocate an inode in the filesystem. * * If allocating a directory, use ffs_dirpref to select the inode. * If allocating in a directory, the following hierarchy is followed: * 1) allocate the preferred inode. * 2) allocate an inode in the same cylinder group. * 3) quadradically rehash into other cylinder groups, until an * available inode is located. * If no inode preference is given the following hierarchy is used * to allocate an inode: * 1) allocate an inode in cylinder group 0. * 2) quadradically rehash into other cylinder groups, until an * available inode is located. */ int ffs_valloc(pvp, mode, cred, vpp) struct vnode *pvp; int mode; struct ucred *cred; struct vnode **vpp; { struct inode *pip; struct fs *fs; struct inode *ip; struct timespec ts; struct ufsmount *ump; ino_t ino, ipref; u_int cg; int error, error1, reclaimed; static struct timeval lastfail; static int curfail; *vpp = NULL; pip = VTOI(pvp); ump = ITOUMP(pip); fs = ump->um_fs; UFS_LOCK(ump); reclaimed = 0; retry: if (fs->fs_cstotal.cs_nifree == 0) goto noinodes; if ((mode & IFMT) == IFDIR) ipref = ffs_dirpref(pip); else ipref = pip->i_number; if (ipref >= fs->fs_ncg * fs->fs_ipg) ipref = 0; cg = ino_to_cg(fs, ipref); /* * Track number of dirs created one after another * in a same cg without intervening by files. */ if ((mode & IFMT) == IFDIR) { if (fs->fs_contigdirs[cg] < 255) fs->fs_contigdirs[cg]++; } else { if (fs->fs_contigdirs[cg] > 0) fs->fs_contigdirs[cg]--; } ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, (allocfcn_t *)ffs_nodealloccg); if (ino == 0) goto noinodes; error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); if (error) { error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, FFSV_FORCEINSMQ); ffs_vfree(pvp, ino, mode); if (error1 == 0) { ip = VTOI(*vpp); if (ip->i_mode) goto dup_alloc; ip->i_flag |= IN_MODIFIED; vput(*vpp); } return (error); } ip = VTOI(*vpp); if (ip->i_mode) { dup_alloc: printf("mode = 0%o, inum = %ju, fs = %s\n", ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); panic("ffs_valloc: dup alloc"); } if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ printf("free inode %s/%lu had %ld blocks\n", fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); DIP_SET(ip, i_blocks, 0); } ip->i_flags = 0; DIP_SET(ip, i_flags, 0); /* * Set up a new generation number for this inode. */ while (ip->i_gen == 0 || ++ip->i_gen == 0) ip->i_gen = arc4random(); DIP_SET(ip, i_gen, ip->i_gen); if (fs->fs_magic == FS_UFS2_MAGIC) { vfs_timestamp(&ts); ip->i_din2->di_birthtime = ts.tv_sec; ip->i_din2->di_birthnsec = ts.tv_nsec; } ufs_prepare_reclaim(*vpp); ip->i_flag = 0; (*vpp)->v_vflag = 0; (*vpp)->v_type = VNON; if (fs->fs_magic == FS_UFS2_MAGIC) { (*vpp)->v_op = &ffs_vnodeops2; ip->i_flag |= IN_UFS2; } else { (*vpp)->v_op = &ffs_vnodeops1; } return (0); noinodes: if (reclaimed == 0) { reclaimed = 1; softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); goto retry; } UFS_UNLOCK(ump); if (ppsratecheck(&lastfail, &curfail, 1)) { ffs_fserr(fs, pip->i_number, "out of inodes"); uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); } return (ENOSPC); } /* * Find a cylinder group to place a directory. * * The policy implemented by this algorithm is to allocate a * directory inode in the same cylinder group as its parent * directory, but also to reserve space for its files inodes * and data. Restrict the number of directories which may be * allocated one after another in the same cylinder group * without intervening allocation of files. * * If we allocate a first level directory then force allocation * in another cylinder group. */ static ino_t ffs_dirpref(pip) struct inode *pip; { struct fs *fs; int cg, prefcg, dirsize, cgsize; u_int avgifree, avgbfree, avgndir, curdirsize; u_int minifree, minbfree, maxndir; u_int mincg, minndir; u_int maxcontigdirs; mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); fs = ITOFS(pip); avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; /* * Force allocation in another cg if creating a first level dir. */ ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); if (ITOV(pip)->v_vflag & VV_ROOT) { prefcg = arc4random() % fs->fs_ncg; mincg = prefcg; minndir = fs->fs_ipg; for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < minndir && fs->fs_cs(fs, cg).cs_nifree >= avgifree && fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < minndir && fs->fs_cs(fs, cg).cs_nifree >= avgifree && fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } return ((ino_t)(fs->fs_ipg * mincg)); } /* * Count various limits which used for * optimal allocation of a directory inode. */ maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); minifree = avgifree - avgifree / 4; if (minifree < 1) minifree = 1; minbfree = avgbfree - avgbfree / 4; if (minbfree < 1) minbfree = 1; cgsize = fs->fs_fsize * fs->fs_fpg; dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; if (dirsize < curdirsize) dirsize = curdirsize; if (dirsize <= 0) maxcontigdirs = 0; /* dirsize overflowed */ else maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); if (fs->fs_avgfpdir > 0) maxcontigdirs = min(maxcontigdirs, fs->fs_ipg / fs->fs_avgfpdir); if (maxcontigdirs == 0) maxcontigdirs = 1; /* * Limit number of dirs in one cg and reserve space for * regular files, but only if we have no deficit in * inodes or space. * * We are trying to find a suitable cylinder group nearby * our preferred cylinder group to place a new directory. * We scan from our preferred cylinder group forward looking * for a cylinder group that meets our criterion. If we get * to the final cylinder group and do not find anything, * we start scanning forwards from the beginning of the * filesystem. While it might seem sensible to start scanning * backwards or even to alternate looking forward and backward, * this approach fails badly when the filesystem is nearly full. * Specifically, we first search all the areas that have no space * and finally try the one preceding that. We repeat this on * every request and in the case of the final block end up * searching the entire filesystem. By jumping to the front * of the filesystem, our future forward searches always look * in new cylinder groups so finds every possible block after * one pass over the filesystem. */ prefcg = ino_to_cg(fs, pip->i_number); for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < maxndir && fs->fs_cs(fs, cg).cs_nifree >= minifree && fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { if (fs->fs_contigdirs[cg] < maxcontigdirs) return ((ino_t)(fs->fs_ipg * cg)); } for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < maxndir && fs->fs_cs(fs, cg).cs_nifree >= minifree && fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { if (fs->fs_contigdirs[cg] < maxcontigdirs) return ((ino_t)(fs->fs_ipg * cg)); } /* * This is a backstop when we have deficit in space. */ for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) return ((ino_t)(fs->fs_ipg * cg)); for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) break; return ((ino_t)(fs->fs_ipg * cg)); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks and the next fs_maxbpg blocks. Each additional section * contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. The first indirect is allocated immediately following the last * direct block and the data blocks for the first indirect immediately * follow it. * * If no blocks have been allocated in any other section, the indirect * block(s) are allocated in the same cylinder group as its inode in an * area reserved immediately following the inode blocks. The policy for * the data blocks is to place them in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block or the previous block is a hole, then the information on * the previous allocation is unavailable; here a best guess is made based * on the logical block number being allocated. * * If a section is already partially allocated, the policy is to * allocate blocks contiguously within the section if possible. */ ufs2_daddr_t ffs_blkpref_ufs1(ip, lbn, indx, bap) struct inode *ip; ufs_lbn_t lbn; int indx; ufs1_daddr_t *bap; { struct fs *fs; u_int cg, inocg; u_int avgbfree, startcg; ufs2_daddr_t pref; KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); fs = ITOFS(ip); /* * Allocation of indirect blocks is indicated by passing negative * values in indx: -1 for single indirect, -2 for double indirect, * -3 for triple indirect. As noted below, we attempt to allocate * the first indirect inline with the file data. For all later * indirect blocks, the data is often allocated in other cylinder * groups. However to speed random file access and to speed up * fsck, the filesystem reserves the first fs_metaspace blocks * (typically half of fs_minfree) of the data area of each cylinder * group to hold these later indirect blocks. */ inocg = ino_to_cg(fs, ip->i_number); if (indx < 0) { /* * Our preference for indirect blocks is the zone at the * beginning of the inode's cylinder group data area that * we try to reserve for indirect blocks. */ pref = cgmeta(fs, inocg); /* * If we are allocating the first indirect block, try to * place it immediately following the last direct block. */ if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && ip->i_din1->di_db[UFS_NDADDR - 1] != 0) pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; return (pref); } /* * If we are allocating the first data block in the first indirect * block and the indirect has been allocated in the data block area, * try to place it immediately following the indirect block. */ if (lbn == UFS_NDADDR) { pref = ip->i_din1->di_ib[0]; if (pref != 0 && pref >= cgdata(fs, inocg) && pref < cgbase(fs, inocg + 1)) return (pref + fs->fs_frag); } /* * If we are at the beginning of a file, or we have already allocated * the maximum number of blocks per cylinder group, or we do not * have a block allocated immediately preceding us, then we need * to decide where to start allocating new blocks. */ if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { /* * If we are allocating a directory data block, we want * to place it in the metadata area. */ if ((ip->i_mode & IFMT) == IFDIR) return (cgmeta(fs, inocg)); /* * Until we fill all the direct and all the first indirect's * blocks, we try to allocate in the data area of the inode's * cylinder group. */ if (lbn < UFS_NDADDR + NINDIR(fs)) return (cgdata(fs, inocg)); /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = inocg + lbn / fs->fs_maxbpg; else startcg = dtog(fs, bap[indx - 1]) + 1; startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (cgdata(fs, cg)); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (cgdata(fs, cg)); } return (0); } /* * Otherwise, we just always try to lay things out contiguously. */ return (bap[indx - 1] + fs->fs_frag); } /* * Same as above, but for UFS2 */ ufs2_daddr_t ffs_blkpref_ufs2(ip, lbn, indx, bap) struct inode *ip; ufs_lbn_t lbn; int indx; ufs2_daddr_t *bap; { struct fs *fs; u_int cg, inocg; u_int avgbfree, startcg; ufs2_daddr_t pref; KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); fs = ITOFS(ip); /* * Allocation of indirect blocks is indicated by passing negative * values in indx: -1 for single indirect, -2 for double indirect, * -3 for triple indirect. As noted below, we attempt to allocate * the first indirect inline with the file data. For all later * indirect blocks, the data is often allocated in other cylinder * groups. However to speed random file access and to speed up * fsck, the filesystem reserves the first fs_metaspace blocks * (typically half of fs_minfree) of the data area of each cylinder * group to hold these later indirect blocks. */ inocg = ino_to_cg(fs, ip->i_number); if (indx < 0) { /* * Our preference for indirect blocks is the zone at the * beginning of the inode's cylinder group data area that * we try to reserve for indirect blocks. */ pref = cgmeta(fs, inocg); /* * If we are allocating the first indirect block, try to * place it immediately following the last direct block. */ if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && ip->i_din2->di_db[UFS_NDADDR - 1] != 0) pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; return (pref); } /* * If we are allocating the first data block in the first indirect * block and the indirect has been allocated in the data block area, * try to place it immediately following the indirect block. */ if (lbn == UFS_NDADDR) { pref = ip->i_din2->di_ib[0]; if (pref != 0 && pref >= cgdata(fs, inocg) && pref < cgbase(fs, inocg + 1)) return (pref + fs->fs_frag); } /* * If we are at the beginning of a file, or we have already allocated * the maximum number of blocks per cylinder group, or we do not * have a block allocated immediately preceding us, then we need * to decide where to start allocating new blocks. */ if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { /* * If we are allocating a directory data block, we want * to place it in the metadata area. */ if ((ip->i_mode & IFMT) == IFDIR) return (cgmeta(fs, inocg)); /* * Until we fill all the direct and all the first indirect's * blocks, we try to allocate in the data area of the inode's * cylinder group. */ if (lbn < UFS_NDADDR + NINDIR(fs)) return (cgdata(fs, inocg)); /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = inocg + lbn / fs->fs_maxbpg; else startcg = dtog(fs, bap[indx - 1]) + 1; startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (cgdata(fs, cg)); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (cgdata(fs, cg)); } return (0); } /* * Otherwise, we just always try to lay things out contiguously. */ return (bap[indx - 1] + fs->fs_frag); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. * * Must be called with the UFS lock held. Will release the lock on success * and return with it held on failure. */ /*VARARGS5*/ static ufs2_daddr_t ffs_hashalloc(ip, cg, pref, size, rsize, allocator) struct inode *ip; u_int cg; ufs2_daddr_t pref; int size; /* Search size for data blocks, mode for inodes */ int rsize; /* Real allocated size. */ allocfcn_t *allocator; { struct fs *fs; ufs2_daddr_t result; u_int i, icg = cg; mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); #ifdef INVARIANTS if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) panic("ffs_hashalloc: allocation on suspended filesystem"); #endif fs = ITOFS(ip); /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size, rsize); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(ip, cg, 0, size, rsize); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(ip, cg, 0, size, rsize); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return (0); } /* * Determine whether a fragment can be extended. * * Check to see if the necessary fragments are available, and * if they are, allocate them. */ static ufs2_daddr_t ffs_fragextend(ip, cg, bprev, osize, nsize) struct inode *ip; u_int cg; ufs2_daddr_t bprev; int osize, nsize; { struct fs *fs; struct cg *cgp; struct buf *bp; struct ufsmount *ump; int nffree; long bno; int frags, bbase; int i, error; u_int8_t *blksfree; ump = ITOUMP(ip); fs = ump->um_fs; if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) return (0); frags = numfrags(fs, nsize); bbase = fragnum(fs, bprev); if (bbase > fragnum(fs, (bprev + frags - 1))) { /* cannot extend across a block boundary */ return (0); } UFS_UNLOCK(ump); if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) goto fail; bno = dtogd(fs, bprev); blksfree = cg_blksfree(cgp); for (i = numfrags(fs, osize); i < frags; i++) if (isclr(blksfree, bno + i)) goto fail; /* * the current fragment can be extended * deduct the count on fragment being extended into * increase the count on the remaining fragment (if any) * allocate the extended piece */ for (i = frags; i < fs->fs_frag - bbase; i++) if (isclr(blksfree, bno + i)) break; cgp->cg_frsum[i - numfrags(fs, osize)]--; if (i != frags) cgp->cg_frsum[i - frags]++; for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree--; nffree++; } UFS_LOCK(ump); fs->fs_cstotal.cs_nffree -= nffree; fs->fs_cs(fs, cg).cs_nffree -= nffree; fs->fs_fmod = 1; ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, frags, numfrags(fs, osize)); bdwrite(bp); return (bprev); fail: brelse(bp); UFS_LOCK(ump); return (0); } /* * Determine whether a block can be allocated. * * Check to see if a block of the appropriate size is available, * and if it is, allocate it. */ static ufs2_daddr_t ffs_alloccg(ip, cg, bpref, size, rsize) struct inode *ip; u_int cg; ufs2_daddr_t bpref; int size; int rsize; { struct fs *fs; struct cg *cgp; struct buf *bp; struct ufsmount *ump; ufs1_daddr_t bno; ufs2_daddr_t blkno; int i, allocsiz, error, frags; u_int8_t *blksfree; ump = ITOUMP(ip); fs = ump->um_fs; if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) return (0); UFS_UNLOCK(ump); if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) goto fail; if (size == fs->fs_bsize) { UFS_LOCK(ump); blkno = ffs_alloccgblk(ip, bp, bpref, rsize); ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); bdwrite(bp); return (blkno); } /* * check to see if any fragments are already available * allocsiz is the size which will be allocated, hacking * it down to a smaller size if necessary */ blksfree = cg_blksfree(cgp); frags = numfrags(fs, size); for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) if (cgp->cg_frsum[allocsiz] != 0) break; if (allocsiz == fs->fs_frag) { /* * no fragments were available, so a block will be * allocated, and hacked up */ if (cgp->cg_cs.cs_nbfree == 0) goto fail; UFS_LOCK(ump); blkno = ffs_alloccgblk(ip, bp, bpref, rsize); ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); bdwrite(bp); return (blkno); } KASSERT(size == rsize, ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); if (bno < 0) goto fail; for (i = 0; i < frags; i++) clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree -= frags; cgp->cg_frsum[allocsiz]--; if (frags != allocsiz) cgp->cg_frsum[allocsiz - frags]++; UFS_LOCK(ump); fs->fs_cstotal.cs_nffree -= frags; fs->fs_cs(fs, cg).cs_nffree -= frags; fs->fs_fmod = 1; blkno = cgbase(fs, cg) + bno; ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); bdwrite(bp); return (blkno); fail: brelse(bp); UFS_LOCK(ump); return (0); } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ static ufs2_daddr_t ffs_alloccgblk(ip, bp, bpref, size) struct inode *ip; struct buf *bp; ufs2_daddr_t bpref; int size; { struct fs *fs; struct cg *cgp; struct ufsmount *ump; ufs1_daddr_t bno; ufs2_daddr_t blkno; u_int8_t *blksfree; int i, cgbpref; ump = ITOUMP(ip); fs = ump->um_fs; mtx_assert(UFS_MTX(ump), MA_OWNED); cgp = (struct cg *)bp->b_data; blksfree = cg_blksfree(cgp); if (bpref == 0) { bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { /* map bpref to correct zone in this cg */ if (bpref < cgdata(fs, cgbpref)) bpref = cgmeta(fs, cgp->cg_cgx); else bpref = cgdata(fs, cgp->cg_cgx); } /* * if the requested block is available, use it */ bno = dtogd(fs, blknum(fs, bpref)); if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) goto gotit; /* * Take the next available block in this cylinder group. */ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return (0); /* Update cg_rotor only if allocated from the data zone */ if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) cgp->cg_rotor = bno; gotit: blkno = fragstoblks(fs, bno); ffs_clrblock(fs, blksfree, (long)blkno); ffs_clusteracct(fs, cgp, blkno, -1); cgp->cg_cs.cs_nbfree--; fs->fs_cstotal.cs_nbfree--; fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; fs->fs_fmod = 1; blkno = cgbase(fs, cgp->cg_cgx) + bno; /* * If the caller didn't want the whole block free the frags here. */ size = numfrags(fs, size); if (size != fs->fs_frag) { bno = dtogd(fs, blkno); for (i = size; i < fs->fs_frag; i++) setbit(blksfree, bno + i); i = fs->fs_frag - size; cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; fs->fs_fmod = 1; cgp->cg_frsum[i]++; } /* XXX Fixme. */ UFS_UNLOCK(ump); if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); UFS_LOCK(ump); return (blkno); } /* * Determine whether a cluster can be allocated. * * We do not currently check for optimal rotational layout if there * are multiple choices in the same cylinder group. Instead we just * take the first one that we find following bpref. */ static ufs2_daddr_t ffs_clusteralloc(ip, cg, bpref, len) struct inode *ip; u_int cg; ufs2_daddr_t bpref; int len; { struct fs *fs; struct cg *cgp; struct buf *bp; struct ufsmount *ump; int i, run, bit, map, got, error; ufs2_daddr_t bno; u_char *mapp; int32_t *lp; u_int8_t *blksfree; ump = ITOUMP(ip); fs = ump->um_fs; if (fs->fs_maxcluster[cg] < len) return (0); UFS_UNLOCK(ump); if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { UFS_LOCK(ump); return (0); } /* * Check to see if a cluster of the needed size (or bigger) is * available in this cylinder group. */ lp = &cg_clustersum(cgp)[len]; for (i = len; i <= fs->fs_contigsumsize; i++) if (*lp++ > 0) break; if (i > fs->fs_contigsumsize) { /* * This is the first time looking for a cluster in this * cylinder group. Update the cluster summary information * to reflect the true maximum sized cluster so that * future cluster allocation requests can avoid reading * the cylinder group map only to find no clusters. */ lp = &cg_clustersum(cgp)[len - 1]; for (i = len - 1; i > 0; i--) if (*lp-- > 0) break; UFS_LOCK(ump); fs->fs_maxcluster[cg] = i; brelse(bp); return (0); } /* * Search the cluster map to find a big enough cluster. * We take the first one that we find, even if it is larger * than we need as we prefer to get one close to the previous * block allocation. We do not search before the current * preference point as we do not want to allocate a block * that is allocated before the previous one (as we will * then have to wait for another pass of the elevator * algorithm before it will be read). We prefer to fail and * be recalled to try an allocation in the next cylinder group. */ if (dtog(fs, bpref) != cg) bpref = cgdata(fs, cg); else bpref = blknum(fs, bpref); bpref = fragstoblks(fs, dtogd(fs, bpref)); mapp = &cg_clustersfree(cgp)[bpref / NBBY]; map = *mapp++; bit = 1 << (bpref % NBBY); for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { if ((map & bit) == 0) { run = 0; } else { run++; if (run == len) break; } if ((got & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (got >= cgp->cg_nclusterblks) { UFS_LOCK(ump); brelse(bp); return (0); } /* * Allocate the cluster that we have found. */ blksfree = cg_blksfree(cgp); for (i = 1; i <= len; i++) if (!ffs_isblock(fs, blksfree, got - run + i)) panic("ffs_clusteralloc: map mismatch"); bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); if (dtog(fs, bno) != cg) panic("ffs_clusteralloc: allocated out of group"); len = blkstofrags(fs, len); UFS_LOCK(ump); for (i = 0; i < len; i += fs->fs_frag) if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) panic("ffs_clusteralloc: lost block"); ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); bdwrite(bp); return (bno); } static inline struct buf * getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) { struct fs *fs; fs = ITOFS(ip); return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, gbflags)); } /* * Synchronous inode initialization is needed only when barrier writes do not * work as advertised, and will impose a heavy cost on file creation in a newly * created filesystem. */ static int doasyncinodeinit = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, &doasyncinodeinit, 0, "Perform inode block initialization using asynchronous writes"); /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using the following policy: * 1) allocate the requested inode. * 2) allocate the next available inode after the requested * inode in the specified cylinder group. */ static ufs2_daddr_t ffs_nodealloccg(ip, cg, ipref, mode, unused) struct inode *ip; u_int cg; ufs2_daddr_t ipref; int mode; int unused; { struct fs *fs; struct cg *cgp; struct buf *bp, *ibp; struct ufsmount *ump; u_int8_t *inosused, *loc; struct ufs2_dinode *dp2; int error, start, len, i; u_int32_t old_initediblk; ump = ITOUMP(ip); fs = ump->um_fs; check_nifree: if (fs->fs_cs(fs, cg).cs_nifree == 0) return (0); UFS_UNLOCK(ump); if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { UFS_LOCK(ump); return (0); } restart: if (cgp->cg_cs.cs_nifree == 0) { brelse(bp); UFS_LOCK(ump); return (0); } inosused = cg_inosused(cgp); if (ipref) { ipref %= fs->fs_ipg; if (isclr(inosused, ipref)) goto gotit; } start = cgp->cg_irotor / NBBY; len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); loc = memcchr(&inosused[start], 0xff, len); if (loc == NULL) { len = start + 1; start = 0; loc = memcchr(&inosused[start], 0xff, len); if (loc == NULL) { printf("cg = %d, irotor = %ld, fs = %s\n", cg, (long)cgp->cg_irotor, fs->fs_fsmnt); panic("ffs_nodealloccg: map corrupted"); /* NOTREACHED */ } } ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; gotit: /* * Check to see if we need to initialize more inodes. */ if (fs->fs_magic == FS_UFS2_MAGIC && ipref + INOPB(fs) > cgp->cg_initediblk && cgp->cg_initediblk < cgp->cg_niblk) { old_initediblk = cgp->cg_initediblk; /* * Free the cylinder group lock before writing the * initialized inode block. Entering the * babarrierwrite() with the cylinder group lock * causes lock order violation between the lock and * snaplk. * * Another thread can decide to initialize the same * inode block, but whichever thread first gets the * cylinder group lock after writing the newly * allocated inode block will update it and the other * will realize that it has lost and leave the * cylinder group unchanged. */ ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); brelse(bp); if (ibp == NULL) { /* * The inode block buffer is already owned by * another thread, which must initialize it. * Wait on the buffer to allow another thread * to finish the updates, with dropped cg * buffer lock, then retry. */ ibp = getinobuf(ip, cg, old_initediblk, 0); brelse(ibp); UFS_LOCK(ump); goto check_nifree; } bzero(ibp->b_data, (int)fs->fs_bsize); dp2 = (struct ufs2_dinode *)(ibp->b_data); for (i = 0; i < INOPB(fs); i++) { while (dp2->di_gen == 0) dp2->di_gen = arc4random(); dp2++; } /* * Rather than adding a soft updates dependency to ensure * that the new inode block is written before it is claimed * by the cylinder group map, we just do a barrier write * here. The barrier write will ensure that the inode block * gets written before the updated cylinder group map can be * written. The barrier write should only slow down bulk * loading of newly created filesystems. */ if (doasyncinodeinit) babarrierwrite(ibp); else bwrite(ibp); /* * After the inode block is written, try to update the * cg initediblk pointer. If another thread beat us * to it, then leave it unchanged as the other thread * has already set it correctly. */ error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); UFS_LOCK(ump); ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); if (error != 0) return (error); if (cgp->cg_initediblk == old_initediblk) cgp->cg_initediblk += INOPB(fs); goto restart; } cgp->cg_irotor = ipref; UFS_LOCK(ump); ACTIVECLEAR(fs, cg); setbit(inosused, ipref); cgp->cg_cs.cs_nifree--; fs->fs_cstotal.cs_nifree--; fs->fs_cs(fs, cg).cs_nifree--; fs->fs_fmod = 1; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir++; fs->fs_cstotal.cs_ndir++; fs->fs_cs(fs, cg).cs_ndir++; } UFS_UNLOCK(ump); if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); bdwrite(bp); return ((ino_t)(cg * fs->fs_ipg + ipref)); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ static void ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) struct ufsmount *ump; struct fs *fs; struct vnode *devvp; ufs2_daddr_t bno; long size; ino_t inum; struct workhead *dephd; { struct mount *mp; struct cg *cgp; struct buf *bp; ufs1_daddr_t fragno, cgbno; int i, blk, frags, bbase, error; u_int cg; u_int8_t *blksfree; struct cdev *dev; cg = dtog(fs, bno); if (devvp->v_type == VREG) { /* devvp is a snapshot */ MPASS(devvp->v_mount->mnt_data == ump); dev = ump->um_devvp->v_rdev; } else if (devvp->v_type == VCHR) { /* devvp is a normal disk device */ dev = devvp->v_rdev; ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); } else return; #ifdef INVARIANTS if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_blkfree_cg: bad size"); } #endif if ((u_int)bno >= fs->fs_size) { printf("bad block %jd, ino %lu\n", (intmax_t)bno, (u_long)inum); ffs_fserr(fs, inum, "bad block"); return; } if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) return; cgbno = dtogd(fs, bno); blksfree = cg_blksfree(cgp); UFS_LOCK(ump); if (size == fs->fs_bsize) { fragno = fragstoblks(fs, cgbno); if (!ffs_isfreeblock(fs, blksfree, fragno)) { if (devvp->v_type == VREG) { UFS_UNLOCK(ump); /* devvp is a snapshot */ brelse(bp); return; } printf("dev = %s, block = %jd, fs = %s\n", devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); panic("ffs_blkfree_cg: freeing free block"); } ffs_setblock(fs, blksfree, fragno); ffs_clusteracct(fs, cgp, fragno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; } else { bbase = cgbno - fragnum(fs, cgbno); /* * decrement the counts associated with the old frags */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1); /* * deallocate the fragment */ frags = numfrags(fs, size); for (i = 0; i < frags; i++) { if (isset(blksfree, cgbno + i)) { printf("dev = %s, block = %jd, fs = %s\n", devtoname(dev), (intmax_t)(bno + i), fs->fs_fsmnt); panic("ffs_blkfree_cg: freeing free frag"); } setbit(blksfree, cgbno + i); } cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; /* * add back in counts associated with the new frags */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); /* * if a complete block has been reassembled, account for it */ fragno = fragstoblks(fs, bbase); if (ffs_isblock(fs, blksfree, fragno)) { cgp->cg_cs.cs_nffree -= fs->fs_frag; fs->fs_cstotal.cs_nffree -= fs->fs_frag; fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; ffs_clusteracct(fs, cgp, fragno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; } } fs->fs_fmod = 1; ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); mp = UFSTOVFS(ump); if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, numfrags(fs, size), dephd); bdwrite(bp); } struct ffs_blkfree_trim_params { struct task task; struct ufsmount *ump; struct vnode *devvp; ufs2_daddr_t bno; long size; ino_t inum; struct workhead *pdephd; struct workhead dephd; }; static void ffs_blkfree_trim_task(ctx, pending) void *ctx; int pending; { struct ffs_blkfree_trim_params *tp; tp = ctx; ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, tp->inum, tp->pdephd); vn_finished_secondary_write(UFSTOVFS(tp->ump)); atomic_add_int(&tp->ump->um_trim_inflight, -1); free(tp, M_TEMP); } static void ffs_blkfree_trim_completed(bp) struct buf *bp; { struct ffs_blkfree_trim_params *tp; tp = bp->b_fsprivate1; free(bp, M_TEMP); TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); } void ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) struct ufsmount *ump; struct fs *fs; struct vnode *devvp; ufs2_daddr_t bno; long size; ino_t inum; enum vtype vtype; struct workhead *dephd; { struct mount *mp; struct buf *bp; struct ffs_blkfree_trim_params *tp; /* * Check to see if a snapshot wants to claim the block. * Check that devvp is a normal disk device, not a snapshot, * it has a snapshot(s) associated with it, and one of the * snapshots wants to claim the block. */ if (devvp->v_type == VCHR && (devvp->v_vflag & VV_COPYONWRITE) && ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { return; } /* * Nothing to delay if TRIM is disabled, or the operation is * performed on the snapshot. */ if (!ump->um_candelete || devvp->v_type == VREG) { ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); return; } /* * Postpone the set of the free bit in the cg bitmap until the * BIO_DELETE is completed. Otherwise, due to disk queue * reordering, TRIM might be issued after we reuse the block * and write some new data into it. */ atomic_add_int(&ump->um_trim_inflight, 1); tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); tp->ump = ump; tp->devvp = devvp; tp->bno = bno; tp->size = size; tp->inum = inum; if (dephd != NULL) { LIST_INIT(&tp->dephd); LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); tp->pdephd = &tp->dephd; } else tp->pdephd = NULL; bp = malloc(sizeof(*bp), M_TEMP, M_WAITOK | M_ZERO); bp->b_iocmd = BIO_DELETE; bp->b_iooffset = dbtob(fsbtodb(fs, bno)); bp->b_iodone = ffs_blkfree_trim_completed; bp->b_bcount = size; bp->b_fsprivate1 = tp; mp = UFSTOVFS(ump); vn_start_secondary_write(NULL, &mp, 0); g_vfs_strategy(ump->um_bo, bp); } #ifdef INVARIANTS /* * Verify allocation of a block or fragment. Returns true if block or * fragment is allocated, false if it is free. */ static int ffs_checkblk(ip, bno, size) struct inode *ip; ufs2_daddr_t bno; long size; { struct fs *fs; struct cg *cgp; struct buf *bp; ufs1_daddr_t cgbno; int i, error, frags, free; u_int8_t *blksfree; fs = ITOFS(ip); if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("bsize = %ld, size = %ld, fs = %s\n", (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_checkblk: bad size"); } if ((u_int)bno >= fs->fs_size) panic("ffs_checkblk: bad block %jd", (intmax_t)bno); error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); if (error) panic("ffs_checkblk: cylinder group read failed"); blksfree = cg_blksfree(cgp); cgbno = dtogd(fs, bno); if (size == fs->fs_bsize) { free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); } else { frags = numfrags(fs, size); for (free = 0, i = 0; i < frags; i++) if (isset(blksfree, cgbno + i)) free++; if (free != 0 && free != frags) panic("ffs_checkblk: partially free fragment"); } brelse(bp); return (!free); } #endif /* INVARIANTS */ /* * Free an inode. */ int ffs_vfree(pvp, ino, mode) struct vnode *pvp; ino_t ino; int mode; { struct ufsmount *ump; if (DOINGSOFTDEP(pvp)) { softdep_freefile(pvp, ino, mode); return (0); } ump = VFSTOUFS(pvp->v_mount); return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); } /* * Do the actual free operation. * The specified inode is placed back in the free map. */ int ffs_freefile(ump, fs, devvp, ino, mode, wkhd) struct ufsmount *ump; struct fs *fs; struct vnode *devvp; ino_t ino; int mode; struct workhead *wkhd; { struct cg *cgp; struct buf *bp; int error; u_int cg; u_int8_t *inosused; struct cdev *dev; cg = ino_to_cg(fs, ino); if (devvp->v_type == VREG) { /* devvp is a snapshot */ MPASS(devvp->v_mount->mnt_data == ump); dev = ump->um_devvp->v_rdev; } else if (devvp->v_type == VCHR) { /* devvp is a normal disk device */ dev = devvp->v_rdev; } else { bp = NULL; return (0); } if (ino >= fs->fs_ipg * fs->fs_ncg) panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) return (error); inosused = cg_inosused(cgp); ino %= fs->fs_ipg; if (isclr(inosused, ino)) { printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); if (fs->fs_ronly == 0) panic("ffs_freefile: freeing free inode"); } clrbit(inosused, ino); if (ino < cgp->cg_irotor) cgp->cg_irotor = ino; cgp->cg_cs.cs_nifree++; UFS_LOCK(ump); fs->fs_cstotal.cs_nifree++; fs->fs_cs(fs, cg).cs_nifree++; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir--; fs->fs_cstotal.cs_ndir--; fs->fs_cs(fs, cg).cs_ndir--; } fs->fs_fmod = 1; ACTIVECLEAR(fs, cg); UFS_UNLOCK(ump); if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) softdep_setup_inofree(UFSTOVFS(ump), bp, ino + cg * fs->fs_ipg, wkhd); bdwrite(bp); return (0); } /* * Check to see if a file is free. * Used to check for allocated files in snapshots. */ int ffs_checkfreefile(fs, devvp, ino) struct fs *fs; struct vnode *devvp; ino_t ino; { struct cg *cgp; struct buf *bp; int ret, error; u_int cg; u_int8_t *inosused; cg = ino_to_cg(fs, ino); if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) return (1); if (ino >= fs->fs_ipg * fs->fs_ncg) return (1); if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) return (1); inosused = cg_inosused(cgp); ino %= fs->fs_ipg; ret = isclr(inosused, ino); brelse(bp); return (ret); } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static ufs1_daddr_t ffs_mapsearch(fs, cgp, bpref, allocsiz) struct fs *fs; struct cg *cgp; ufs2_daddr_t bpref; int allocsiz; { ufs1_daddr_t bno; int start, len, loc, i; int blk, field, subfield, pos; u_int8_t *blksfree; /* * find the fragment by searching through the free block * map for an appropriate bit pattern */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = cgp->cg_frotor / NBBY; blksfree = cg_blksfree(cgp); len = howmany(fs->fs_fpg, NBBY) - start; loc = scanc((u_int)len, (u_char *)&blksfree[start], fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { len = start + 1; start = 0; loc = scanc((u_int)len, (u_char *)&blksfree[0], fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { printf("start = %d, len = %d, fs = %s\n", start, len, fs->fs_fsmnt); panic("ffs_alloccg: map corrupted"); /* NOTREACHED */ } } bno = (start + len - loc) * NBBY; cgp->cg_frotor = bno; /* * found the byte in the map * sift through the bits to find the selected frag */ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, blksfree, bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) return (bno + pos); field <<= 1; subfield <<= 1; } } printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); panic("ffs_alloccg: block not in map"); return (-1); } static const struct statfs * ffs_getmntstat(struct vnode *devvp) { if (devvp->v_type == VCHR) return (&devvp->v_rdev->si_mountpt->mnt_stat); return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); } /* * Fetch and verify a cylinder group. */ int ffs_getcg(fs, devvp, cg, bpp, cgpp) struct fs *fs; struct vnode *devvp; u_int cg; struct buf **bpp; struct cg **cgpp; { struct buf *bp; struct cg *cgp; const struct statfs *sfs; int flags, error; *bpp = NULL; *cgpp = NULL; flags = 0; if ((fs->fs_metackhash & CK_CYLGRP) != 0) flags |= GB_CKHASH; error = breadn_flags(devvp, devvp->v_type == VREG ? fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); if (error != 0) return (error); cgp = (struct cg *)bp->b_data; if ((fs->fs_metackhash & CK_CYLGRP) != 0 && (bp->b_flags & B_CKHASH) != 0 && cgp->cg_ckhash != bp->b_ckhash) { sfs = ffs_getmntstat(devvp); printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " "0x%x != bp: 0x%jx\n", devvp->v_type == VCHR ? "" : "snapshot of ", sfs->f_mntfromname, sfs->f_mntonname, cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); bp->b_flags &= ~B_CKHASH; bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); return (EIO); } if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { sfs = ffs_getmntstat(devvp); printf("UFS %s%s (%s)", devvp->v_type == VCHR ? "" : "snapshot of ", sfs->f_mntfromname, sfs->f_mntonname); if (!cg_chkmagic(cgp)) printf(" cg %u: bad magic number 0x%x should be 0x%x\n", cg, cgp->cg_magic, CG_MAGIC); else printf(": wrong cylinder group cg %u != cgx %u\n", cg, cgp->cg_cgx); bp->b_flags &= ~B_CKHASH; bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); return (EIO); } bp->b_flags &= ~B_CKHASH; bp->b_xflags |= BX_BKGRDWRITE; /* * If we are using check hashes on the cylinder group then we want * to limit changing the cylinder group time to when we are actually * going to write it to disk so that its check hash remains correct * in memory. If the CK_CYLGRP flag is set the time is updated in * ffs_bufwrite() as the buffer is queued for writing. Otherwise we * update the time here as we have done historically. */ if ((fs->fs_metackhash & CK_CYLGRP) != 0) bp->b_xflags |= BX_CYLGRP; else cgp->cg_old_time = cgp->cg_time = time_second; *bpp = bp; *cgpp = cgp; return (0); } static void ffs_ckhash_cg(bp) struct buf *bp; { uint32_t ckhash; struct cg *cgp; cgp = (struct cg *)bp->b_data; ckhash = cgp->cg_ckhash; cgp->cg_ckhash = 0; bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); cgp->cg_ckhash = ckhash; } /* * Fserr prints the name of a filesystem with an error diagnostic. * * The form of the error message is: * fs: error message */ void ffs_fserr(fs, inum, cp) struct fs *fs; ino_t inum; char *cp; { struct thread *td = curthread; /* XXX */ struct proc *p = td->td_proc; log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, fs->fs_fsmnt, cp); } /* * This function provides the capability for the fsck program to * update an active filesystem. Fourteen operations are provided: * * adjrefcnt(inode, amt) - adjusts the reference count on the * specified inode by the specified amount. Under normal * operation the count should always go down. Decrementing * the count to zero will cause the inode to be freed. * adjblkcnt(inode, amt) - adjust the number of blocks used by the * inode by the specified amount. * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - * adjust the superblock summary. * freedirs(inode, count) - directory inodes [inode..inode + count - 1] * are marked as free. Inodes should never have to be marked * as in use. * freefiles(inode, count) - file inodes [inode..inode + count - 1] * are marked as free. Inodes should never have to be marked * as in use. * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] * are marked as free. Blocks should never have to be marked * as in use. * setflags(flags, set/clear) - the fs_flags field has the specified * flags set (second parameter +1) or cleared (second parameter -1). * setcwd(dirinode) - set the current directory to dirinode in the * filesystem associated with the snapshot. * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." * in the current directory is oldvalue then change it to newvalue. * unlink(nameptr, oldvalue) - Verify that the inode number associated * with nameptr in the current directory is oldvalue then unlink it. * * The following functions may only be used on a quiescent filesystem * by the soft updates journal. They are not safe to be run on an active * filesystem. * * setinode(inode, dip) - the specified disk inode is replaced with the * contents pointed to by dip. * setbufoutput(fd, flags) - output associated with the specified file * descriptor (which must reference the character device supporting * the filesystem) switches from using physio to running through the * buffer cache when flags is set to 1. The descriptor reverts to * physio for output when flags is set to zero. */ static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust number of directories"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust number of free blocks"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust number of free inodes"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust number of free frags"); static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, sysctl_ffs_fsck, "Adjust number of free clusters"); static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, sysctl_ffs_fsck, "Free Range of Directory Inodes"); static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, sysctl_ffs_fsck, "Free Range of File Inodes"); static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, sysctl_ffs_fsck, "Free Range of Blocks"); static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, sysctl_ffs_fsck, "Change Filesystem Flags"); static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, sysctl_ffs_fsck, "Set Current Working Directory"); static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, sysctl_ffs_fsck, "Change Value of .. Entry"); static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, sysctl_ffs_fsck, "Unlink a Duplicate Name"); static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, sysctl_ffs_fsck, "Update an On-Disk Inode"); static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); #define DEBUG 1 #ifdef DEBUG static int fsckcmds = 0; SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); #endif /* DEBUG */ static int buffered_write(struct file *, struct uio *, struct ucred *, int, struct thread *); static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) { struct thread *td = curthread; struct fsck_cmd cmd; struct ufsmount *ump; struct vnode *vp, *dvp, *fdvp; struct inode *ip, *dp; struct mount *mp; struct fs *fs; ufs2_daddr_t blkno; long blkcnt, blksize; struct file *fp, *vfp; cap_rights_t rights; int filetype, error; static struct fileops *origops, bufferedops; if (req->newlen > sizeof cmd) return (EBADRPC); if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) return (error); if (cmd.version != FFS_CMD_VERSION) return (ERPCMISMATCH); if ((error = getvnode(td, cmd.handle, cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) return (error); vp = fp->f_data; if (vp->v_type != VREG && vp->v_type != VDIR) { fdrop(fp, td); return (EINVAL); } vn_start_write(vp, &mp, V_WAIT); if (mp == NULL || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { vn_finished_write(mp); fdrop(fp, td); return (EINVAL); } ump = VFSTOUFS(mp); if ((mp->mnt_flag & MNT_RDONLY) && ump->um_fsckpid != td->td_proc->p_pid) { vn_finished_write(mp); fdrop(fp, td); return (EROFS); } fs = ump->um_fs; filetype = IFREG; switch (oidp->oid_number) { case FFS_SET_FLAGS: #ifdef DEBUG if (fsckcmds) printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, cmd.size > 0 ? "set" : "clear"); #endif /* DEBUG */ if (cmd.size > 0) fs->fs_flags |= (long)cmd.value; else fs->fs_flags &= ~(long)cmd.value; break; case FFS_ADJ_REFCNT: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust inode %jd link count by %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, (intmax_t)cmd.size); } #endif /* DEBUG */ if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) break; ip = VTOI(vp); ip->i_nlink += cmd.size; DIP_SET(ip, i_nlink, ip->i_nlink); ip->i_effnlink += cmd.size; ip->i_flag |= IN_CHANGE | IN_MODIFIED; error = ffs_update(vp, 1); if (DOINGSOFTDEP(vp)) softdep_change_linkcnt(ip); vput(vp); break; case FFS_ADJ_BLKCNT: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust inode %jd block count by %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, (intmax_t)cmd.size); } #endif /* DEBUG */ if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) break; ip = VTOI(vp); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); ip->i_flag |= IN_CHANGE | IN_MODIFIED; error = ffs_update(vp, 1); vput(vp); break; case FFS_DIR_FREE: filetype = IFDIR; /* fall through */ case FFS_FILE_FREE: #ifdef DEBUG if (fsckcmds) { if (cmd.size == 1) printf("%s: free %s inode %ju\n", mp->mnt_stat.f_mntonname, filetype == IFDIR ? "directory" : "file", (uintmax_t)cmd.value); else printf("%s: free %s inodes %ju-%ju\n", mp->mnt_stat.f_mntonname, filetype == IFDIR ? "directory" : "file", (uintmax_t)cmd.value, (uintmax_t)(cmd.value + cmd.size - 1)); } #endif /* DEBUG */ while (cmd.size > 0) { if ((error = ffs_freefile(ump, fs, ump->um_devvp, cmd.value, filetype, NULL))) break; cmd.size -= 1; cmd.value += 1; } break; case FFS_BLK_FREE: #ifdef DEBUG if (fsckcmds) { if (cmd.size == 1) printf("%s: free block %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); else printf("%s: free blocks %jd-%jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, (intmax_t)cmd.value + cmd.size - 1); } #endif /* DEBUG */ blkno = cmd.value; blkcnt = cmd.size; blksize = fs->fs_frag - (blkno % fs->fs_frag); while (blkcnt > 0) { if (blksize > blkcnt) blksize = blkcnt; ffs_blkfree(ump, fs, ump->um_devvp, blkno, blksize * fs->fs_fsize, UFS_ROOTINO, VDIR, NULL); blkno += blksize; blkcnt -= blksize; blksize = fs->fs_frag; } break; /* * Adjust superblock summaries. fsck(8) is expected to * submit deltas when necessary. */ case FFS_ADJ_NDIR: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust number of directories by %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ fs->fs_cstotal.cs_ndir += cmd.value; break; case FFS_ADJ_NBFREE: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust number of free blocks by %+jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ fs->fs_cstotal.cs_nbfree += cmd.value; break; case FFS_ADJ_NIFREE: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust number of free inodes by %+jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ fs->fs_cstotal.cs_nifree += cmd.value; break; case FFS_ADJ_NFFREE: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust number of free frags by %+jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ fs->fs_cstotal.cs_nffree += cmd.value; break; case FFS_ADJ_NUMCLUSTERS: #ifdef DEBUG if (fsckcmds) { printf("%s: adjust number of free clusters by %+jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ fs->fs_cstotal.cs_numclusters += cmd.value; break; case FFS_SET_CWD: #ifdef DEBUG if (fsckcmds) { printf("%s: set current directory to inode %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) break; AUDIT_ARG_VNODE1(vp); if ((error = change_dir(vp, td)) != 0) { vput(vp); break; } VOP_UNLOCK(vp, 0); pwd_chdir(td, vp); break; case FFS_SET_DOTDOT: #ifdef DEBUG if (fsckcmds) { printf("%s: change .. in cwd from %jd to %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, (intmax_t)cmd.size); } #endif /* DEBUG */ /* * First we have to get and lock the parent directory * to which ".." points. */ error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); if (error) break; /* * Now we get and lock the child directory containing "..". */ FILEDESC_SLOCK(td->td_proc->p_fd); dvp = td->td_proc->p_fd->fd_cdir; FILEDESC_SUNLOCK(td->td_proc->p_fd); if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { vput(fdvp); break; } dp = VTOI(dvp); dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, DT_DIR, 0); cache_purge(fdvp); cache_purge(dvp); vput(dvp); vput(fdvp); break; case FFS_UNLINK: #ifdef DEBUG if (fsckcmds) { char buf[32]; if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) strncpy(buf, "Name_too_long", 32); printf("%s: unlink %s (inode %jd)\n", mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); } #endif /* DEBUG */ /* * kern_unlinkat will do its own start/finish writes and * they do not nest, so drop ours here. Setting mp == NULL * indicates that vn_finished_write is not needed down below. */ vn_finished_write(mp); mp = NULL; error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, UIO_USERSPACE, (ino_t)cmd.size); break; case FFS_SET_INODE: if (ump->um_fsckpid != td->td_proc->p_pid) { error = EPERM; break; } #ifdef DEBUG if (fsckcmds) { printf("%s: update inode %jd\n", mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); } #endif /* DEBUG */ if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) break; AUDIT_ARG_VNODE1(vp); ip = VTOI(vp); if (I_IS_UFS1(ip)) error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, sizeof(struct ufs1_dinode)); else error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, sizeof(struct ufs2_dinode)); if (error) { vput(vp); break; } ip->i_flag |= IN_CHANGE | IN_MODIFIED; error = ffs_update(vp, 1); vput(vp); break; case FFS_SET_BUFOUTPUT: if (ump->um_fsckpid != td->td_proc->p_pid) { error = EPERM; break; } if (ITOUMP(VTOI(vp)) != ump) { error = EINVAL; break; } #ifdef DEBUG if (fsckcmds) { printf("%s: %s buffered output for descriptor %jd\n", mp->mnt_stat.f_mntonname, cmd.size == 1 ? "enable" : "disable", (intmax_t)cmd.value); } #endif /* DEBUG */ if ((error = getvnode(td, cmd.value, cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) break; if (vfp->f_vnode->v_type != VCHR) { fdrop(vfp, td); error = EINVAL; break; } if (origops == NULL) { origops = vfp->f_ops; bcopy((void *)origops, (void *)&bufferedops, sizeof(bufferedops)); bufferedops.fo_write = buffered_write; } if (cmd.size == 1) atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, (uintptr_t)&bufferedops); else atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, (uintptr_t)origops); fdrop(vfp, td); break; default: #ifdef DEBUG if (fsckcmds) { printf("Invalid request %d from fsck\n", oidp->oid_number); } #endif /* DEBUG */ error = EINVAL; break; } fdrop(fp, td); vn_finished_write(mp); return (error); } /* * Function to switch a descriptor to use the buffer cache to stage * its I/O. This is needed so that writes to the filesystem device * will give snapshots a chance to copy modified blocks for which it * needs to retain copies. */ static int buffered_write(fp, uio, active_cred, flags, td) struct file *fp; struct uio *uio; struct ucred *active_cred; int flags; struct thread *td; { struct vnode *devvp, *vp; struct inode *ip; struct buf *bp; struct fs *fs; struct filedesc *fdp; int error; daddr_t lbn; /* * The devvp is associated with the /dev filesystem. To discover * the filesystem with which the device is associated, we depend * on the application setting the current directory to a location * within the filesystem being written. Yes, this is an ugly hack. */ devvp = fp->f_vnode; if (!vn_isdisk(devvp, NULL)) return (EINVAL); fdp = td->td_proc->p_fd; FILEDESC_SLOCK(fdp); vp = fdp->fd_cdir; vref(vp); FILEDESC_SUNLOCK(fdp); vn_lock(vp, LK_SHARED | LK_RETRY); /* * Check that the current directory vnode indeed belongs to * UFS before trying to dereference UFS-specific v_data fields. */ if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { vput(vp); return (EINVAL); } ip = VTOI(vp); if (ITODEVVP(ip) != devvp) { vput(vp); return (EINVAL); } fs = ITOFS(ip); vput(vp); foffset_lock_uio(fp, uio, flags); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); #ifdef DEBUG if (fsckcmds) { printf("%s: buffered write for block %jd\n", fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); } #endif /* DEBUG */ /* * All I/O must be contained within a filesystem block, start on * a fragment boundary, and be a multiple of fragments in length. */ if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || fragoff(fs, uio->uio_offset) != 0 || fragoff(fs, uio->uio_resid) != 0) { error = EINVAL; goto out; } lbn = numfrags(fs, uio->uio_offset); bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); bp->b_flags |= B_RELBUF; if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { brelse(bp); goto out; } error = bwrite(bp); out: VOP_UNLOCK(devvp, 0); foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); return (error); }