1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause AND BSD-4-Clause
3 *
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*-
32 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33 * Copyright (C) 1995, 1996 TooLs GmbH.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by TooLs GmbH.
47 * 4. The name of TooLs GmbH may not be used to endorse or promote products
48 * derived from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60 *
61 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62 */
63 /*-
64 * Copyright (C) 2001 Benno Rice.
65 * All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 *
76 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86 */
87
88 #include <sys/cdefs.h>
89 /*
90 * Native 64-bit page table operations for running without a hypervisor.
91 */
92
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/ktr.h>
96 #include <sys/lock.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sched.h>
100 #include <sys/sysctl.h>
101 #include <sys/systm.h>
102 #include <sys/rwlock.h>
103 #include <sys/endian.h>
104
105 #include <sys/kdb.h>
106
107 #include <vm/vm.h>
108 #include <vm/vm_param.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_map.h>
112 #include <vm/vm_object.h>
113 #include <vm/vm_extern.h>
114 #include <vm/vm_pageout.h>
115
116 #include <machine/cpu.h>
117 #include <machine/hid.h>
118 #include <machine/md_var.h>
119 #include <machine/mmuvar.h>
120
121 #include "mmu_oea64.h"
122
123 #define PTESYNC() __asm __volatile("ptesync");
124 #define TLBSYNC() __asm __volatile("tlbsync; ptesync");
125 #define SYNC() __asm __volatile("sync");
126 #define EIEIO() __asm __volatile("eieio");
127
128 #define VSID_HASH_MASK 0x0000007fffffffffULL
129
130 /* POWER9 only permits a 64k partition table size. */
131 #define PART_SIZE 0x10000
132
133 /* Actual page sizes (to be used with tlbie, when L=0) */
134 #define AP_4K 0x00
135 #define AP_16M 0x80
136
137 #define LPTE_KERNEL_VSID_BIT (KERNEL_VSID_BIT << \
138 (16 - (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)))
139
140 /* Abbreviated Virtual Address Page - high bits */
141 #define LPTE_AVA_PGNHI_MASK 0x0000000000000F80ULL
142 #define LPTE_AVA_PGNHI_SHIFT 7
143
144 /* Effective Address Page - low bits */
145 #define EA_PAGELO_MASK 0x7ffULL
146 #define EA_PAGELO_SHIFT 11
147
148 static bool moea64_crop_tlbie;
149 static bool moea64_need_lock;
150
151 /*
152 * The tlbie instruction has two forms: an old one used by PowerISA
153 * 2.03 and prior, and a newer one used by PowerISA 2.06 and later.
154 * We need to support both.
155 */
156 static __inline void
TLBIE(uint64_t vpn,uint64_t oldptehi)157 TLBIE(uint64_t vpn, uint64_t oldptehi)
158 {
159 #ifndef __powerpc64__
160 register_t vpn_hi, vpn_lo;
161 register_t msr;
162 register_t scratch, intr;
163 #endif
164
165 static volatile u_int tlbie_lock = 0;
166 bool need_lock = moea64_need_lock;
167
168 vpn <<= ADDR_PIDX_SHFT;
169
170 /* Hobo spinlock: we need stronger guarantees than mutexes provide */
171 if (need_lock) {
172 while (!atomic_cmpset_int(&tlbie_lock, 0, 1));
173 isync(); /* Flush instruction queue once lock acquired */
174
175 if (moea64_crop_tlbie) {
176 vpn &= ~(0xffffULL << 48);
177 #ifdef __powerpc64__
178 if ((oldptehi & LPTE_BIG) != 0)
179 __asm __volatile("tlbie %0, 1" :: "r"(vpn) :
180 "memory");
181 else
182 __asm __volatile("tlbie %0, 0" :: "r"(vpn) :
183 "memory");
184 __asm __volatile("eieio; tlbsync; ptesync" :::
185 "memory");
186 goto done;
187 #endif
188 }
189 }
190
191 #ifdef __powerpc64__
192 /*
193 * If this page has LPTE_BIG set and is from userspace, then
194 * it must be a superpage with 4KB base/16MB actual page size.
195 */
196 if ((oldptehi & LPTE_BIG) != 0 &&
197 (oldptehi & LPTE_KERNEL_VSID_BIT) == 0)
198 vpn |= AP_16M;
199
200 /*
201 * Explicitly clobber r0. The tlbie instruction has two forms: an old
202 * one used by PowerISA 2.03 and prior, and a newer one used by PowerISA
203 * 2.06 (maybe 2.05?) and later. We need to support both, and it just
204 * so happens that since we use 4k pages we can simply zero out r0, and
205 * clobber it, and the assembler will interpret the single-operand form
206 * of tlbie as having RB set, and everything else as 0. The RS operand
207 * in the newer form is in the same position as the L(page size) bit of
208 * the old form, so a slong as RS is 0, we're good on both sides.
209 */
210 __asm __volatile("li 0, 0 \n tlbie %0, 0" :: "r"(vpn) : "r0", "memory");
211 __asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
212 done:
213
214 #else
215 vpn_hi = (uint32_t)(vpn >> 32);
216 vpn_lo = (uint32_t)vpn;
217
218 intr = intr_disable();
219 __asm __volatile("\
220 mfmsr %0; \
221 mr %1, %0; \
222 insrdi %1,%5,1,0; \
223 mtmsrd %1; isync; \
224 \
225 sld %1,%2,%4; \
226 or %1,%1,%3; \
227 tlbie %1; \
228 \
229 mtmsrd %0; isync; \
230 eieio; \
231 tlbsync; \
232 ptesync;"
233 : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
234 : "memory");
235 intr_restore(intr);
236 #endif
237
238 /* No barriers or special ops -- taken care of by ptesync above */
239 if (need_lock)
240 tlbie_lock = 0;
241 }
242
243 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
244 #define ENABLE_TRANS(msr) mtmsr(msr)
245
246 /*
247 * PTEG data.
248 */
249 static volatile struct lpte *moea64_pteg_table;
250 static struct rwlock moea64_eviction_lock;
251
252 static volatile struct pate *moea64_part_table;
253
254 /*
255 * Dump function.
256 */
257 static void *moea64_dump_pmap_native(void *ctx, void *buf,
258 u_long *nbytes);
259
260 /*
261 * PTE calls.
262 */
263 static int64_t moea64_pte_insert_native(struct pvo_entry *);
264 static int64_t moea64_pte_synch_native(struct pvo_entry *);
265 static int64_t moea64_pte_clear_native(struct pvo_entry *, uint64_t);
266 static int64_t moea64_pte_replace_native(struct pvo_entry *, int);
267 static int64_t moea64_pte_unset_native(struct pvo_entry *);
268 static int64_t moea64_pte_insert_sp_native(struct pvo_entry *);
269 static int64_t moea64_pte_unset_sp_native(struct pvo_entry *);
270 static int64_t moea64_pte_replace_sp_native(struct pvo_entry *);
271
272 /*
273 * Utility routines.
274 */
275 static void moea64_bootstrap_native(
276 vm_offset_t kernelstart, vm_offset_t kernelend);
277 static void moea64_cpu_bootstrap_native(int ap);
278 static void tlbia(void);
279 static void moea64_install_native(void);
280
281 static struct pmap_funcs moea64_native_methods = {
282 .install = moea64_install_native,
283
284 /* Internal interfaces */
285 .bootstrap = moea64_bootstrap_native,
286 .cpu_bootstrap = moea64_cpu_bootstrap_native,
287 .dumpsys_dump_pmap = moea64_dump_pmap_native,
288 };
289
290 static struct moea64_funcs moea64_native_funcs = {
291 .pte_synch = moea64_pte_synch_native,
292 .pte_clear = moea64_pte_clear_native,
293 .pte_unset = moea64_pte_unset_native,
294 .pte_replace = moea64_pte_replace_native,
295 .pte_insert = moea64_pte_insert_native,
296 .pte_insert_sp = moea64_pte_insert_sp_native,
297 .pte_unset_sp = moea64_pte_unset_sp_native,
298 .pte_replace_sp = moea64_pte_replace_sp_native,
299 };
300
301 MMU_DEF_INHERIT(oea64_mmu_native, MMU_TYPE_G5, moea64_native_methods, oea64_mmu);
302
303 static void
moea64_install_native(void)304 moea64_install_native(void)
305 {
306
307 /* Install the MOEA64 ops. */
308 moea64_ops = &moea64_native_funcs;
309
310 moea64_install();
311 }
312
313 static int64_t
moea64_pte_synch_native(struct pvo_entry * pvo)314 moea64_pte_synch_native(struct pvo_entry *pvo)
315 {
316 volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
317 uint64_t ptelo, pvo_ptevpn;
318
319 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
320
321 pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
322
323 rw_rlock(&moea64_eviction_lock);
324 if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) {
325 /* Evicted */
326 rw_runlock(&moea64_eviction_lock);
327 return (-1);
328 }
329
330 PTESYNC();
331 ptelo = be64toh(pt->pte_lo);
332
333 rw_runlock(&moea64_eviction_lock);
334
335 return (ptelo & (LPTE_REF | LPTE_CHG));
336 }
337
338 static int64_t
moea64_pte_clear_native(struct pvo_entry * pvo,uint64_t ptebit)339 moea64_pte_clear_native(struct pvo_entry *pvo, uint64_t ptebit)
340 {
341 volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
342 struct lpte properpt;
343 uint64_t ptelo;
344
345 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
346
347 moea64_pte_from_pvo(pvo, &properpt);
348
349 rw_rlock(&moea64_eviction_lock);
350 if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
351 (properpt.pte_hi & LPTE_AVPN_MASK)) {
352 /* Evicted */
353 rw_runlock(&moea64_eviction_lock);
354 return (-1);
355 }
356
357 if (ptebit == LPTE_REF) {
358 /* See "Resetting the Reference Bit" in arch manual */
359 PTESYNC();
360 /* 2-step here safe: precision is not guaranteed */
361 ptelo = be64toh(pt->pte_lo);
362
363 /* One-byte store to avoid touching the C bit */
364 ((volatile uint8_t *)(&pt->pte_lo))[6] =
365 #if BYTE_ORDER == BIG_ENDIAN
366 ((uint8_t *)(&properpt.pte_lo))[6];
367 #else
368 ((uint8_t *)(&properpt.pte_lo))[1];
369 #endif
370 rw_runlock(&moea64_eviction_lock);
371
372 critical_enter();
373 TLBIE(pvo->pvo_vpn, properpt.pte_hi);
374 critical_exit();
375 } else {
376 rw_runlock(&moea64_eviction_lock);
377 ptelo = moea64_pte_unset_native(pvo);
378 moea64_pte_insert_native(pvo);
379 }
380
381 return (ptelo & (LPTE_REF | LPTE_CHG));
382 }
383
384 static __always_inline int64_t
moea64_pte_unset_locked(volatile struct lpte * pt,uint64_t vpn)385 moea64_pte_unset_locked(volatile struct lpte *pt, uint64_t vpn)
386 {
387 uint64_t ptelo, ptehi;
388
389 /*
390 * Invalidate the pte, briefly locking it to collect RC bits. No
391 * atomics needed since this is protected against eviction by the lock.
392 */
393 isync();
394 critical_enter();
395 ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED;
396 pt->pte_hi = htobe64(ptehi);
397 PTESYNC();
398 TLBIE(vpn, ptehi);
399 ptelo = be64toh(pt->pte_lo);
400 *((volatile int32_t *)(&pt->pte_hi) + 1) = 0; /* Release lock */
401 critical_exit();
402
403 /* Keep statistics */
404 STAT_MOEA64(moea64_pte_valid--);
405
406 return (ptelo & (LPTE_CHG | LPTE_REF));
407 }
408
409 static int64_t
moea64_pte_unset_native(struct pvo_entry * pvo)410 moea64_pte_unset_native(struct pvo_entry *pvo)
411 {
412 volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
413 int64_t ret;
414 uint64_t pvo_ptevpn;
415
416 pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
417
418 rw_rlock(&moea64_eviction_lock);
419
420 if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) {
421 /* Evicted */
422 STAT_MOEA64(moea64_pte_overflow--);
423 ret = -1;
424 } else
425 ret = moea64_pte_unset_locked(pt, pvo->pvo_vpn);
426
427 rw_runlock(&moea64_eviction_lock);
428
429 return (ret);
430 }
431
432 static int64_t
moea64_pte_replace_inval_native(struct pvo_entry * pvo,volatile struct lpte * pt)433 moea64_pte_replace_inval_native(struct pvo_entry *pvo,
434 volatile struct lpte *pt)
435 {
436 struct lpte properpt;
437 uint64_t ptelo, ptehi;
438
439 moea64_pte_from_pvo(pvo, &properpt);
440
441 rw_rlock(&moea64_eviction_lock);
442 if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
443 (properpt.pte_hi & LPTE_AVPN_MASK)) {
444 /* Evicted */
445 STAT_MOEA64(moea64_pte_overflow--);
446 rw_runlock(&moea64_eviction_lock);
447 return (-1);
448 }
449
450 /*
451 * Replace the pte, briefly locking it to collect RC bits. No
452 * atomics needed since this is protected against eviction by the lock.
453 */
454 isync();
455 critical_enter();
456 ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED;
457 pt->pte_hi = htobe64(ptehi);
458 PTESYNC();
459 TLBIE(pvo->pvo_vpn, ptehi);
460 ptelo = be64toh(pt->pte_lo);
461 EIEIO();
462 pt->pte_lo = htobe64(properpt.pte_lo);
463 EIEIO();
464 pt->pte_hi = htobe64(properpt.pte_hi); /* Release lock */
465 PTESYNC();
466 critical_exit();
467 rw_runlock(&moea64_eviction_lock);
468
469 return (ptelo & (LPTE_CHG | LPTE_REF));
470 }
471
472 static int64_t
moea64_pte_replace_native(struct pvo_entry * pvo,int flags)473 moea64_pte_replace_native(struct pvo_entry *pvo, int flags)
474 {
475 volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
476 struct lpte properpt;
477 int64_t ptelo;
478
479 if (flags == 0) {
480 /* Just some software bits changing. */
481 moea64_pte_from_pvo(pvo, &properpt);
482
483 rw_rlock(&moea64_eviction_lock);
484 if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
485 (properpt.pte_hi & LPTE_AVPN_MASK)) {
486 rw_runlock(&moea64_eviction_lock);
487 return (-1);
488 }
489 pt->pte_hi = htobe64(properpt.pte_hi);
490 ptelo = be64toh(pt->pte_lo);
491 rw_runlock(&moea64_eviction_lock);
492 } else {
493 /* Otherwise, need reinsertion and deletion */
494 ptelo = moea64_pte_replace_inval_native(pvo, pt);
495 }
496
497 return (ptelo);
498 }
499
500 static void
moea64_cpu_bootstrap_native(int ap)501 moea64_cpu_bootstrap_native(int ap)
502 {
503 int i = 0;
504 #ifdef __powerpc64__
505 struct slb *slb = PCPU_GET(aim.slb);
506 register_t seg0;
507 #endif
508
509 /*
510 * Initialize segment registers and MMU
511 */
512
513 mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR);
514
515 switch(mfpvr() >> 16) {
516 case IBMPOWER9:
517 mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_RADIX);
518 break;
519 }
520
521 /*
522 * Install kernel SLB entries
523 */
524
525 #ifdef __powerpc64__
526 __asm __volatile ("slbia");
527 __asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) :
528 "r"(0));
529
530 for (i = 0; i < n_slbs; i++) {
531 if (!(slb[i].slbe & SLBE_VALID))
532 continue;
533
534 __asm __volatile ("slbmte %0, %1" ::
535 "r"(slb[i].slbv), "r"(slb[i].slbe));
536 }
537 #else
538 for (i = 0; i < 16; i++)
539 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
540 #endif
541
542 /*
543 * Install page table
544 */
545
546 if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
547 mtspr(SPR_PTCR,
548 ((uintptr_t)moea64_part_table & ~DMAP_BASE_ADDRESS) |
549 flsl((PART_SIZE >> 12) - 1));
550 else
551 __asm __volatile ("ptesync; mtsdr1 %0; isync"
552 :: "r"(((uintptr_t)moea64_pteg_table & ~DMAP_BASE_ADDRESS)
553 | (uintptr_t)(flsl(moea64_pteg_mask >> 11))));
554 tlbia();
555 }
556
557 static void
moea64_bootstrap_native(vm_offset_t kernelstart,vm_offset_t kernelend)558 moea64_bootstrap_native(vm_offset_t kernelstart, vm_offset_t kernelend)
559 {
560 vm_size_t size;
561 vm_offset_t off;
562 vm_paddr_t pa;
563 register_t msr;
564
565 moea64_early_bootstrap(kernelstart, kernelend);
566
567 switch (mfpvr() >> 16) {
568 case IBMPOWER9:
569 moea64_need_lock = false;
570 break;
571 case IBMPOWER4:
572 case IBMPOWER4PLUS:
573 case IBM970:
574 case IBM970FX:
575 case IBM970GX:
576 case IBM970MP:
577 moea64_crop_tlbie = true;
578 default:
579 moea64_need_lock = true;
580 }
581 /*
582 * Allocate PTEG table.
583 */
584
585 size = moea64_pteg_count * sizeof(struct lpteg);
586 CTR2(KTR_PMAP, "moea64_bootstrap: %lu PTEGs, %lu bytes",
587 moea64_pteg_count, size);
588 rw_init(&moea64_eviction_lock, "pte eviction");
589
590 /*
591 * We now need to allocate memory. This memory, to be allocated,
592 * has to reside in a page table. The page table we are about to
593 * allocate. We don't have BAT. So drop to data real mode for a minute
594 * as a measure of last resort. We do this a couple times.
595 */
596 /*
597 * PTEG table must be aligned on a 256k boundary, but can be placed
598 * anywhere with that alignment on POWER ISA 3+ systems. On earlier
599 * systems, offset addition is done by the CPU with bitwise OR rather
600 * than addition, so the table must also be aligned on a boundary of
601 * its own size. Pick the larger of the two, which works on all
602 * systems.
603 */
604 moea64_pteg_table = (struct lpte *)moea64_bootstrap_alloc(size,
605 MAX(256*1024, size));
606 if (hw_direct_map)
607 moea64_pteg_table =
608 (struct lpte *)PHYS_TO_DMAP((vm_offset_t)moea64_pteg_table);
609 /* Allocate partition table (ISA 3.0). */
610 if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
611 moea64_part_table =
612 (struct pate *)moea64_bootstrap_alloc(PART_SIZE, PART_SIZE);
613 moea64_part_table =
614 (struct pate *)PHYS_TO_DMAP((vm_offset_t)moea64_part_table);
615 }
616 DISABLE_TRANS(msr);
617 bzero(__DEVOLATILE(void *, moea64_pteg_table), moea64_pteg_count *
618 sizeof(struct lpteg));
619 if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
620 bzero(__DEVOLATILE(void *, moea64_part_table), PART_SIZE);
621 moea64_part_table[0].pagetab = htobe64(
622 (DMAP_TO_PHYS((vm_offset_t)moea64_pteg_table)) |
623 (uintptr_t)(flsl((moea64_pteg_count - 1) >> 11)));
624 }
625 ENABLE_TRANS(msr);
626
627 CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
628
629 moea64_mid_bootstrap(kernelstart, kernelend);
630
631 /*
632 * Add a mapping for the page table itself if there is no direct map.
633 */
634 if (!hw_direct_map) {
635 size = moea64_pteg_count * sizeof(struct lpteg);
636 off = (vm_offset_t)(moea64_pteg_table);
637 DISABLE_TRANS(msr);
638 for (pa = off; pa < off + size; pa += PAGE_SIZE)
639 pmap_kenter(pa, pa);
640 ENABLE_TRANS(msr);
641 }
642
643 /* Bring up virtual memory */
644 moea64_late_bootstrap(kernelstart, kernelend);
645 }
646
647 static void
tlbia(void)648 tlbia(void)
649 {
650 vm_offset_t i;
651 #ifndef __powerpc64__
652 register_t msr, scratch;
653 #endif
654
655 i = 0xc00; /* IS = 11 */
656 switch (mfpvr() >> 16) {
657 case IBM970:
658 case IBM970FX:
659 case IBM970MP:
660 case IBM970GX:
661 case IBMPOWER4:
662 case IBMPOWER4PLUS:
663 case IBMPOWER5:
664 case IBMPOWER5PLUS:
665 i = 0; /* IS not supported */
666 break;
667 }
668
669 TLBSYNC();
670
671 for (; i < 0x400000; i += 0x00001000) {
672 #ifdef __powerpc64__
673 __asm __volatile("tlbiel %0" :: "r"(i));
674 #else
675 __asm __volatile("\
676 mfmsr %0; \
677 mr %1, %0; \
678 insrdi %1,%3,1,0; \
679 mtmsrd %1; \
680 isync; \
681 \
682 tlbiel %2; \
683 \
684 mtmsrd %0; \
685 isync;"
686 : "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
687 #endif
688 }
689
690 EIEIO();
691 TLBSYNC();
692 }
693
694 static int
atomic_pte_lock(volatile struct lpte * pte,uint64_t bitmask,uint64_t * oldhi)695 atomic_pte_lock(volatile struct lpte *pte, uint64_t bitmask, uint64_t *oldhi)
696 {
697 int ret;
698 #ifdef __powerpc64__
699 uint64_t temp;
700 #else
701 uint32_t oldhihalf;
702 #endif
703
704 /*
705 * Note: in principle, if just the locked bit were set here, we
706 * could avoid needing the eviction lock. However, eviction occurs
707 * so rarely that it isn't worth bothering about in practice.
708 */
709 #ifdef __powerpc64__
710 /*
711 * Note: Success of this sequence has the side effect of invalidating
712 * the PTE, as we are setting it to LPTE_LOCKED and discarding the
713 * other bits, including LPTE_V.
714 */
715 __asm __volatile (
716 "1:\tldarx %1, 0, %3\n\t" /* load old value */
717 "and. %0,%1,%4\n\t" /* check if any bits set */
718 "bne 2f\n\t" /* exit if any set */
719 "stdcx. %5, 0, %3\n\t" /* attempt to store */
720 "bne- 1b\n\t" /* spin if failed */
721 "li %0, 1\n\t" /* success - retval = 1 */
722 "b 3f\n\t" /* we've succeeded */
723 "2:\n\t"
724 "stdcx. %1, 0, %3\n\t" /* clear reservation (74xx) */
725 "li %0, 0\n\t" /* failure - retval = 0 */
726 "3:\n\t"
727 : "=&r" (ret), "=&r"(temp), "=m" (pte->pte_hi)
728 : "r" ((volatile char *)&pte->pte_hi),
729 "r" (htobe64(bitmask)), "r" (htobe64(LPTE_LOCKED)),
730 "m" (pte->pte_hi)
731 : "cr0", "cr1", "cr2", "memory");
732 *oldhi = be64toh(temp);
733 #else
734 /*
735 * This code is used on bridge mode only.
736 */
737 __asm __volatile (
738 "1:\tlwarx %1, 0, %3\n\t" /* load old value */
739 "and. %0,%1,%4\n\t" /* check if any bits set */
740 "bne 2f\n\t" /* exit if any set */
741 "stwcx. %5, 0, %3\n\t" /* attempt to store */
742 "bne- 1b\n\t" /* spin if failed */
743 "li %0, 1\n\t" /* success - retval = 1 */
744 "b 3f\n\t" /* we've succeeded */
745 "2:\n\t"
746 "stwcx. %1, 0, %3\n\t" /* clear reservation (74xx) */
747 "li %0, 0\n\t" /* failure - retval = 0 */
748 "3:\n\t"
749 : "=&r" (ret), "=&r"(oldhihalf), "=m" (pte->pte_hi)
750 : "r" ((volatile char *)&pte->pte_hi + 4),
751 "r" ((uint32_t)bitmask), "r" ((uint32_t)LPTE_LOCKED),
752 "m" (pte->pte_hi)
753 : "cr0", "cr1", "cr2", "memory");
754
755 *oldhi = (pte->pte_hi & 0xffffffff00000000ULL) | oldhihalf;
756 #endif
757
758 return (ret);
759 }
760
761 static uintptr_t
moea64_insert_to_pteg_native(struct lpte * pvo_pt,uintptr_t slotbase,uint64_t mask)762 moea64_insert_to_pteg_native(struct lpte *pvo_pt, uintptr_t slotbase,
763 uint64_t mask)
764 {
765 volatile struct lpte *pt;
766 uint64_t oldptehi, va;
767 uintptr_t k;
768 int i, j;
769
770 /* Start at a random slot */
771 i = mftb() % 8;
772 for (j = 0; j < 8; j++) {
773 k = slotbase + (i + j) % 8;
774 pt = &moea64_pteg_table[k];
775 /* Invalidate and seize lock only if no bits in mask set */
776 if (atomic_pte_lock(pt, mask, &oldptehi)) /* Lock obtained */
777 break;
778 }
779
780 if (j == 8)
781 return (-1);
782
783 if (oldptehi & LPTE_VALID) {
784 KASSERT(!(oldptehi & LPTE_WIRED), ("Unmapped wired entry"));
785 /*
786 * Need to invalidate old entry completely: see
787 * "Modifying a Page Table Entry". Need to reconstruct
788 * the virtual address for the outgoing entry to do that.
789 */
790 va = oldptehi >> (ADDR_SR_SHFT - ADDR_API_SHFT64);
791 if (oldptehi & LPTE_HID)
792 va = (((k >> 3) ^ moea64_pteg_mask) ^ va) &
793 (ADDR_PIDX >> ADDR_PIDX_SHFT);
794 else
795 va = ((k >> 3) ^ va) & (ADDR_PIDX >> ADDR_PIDX_SHFT);
796 va |= (oldptehi & LPTE_AVPN_MASK) <<
797 (ADDR_API_SHFT64 - ADDR_PIDX_SHFT);
798 PTESYNC();
799 TLBIE(va, oldptehi);
800 STAT_MOEA64(moea64_pte_valid--);
801 STAT_MOEA64(moea64_pte_overflow++);
802 }
803
804 /*
805 * Update the PTE as per "Adding a Page Table Entry". Lock is released
806 * by setting the high doubleworld.
807 */
808 pt->pte_lo = htobe64(pvo_pt->pte_lo);
809 EIEIO();
810 pt->pte_hi = htobe64(pvo_pt->pte_hi);
811 PTESYNC();
812
813 /* Keep statistics */
814 STAT_MOEA64(moea64_pte_valid++);
815
816 return (k);
817 }
818
819 static __always_inline int64_t
moea64_pte_insert_locked(struct pvo_entry * pvo,struct lpte * insertpt,uint64_t mask)820 moea64_pte_insert_locked(struct pvo_entry *pvo, struct lpte *insertpt,
821 uint64_t mask)
822 {
823 uintptr_t slot;
824
825 /*
826 * First try primary hash.
827 */
828 slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot,
829 mask | LPTE_WIRED | LPTE_LOCKED);
830 if (slot != -1) {
831 pvo->pvo_pte.slot = slot;
832 return (0);
833 }
834
835 /*
836 * Now try secondary hash.
837 */
838 pvo->pvo_vaddr ^= PVO_HID;
839 insertpt->pte_hi ^= LPTE_HID;
840 pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
841 slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot,
842 mask | LPTE_WIRED | LPTE_LOCKED);
843 if (slot != -1) {
844 pvo->pvo_pte.slot = slot;
845 return (0);
846 }
847
848 return (-1);
849 }
850
851 static int64_t
moea64_pte_insert_native(struct pvo_entry * pvo)852 moea64_pte_insert_native(struct pvo_entry *pvo)
853 {
854 struct lpte insertpt;
855 int64_t ret;
856
857 /* Initialize PTE */
858 moea64_pte_from_pvo(pvo, &insertpt);
859
860 /* Make sure further insertion is locked out during evictions */
861 rw_rlock(&moea64_eviction_lock);
862
863 pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */
864 ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID);
865 if (ret == -1) {
866 /*
867 * Out of luck. Find a PTE to sacrifice.
868 */
869
870 /* Lock out all insertions for a bit */
871 if (!rw_try_upgrade(&moea64_eviction_lock)) {
872 rw_runlock(&moea64_eviction_lock);
873 rw_wlock(&moea64_eviction_lock);
874 }
875 /* Don't evict large pages */
876 ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_BIG);
877 rw_wunlock(&moea64_eviction_lock);
878 /* No freeable slots in either PTEG? We're hosed. */
879 if (ret == -1)
880 panic("moea64_pte_insert: overflow");
881 } else
882 rw_runlock(&moea64_eviction_lock);
883
884 return (0);
885 }
886
887 static void *
moea64_dump_pmap_native(void * ctx,void * buf,u_long * nbytes)888 moea64_dump_pmap_native(void *ctx, void *buf, u_long *nbytes)
889 {
890 struct dump_context *dctx;
891 u_long ptex, ptex_end;
892
893 dctx = (struct dump_context *)ctx;
894 ptex = dctx->ptex;
895 ptex_end = ptex + dctx->blksz / sizeof(struct lpte);
896 ptex_end = MIN(ptex_end, dctx->ptex_end);
897 *nbytes = (ptex_end - ptex) * sizeof(struct lpte);
898
899 if (*nbytes == 0)
900 return (NULL);
901
902 dctx->ptex = ptex_end;
903 return (__DEVOLATILE(struct lpte *, moea64_pteg_table) + ptex);
904 }
905
906 static __always_inline uint64_t
moea64_vpn_from_pte(uint64_t ptehi,uintptr_t slot)907 moea64_vpn_from_pte(uint64_t ptehi, uintptr_t slot)
908 {
909 uint64_t pgn, pgnlo, vsid;
910
911 vsid = (ptehi & LPTE_AVA_MASK) >> LPTE_VSID_SHIFT;
912 if ((ptehi & LPTE_HID) != 0)
913 slot ^= (moea64_pteg_mask << 3);
914 pgnlo = ((vsid & VSID_HASH_MASK) ^ (slot >> 3)) & EA_PAGELO_MASK;
915 pgn = ((ptehi & LPTE_AVA_PGNHI_MASK) << (EA_PAGELO_SHIFT -
916 LPTE_AVA_PGNHI_SHIFT)) | pgnlo;
917 return ((vsid << 16) | pgn);
918 }
919
920 static __always_inline int64_t
moea64_pte_unset_sp_locked(struct pvo_entry * pvo)921 moea64_pte_unset_sp_locked(struct pvo_entry *pvo)
922 {
923 volatile struct lpte *pt;
924 uint64_t ptehi, refchg, vpn;
925 vm_offset_t eva;
926
927 refchg = 0;
928 eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
929
930 for (; pvo != NULL && PVO_VADDR(pvo) < eva;
931 pvo = RB_NEXT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo)) {
932 pt = moea64_pteg_table + pvo->pvo_pte.slot;
933 ptehi = be64toh(pt->pte_hi);
934 if ((ptehi & LPTE_AVPN_MASK) !=
935 moea64_pte_vpn_from_pvo_vpn(pvo)) {
936 /* Evicted: invalidate new entry */
937 STAT_MOEA64(moea64_pte_overflow--);
938 vpn = moea64_vpn_from_pte(ptehi, pvo->pvo_pte.slot);
939 CTR1(KTR_PMAP, "Evicted page in pte_unset_sp: vpn=%jx",
940 (uintmax_t)vpn);
941 /* Assume evicted page was modified */
942 refchg |= LPTE_CHG;
943 } else
944 vpn = pvo->pvo_vpn;
945
946 refchg |= moea64_pte_unset_locked(pt, vpn);
947 }
948
949 return (refchg);
950 }
951
952 static int64_t
moea64_pte_unset_sp_native(struct pvo_entry * pvo)953 moea64_pte_unset_sp_native(struct pvo_entry *pvo)
954 {
955 uint64_t refchg;
956
957 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
958 KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
959 ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
960
961 rw_rlock(&moea64_eviction_lock);
962 refchg = moea64_pte_unset_sp_locked(pvo);
963 rw_runlock(&moea64_eviction_lock);
964
965 return (refchg);
966 }
967
968 static __always_inline int64_t
moea64_pte_insert_sp_locked(struct pvo_entry * pvo)969 moea64_pte_insert_sp_locked(struct pvo_entry *pvo)
970 {
971 struct lpte insertpt;
972 int64_t ret;
973 vm_offset_t eva;
974
975 eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
976
977 for (; pvo != NULL && PVO_VADDR(pvo) < eva;
978 pvo = RB_NEXT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo)) {
979 moea64_pte_from_pvo(pvo, &insertpt);
980 pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */
981
982 ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID);
983 if (ret == -1) {
984 /* Lock out all insertions for a bit */
985 if (!rw_try_upgrade(&moea64_eviction_lock)) {
986 rw_runlock(&moea64_eviction_lock);
987 rw_wlock(&moea64_eviction_lock);
988 }
989 /* Don't evict large pages */
990 ret = moea64_pte_insert_locked(pvo, &insertpt,
991 LPTE_BIG);
992 rw_downgrade(&moea64_eviction_lock);
993 /* No freeable slots in either PTEG? We're hosed. */
994 if (ret == -1)
995 panic("moea64_pte_insert_sp: overflow");
996 }
997 }
998
999 return (0);
1000 }
1001
1002 static int64_t
moea64_pte_insert_sp_native(struct pvo_entry * pvo)1003 moea64_pte_insert_sp_native(struct pvo_entry *pvo)
1004 {
1005 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
1006 KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
1007 ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
1008
1009 rw_rlock(&moea64_eviction_lock);
1010 moea64_pte_insert_sp_locked(pvo);
1011 rw_runlock(&moea64_eviction_lock);
1012
1013 return (0);
1014 }
1015
1016 static int64_t
moea64_pte_replace_sp_native(struct pvo_entry * pvo)1017 moea64_pte_replace_sp_native(struct pvo_entry *pvo)
1018 {
1019 uint64_t refchg;
1020
1021 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
1022 KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
1023 ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
1024
1025 rw_rlock(&moea64_eviction_lock);
1026 refchg = moea64_pte_unset_sp_locked(pvo);
1027 moea64_pte_insert_sp_locked(pvo);
1028 rw_runlock(&moea64_eviction_lock);
1029
1030 return (refchg);
1031 }
1032