1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_vlan_var.h> 65 #include <net/if_llatbl.h> 66 #include <net/ethernet.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 #include <netinet/ip_mroute.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #if defined(SCTP) || defined(SCTP_SUPPORT) 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 extern int in_mcast_loop; 110 extern struct protosw inetsw[]; 111 112 static inline int 113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 115 { 116 struct m_tag *fwd_tag = NULL; 117 struct mbuf *m; 118 struct in_addr odst; 119 struct ip *ip; 120 int pflags = PFIL_OUT; 121 122 if (flags & IP_FORWARDING) 123 pflags |= PFIL_FWD; 124 125 m = *mp; 126 ip = mtod(m, struct ip *); 127 128 /* Run through list of hooks for output packets. */ 129 odst.s_addr = ip->ip_dst.s_addr; 130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 131 case PFIL_DROPPED: 132 *error = EACCES; 133 /* FALLTHROUGH */ 134 case PFIL_CONSUMED: 135 return 1; /* Finished */ 136 case PFIL_PASS: 137 *error = 0; 138 } 139 m = *mp; 140 ip = mtod(m, struct ip *); 141 142 /* See if destination IP address was changed by packet filter. */ 143 if (odst.s_addr != ip->ip_dst.s_addr) { 144 m->m_flags |= M_SKIP_FIREWALL; 145 /* If destination is now ourself drop to ip_input(). */ 146 if (in_localip(ip->ip_dst)) { 147 m->m_flags |= M_FASTFWD_OURS; 148 if (m->m_pkthdr.rcvif == NULL) 149 m->m_pkthdr.rcvif = V_loif; 150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 151 m->m_pkthdr.csum_flags |= 152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 153 m->m_pkthdr.csum_data = 0xffff; 154 } 155 m->m_pkthdr.csum_flags |= 156 CSUM_IP_CHECKED | CSUM_IP_VALID; 157 #if defined(SCTP) || defined(SCTP_SUPPORT) 158 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 160 #endif 161 *error = netisr_queue(NETISR_IP, m); 162 return 1; /* Finished */ 163 } 164 165 bzero(dst, sizeof(*dst)); 166 dst->sin_family = AF_INET; 167 dst->sin_len = sizeof(*dst); 168 dst->sin_addr = ip->ip_dst; 169 170 return -1; /* Reloop */ 171 } 172 /* See if fib was changed by packet filter. */ 173 if ((*fibnum) != M_GETFIB(m)) { 174 m->m_flags |= M_SKIP_FIREWALL; 175 *fibnum = M_GETFIB(m); 176 return -1; /* Reloop for FIB change */ 177 } 178 179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 180 if (m->m_flags & M_FASTFWD_OURS) { 181 if (m->m_pkthdr.rcvif == NULL) 182 m->m_pkthdr.rcvif = V_loif; 183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 184 m->m_pkthdr.csum_flags |= 185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 186 m->m_pkthdr.csum_data = 0xffff; 187 } 188 #if defined(SCTP) || defined(SCTP_SUPPORT) 189 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 191 #endif 192 m->m_pkthdr.csum_flags |= 193 CSUM_IP_CHECKED | CSUM_IP_VALID; 194 195 *error = netisr_queue(NETISR_IP, m); 196 return 1; /* Finished */ 197 } 198 /* Or forward to some other address? */ 199 if ((m->m_flags & M_IP_NEXTHOP) && 200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 202 m->m_flags |= M_SKIP_FIREWALL; 203 m->m_flags &= ~M_IP_NEXTHOP; 204 m_tag_delete(m, fwd_tag); 205 206 return -1; /* Reloop for CHANGE of dst */ 207 } 208 209 return 0; 210 } 211 212 static int 213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 214 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 215 { 216 #ifdef KERN_TLS 217 struct ktls_session *tls = NULL; 218 #endif 219 struct m_snd_tag *mst; 220 int error; 221 222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 223 mst = NULL; 224 225 #ifdef KERN_TLS 226 /* 227 * If this is an unencrypted TLS record, save a reference to 228 * the record. This local reference is used to call 229 * ktls_output_eagain after the mbuf has been freed (thus 230 * dropping the mbuf's reference) in if_output. 231 */ 232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 233 tls = ktls_hold(m->m_next->m_epg_tls); 234 mst = tls->snd_tag; 235 236 /* 237 * If a TLS session doesn't have a valid tag, it must 238 * have had an earlier ifp mismatch, so drop this 239 * packet. 240 */ 241 if (mst == NULL) { 242 error = EAGAIN; 243 goto done; 244 } 245 /* 246 * Always stamp tags that include NIC ktls. 247 */ 248 stamp_tag = true; 249 } 250 #endif 251 #ifdef RATELIMIT 252 if (inp != NULL && mst == NULL) { 253 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 254 (inp->inp_snd_tag != NULL && 255 inp->inp_snd_tag->ifp != ifp)) 256 in_pcboutput_txrtlmt(inp, ifp, m); 257 258 if (inp->inp_snd_tag != NULL) 259 mst = inp->inp_snd_tag; 260 } 261 #endif 262 if (stamp_tag && mst != NULL) { 263 KASSERT(m->m_pkthdr.rcvif == NULL, 264 ("trying to add a send tag to a forwarded packet")); 265 if (mst->ifp != ifp) { 266 error = EAGAIN; 267 goto done; 268 } 269 270 /* stamp send tag on mbuf */ 271 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 272 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 273 } 274 275 error = (*ifp->if_output)(ifp, m, gw, ro); 276 277 done: 278 /* Check for route change invalidating send tags. */ 279 #ifdef KERN_TLS 280 if (tls != NULL) { 281 if (error == EAGAIN) 282 error = ktls_output_eagain(inp, tls); 283 ktls_free(tls); 284 } 285 #endif 286 #ifdef RATELIMIT 287 if (error == EAGAIN) 288 in_pcboutput_eagain(inp); 289 #endif 290 return (error); 291 } 292 293 /* rte<>ro_flags translation */ 294 static inline void 295 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 296 { 297 int nh_flags = nh->nh_flags; 298 299 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 300 301 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 302 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 303 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 304 } 305 306 /* 307 * IP output. The packet in mbuf chain m contains a skeletal IP 308 * header (with len, off, ttl, proto, tos, src, dst). 309 * The mbuf chain containing the packet will be freed. 310 * The mbuf opt, if present, will not be freed. 311 * If route ro is present and has ro_rt initialized, route lookup would be 312 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 313 * then result of route lookup is stored in ro->ro_rt. 314 * 315 * In the IP forwarding case, the packet will arrive with options already 316 * inserted, so must have a NULL opt pointer. 317 */ 318 int 319 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 320 struct ip_moptions *imo, struct inpcb *inp) 321 { 322 MROUTER_RLOCK_TRACKER; 323 struct ip *ip; 324 struct ifnet *ifp = NULL; /* keep compiler happy */ 325 struct mbuf *m0; 326 int hlen = sizeof (struct ip); 327 int mtu = 0; 328 int error = 0; 329 int vlan_pcp = -1; 330 struct sockaddr_in *dst; 331 const struct sockaddr *gw; 332 struct in_ifaddr *ia = NULL; 333 struct in_addr src; 334 int isbroadcast; 335 uint16_t ip_len, ip_off; 336 struct route iproute; 337 uint32_t fibnum; 338 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 339 int no_route_but_check_spd = 0; 340 #endif 341 342 M_ASSERTPKTHDR(m); 343 NET_EPOCH_ASSERT(); 344 345 if (inp != NULL) { 346 INP_LOCK_ASSERT(inp); 347 M_SETFIB(m, inp->inp_inc.inc_fibnum); 348 if ((flags & IP_NODEFAULTFLOWID) == 0) { 349 m->m_pkthdr.flowid = inp->inp_flowid; 350 M_HASHTYPE_SET(m, inp->inp_flowtype); 351 } 352 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 353 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 354 INP_2PCP_SHIFT; 355 #ifdef NUMA 356 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 357 #endif 358 } 359 360 if (opt) { 361 int len = 0; 362 m = ip_insertoptions(m, opt, &len); 363 if (len != 0) 364 hlen = len; /* ip->ip_hl is updated above */ 365 } 366 ip = mtod(m, struct ip *); 367 ip_len = ntohs(ip->ip_len); 368 ip_off = ntohs(ip->ip_off); 369 370 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 371 ip->ip_v = IPVERSION; 372 ip->ip_hl = hlen >> 2; 373 ip_fillid(ip); 374 } else { 375 /* Header already set, fetch hlen from there */ 376 hlen = ip->ip_hl << 2; 377 } 378 if ((flags & IP_FORWARDING) == 0) 379 IPSTAT_INC(ips_localout); 380 381 /* 382 * dst/gw handling: 383 * 384 * gw is readonly but can point either to dst OR rt_gateway, 385 * therefore we need restore gw if we're redoing lookup. 386 */ 387 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 388 if (ro == NULL) { 389 ro = &iproute; 390 bzero(ro, sizeof (*ro)); 391 } 392 dst = (struct sockaddr_in *)&ro->ro_dst; 393 if (ro->ro_nh == NULL) { 394 dst->sin_family = AF_INET; 395 dst->sin_len = sizeof(*dst); 396 dst->sin_addr = ip->ip_dst; 397 } 398 gw = (const struct sockaddr *)dst; 399 again: 400 /* 401 * Validate route against routing table additions; 402 * a better/more specific route might have been added. 403 */ 404 if (inp != NULL && ro->ro_nh != NULL) 405 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 406 /* 407 * If there is a cached route, 408 * check that it is to the same destination 409 * and is still up. If not, free it and try again. 410 * The address family should also be checked in case of sharing the 411 * cache with IPv6. 412 * Also check whether routing cache needs invalidation. 413 */ 414 if (ro->ro_nh != NULL && 415 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 416 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 417 RO_INVALIDATE_CACHE(ro); 418 ia = NULL; 419 /* 420 * If routing to interface only, short circuit routing lookup. 421 * The use of an all-ones broadcast address implies this; an 422 * interface is specified by the broadcast address of an interface, 423 * or the destination address of a ptp interface. 424 */ 425 if (flags & IP_SENDONES) { 426 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 427 M_GETFIB(m)))) == NULL && 428 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 429 M_GETFIB(m)))) == NULL) { 430 IPSTAT_INC(ips_noroute); 431 error = ENETUNREACH; 432 goto bad; 433 } 434 ip->ip_dst.s_addr = INADDR_BROADCAST; 435 dst->sin_addr = ip->ip_dst; 436 ifp = ia->ia_ifp; 437 mtu = ifp->if_mtu; 438 ip->ip_ttl = 1; 439 isbroadcast = 1; 440 src = IA_SIN(ia)->sin_addr; 441 } else if (flags & IP_ROUTETOIF) { 442 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 443 M_GETFIB(m)))) == NULL && 444 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 445 M_GETFIB(m)))) == NULL) { 446 IPSTAT_INC(ips_noroute); 447 error = ENETUNREACH; 448 goto bad; 449 } 450 ifp = ia->ia_ifp; 451 mtu = ifp->if_mtu; 452 ip->ip_ttl = 1; 453 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 454 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 455 src = IA_SIN(ia)->sin_addr; 456 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 457 imo != NULL && imo->imo_multicast_ifp != NULL) { 458 /* 459 * Bypass the normal routing lookup for multicast 460 * packets if the interface is specified. 461 */ 462 ifp = imo->imo_multicast_ifp; 463 mtu = ifp->if_mtu; 464 IFP_TO_IA(ifp, ia); 465 isbroadcast = 0; /* fool gcc */ 466 /* Interface may have no addresses. */ 467 if (ia != NULL) 468 src = IA_SIN(ia)->sin_addr; 469 else 470 src.s_addr = INADDR_ANY; 471 } else if (ro != &iproute) { 472 if (ro->ro_nh == NULL) { 473 /* 474 * We want to do any cloning requested by the link 475 * layer, as this is probably required in all cases 476 * for correct operation (as it is for ARP). 477 */ 478 uint32_t flowid; 479 flowid = m->m_pkthdr.flowid; 480 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 481 NHR_REF, flowid); 482 483 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 484 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 485 /* 486 * There is no route for this packet, but it is 487 * possible that a matching SPD entry exists. 488 */ 489 no_route_but_check_spd = 1; 490 goto sendit; 491 #endif 492 IPSTAT_INC(ips_noroute); 493 error = EHOSTUNREACH; 494 goto bad; 495 } 496 } 497 struct nhop_object *nh = ro->ro_nh; 498 499 ia = ifatoia(nh->nh_ifa); 500 ifp = nh->nh_ifp; 501 counter_u64_add(nh->nh_pksent, 1); 502 rt_update_ro_flags(ro, nh); 503 if (nh->nh_flags & NHF_GATEWAY) 504 gw = &nh->gw_sa; 505 if (nh->nh_flags & NHF_HOST) 506 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 507 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 508 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 509 else 510 isbroadcast = 0; 511 mtu = nh->nh_mtu; 512 src = IA_SIN(ia)->sin_addr; 513 } else { 514 struct nhop_object *nh; 515 516 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 517 m->m_pkthdr.flowid); 518 if (nh == NULL) { 519 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 520 /* 521 * There is no route for this packet, but it is 522 * possible that a matching SPD entry exists. 523 */ 524 no_route_but_check_spd = 1; 525 goto sendit; 526 #endif 527 IPSTAT_INC(ips_noroute); 528 error = EHOSTUNREACH; 529 goto bad; 530 } 531 ifp = nh->nh_ifp; 532 mtu = nh->nh_mtu; 533 rt_update_ro_flags(ro, nh); 534 if (nh->nh_flags & NHF_GATEWAY) 535 gw = &nh->gw_sa; 536 ia = ifatoia(nh->nh_ifa); 537 src = IA_SIN(ia)->sin_addr; 538 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 539 (NHF_HOST | NHF_BROADCAST)) || 540 ((ifp->if_flags & IFF_BROADCAST) && 541 (gw->sa_family == AF_INET) && 542 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 543 } 544 545 /* Catch a possible divide by zero later. */ 546 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 547 __func__, mtu, ro, 548 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 549 550 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 551 m->m_flags |= M_MCAST; 552 /* 553 * IP destination address is multicast. Make sure "gw" 554 * still points to the address in "ro". (It may have been 555 * changed to point to a gateway address, above.) 556 */ 557 gw = (const struct sockaddr *)dst; 558 /* 559 * See if the caller provided any multicast options 560 */ 561 if (imo != NULL) { 562 ip->ip_ttl = imo->imo_multicast_ttl; 563 if (imo->imo_multicast_vif != -1) 564 ip->ip_src.s_addr = 565 ip_mcast_src ? 566 ip_mcast_src(imo->imo_multicast_vif) : 567 INADDR_ANY; 568 } else 569 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 570 /* 571 * Confirm that the outgoing interface supports multicast. 572 */ 573 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 574 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 575 IPSTAT_INC(ips_noroute); 576 error = ENETUNREACH; 577 goto bad; 578 } 579 } 580 /* 581 * If source address not specified yet, use address 582 * of outgoing interface. 583 */ 584 if (ip->ip_src.s_addr == INADDR_ANY) 585 ip->ip_src = src; 586 587 if ((imo == NULL && in_mcast_loop) || 588 (imo && imo->imo_multicast_loop)) { 589 /* 590 * Loop back multicast datagram if not expressly 591 * forbidden to do so, even if we are not a member 592 * of the group; ip_input() will filter it later, 593 * thus deferring a hash lookup and mutex acquisition 594 * at the expense of a cheap copy using m_copym(). 595 */ 596 ip_mloopback(ifp, m, hlen); 597 } else { 598 /* 599 * If we are acting as a multicast router, perform 600 * multicast forwarding as if the packet had just 601 * arrived on the interface to which we are about 602 * to send. The multicast forwarding function 603 * recursively calls this function, using the 604 * IP_FORWARDING flag to prevent infinite recursion. 605 * 606 * Multicasts that are looped back by ip_mloopback(), 607 * above, will be forwarded by the ip_input() routine, 608 * if necessary. 609 */ 610 MROUTER_RLOCK(); 611 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 612 /* 613 * If rsvp daemon is not running, do not 614 * set ip_moptions. This ensures that the packet 615 * is multicast and not just sent down one link 616 * as prescribed by rsvpd. 617 */ 618 if (!V_rsvp_on) 619 imo = NULL; 620 if (ip_mforward && 621 ip_mforward(ip, ifp, m, imo) != 0) { 622 MROUTER_RUNLOCK(); 623 m_freem(m); 624 goto done; 625 } 626 } 627 MROUTER_RUNLOCK(); 628 } 629 630 /* 631 * Multicasts with a time-to-live of zero may be looped- 632 * back, above, but must not be transmitted on a network. 633 * Also, multicasts addressed to the loopback interface 634 * are not sent -- the above call to ip_mloopback() will 635 * loop back a copy. ip_input() will drop the copy if 636 * this host does not belong to the destination group on 637 * the loopback interface. 638 */ 639 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 640 m_freem(m); 641 goto done; 642 } 643 644 goto sendit; 645 } 646 647 /* 648 * If the source address is not specified yet, use the address 649 * of the outoing interface. 650 */ 651 if (ip->ip_src.s_addr == INADDR_ANY) 652 ip->ip_src = src; 653 654 /* 655 * Look for broadcast address and 656 * verify user is allowed to send 657 * such a packet. 658 */ 659 if (isbroadcast) { 660 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 661 error = EADDRNOTAVAIL; 662 goto bad; 663 } 664 if ((flags & IP_ALLOWBROADCAST) == 0) { 665 error = EACCES; 666 goto bad; 667 } 668 /* don't allow broadcast messages to be fragmented */ 669 if (ip_len > mtu) { 670 error = EMSGSIZE; 671 goto bad; 672 } 673 m->m_flags |= M_BCAST; 674 } else { 675 m->m_flags &= ~M_BCAST; 676 } 677 678 sendit: 679 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 680 if (IPSEC_ENABLED(ipv4)) { 681 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 682 if (error == EINPROGRESS) 683 error = 0; 684 goto done; 685 } 686 } 687 /* 688 * Check if there was a route for this packet; return error if not. 689 */ 690 if (no_route_but_check_spd) { 691 IPSTAT_INC(ips_noroute); 692 error = EHOSTUNREACH; 693 goto bad; 694 } 695 /* Update variables that are affected by ipsec4_output(). */ 696 ip = mtod(m, struct ip *); 697 hlen = ip->ip_hl << 2; 698 #endif /* IPSEC */ 699 700 /* Jump over all PFIL processing if hooks are not active. */ 701 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 702 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 703 &error)) { 704 case 1: /* Finished */ 705 goto done; 706 707 case 0: /* Continue normally */ 708 ip = mtod(m, struct ip *); 709 break; 710 711 case -1: /* Need to try again */ 712 /* Reset everything for a new round */ 713 if (ro != NULL) { 714 RO_NHFREE(ro); 715 ro->ro_prepend = NULL; 716 } 717 gw = (const struct sockaddr *)dst; 718 ip = mtod(m, struct ip *); 719 goto again; 720 } 721 } 722 723 if (vlan_pcp > -1) 724 EVL_APPLY_PRI(m, vlan_pcp); 725 726 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 727 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 728 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 729 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 730 IPSTAT_INC(ips_badaddr); 731 error = EADDRNOTAVAIL; 732 goto bad; 733 } 734 } 735 736 /* Ensure the packet data is mapped if the interface requires it. */ 737 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 738 m = mb_unmapped_to_ext(m); 739 if (m == NULL) { 740 IPSTAT_INC(ips_odropped); 741 error = ENOBUFS; 742 goto bad; 743 } 744 } 745 746 m->m_pkthdr.csum_flags |= CSUM_IP; 747 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 748 in_delayed_cksum(m); 749 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 750 } 751 #if defined(SCTP) || defined(SCTP_SUPPORT) 752 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 753 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 754 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 755 } 756 #endif 757 758 /* 759 * If small enough for interface, or the interface will take 760 * care of the fragmentation for us, we can just send directly. 761 * Note that if_vxlan could have requested TSO even though the outer 762 * frame is UDP. It is correct to not fragment such datagrams and 763 * instead just pass them on to the driver. 764 */ 765 if (ip_len <= mtu || 766 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 767 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 768 ip->ip_sum = 0; 769 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 770 ip->ip_sum = in_cksum(m, hlen); 771 m->m_pkthdr.csum_flags &= ~CSUM_IP; 772 } 773 774 /* 775 * Record statistics for this interface address. 776 * With CSUM_TSO the byte/packet count will be slightly 777 * incorrect because we count the IP+TCP headers only 778 * once instead of for every generated packet. 779 */ 780 if (!(flags & IP_FORWARDING) && ia) { 781 if (m->m_pkthdr.csum_flags & 782 (CSUM_TSO | CSUM_INNER_TSO)) 783 counter_u64_add(ia->ia_ifa.ifa_opackets, 784 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 785 else 786 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 787 788 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 789 } 790 #ifdef MBUF_STRESS_TEST 791 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 792 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 793 #endif 794 /* 795 * Reset layer specific mbuf flags 796 * to avoid confusing lower layers. 797 */ 798 m_clrprotoflags(m); 799 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 800 error = ip_output_send(inp, ifp, m, gw, ro, 801 (flags & IP_NO_SND_TAG_RL) ? false : true); 802 goto done; 803 } 804 805 /* Balk when DF bit is set or the interface didn't support TSO. */ 806 if ((ip_off & IP_DF) || 807 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 808 error = EMSGSIZE; 809 IPSTAT_INC(ips_cantfrag); 810 goto bad; 811 } 812 813 /* 814 * Too large for interface; fragment if possible. If successful, 815 * on return, m will point to a list of packets to be sent. 816 */ 817 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 818 if (error) 819 goto bad; 820 for (; m; m = m0) { 821 m0 = m->m_nextpkt; 822 m->m_nextpkt = 0; 823 if (error == 0) { 824 /* Record statistics for this interface address. */ 825 if (ia != NULL) { 826 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 827 counter_u64_add(ia->ia_ifa.ifa_obytes, 828 m->m_pkthdr.len); 829 } 830 /* 831 * Reset layer specific mbuf flags 832 * to avoid confusing upper layers. 833 */ 834 m_clrprotoflags(m); 835 836 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 837 mtod(m, struct ip *), NULL); 838 error = ip_output_send(inp, ifp, m, gw, ro, true); 839 } else 840 m_freem(m); 841 } 842 843 if (error == 0) 844 IPSTAT_INC(ips_fragmented); 845 846 done: 847 return (error); 848 bad: 849 m_freem(m); 850 goto done; 851 } 852 853 /* 854 * Create a chain of fragments which fit the given mtu. m_frag points to the 855 * mbuf to be fragmented; on return it points to the chain with the fragments. 856 * Return 0 if no error. If error, m_frag may contain a partially built 857 * chain of fragments that should be freed by the caller. 858 * 859 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 860 */ 861 int 862 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 863 u_long if_hwassist_flags) 864 { 865 int error = 0; 866 int hlen = ip->ip_hl << 2; 867 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 868 int off; 869 struct mbuf *m0 = *m_frag; /* the original packet */ 870 int firstlen; 871 struct mbuf **mnext; 872 int nfrags; 873 uint16_t ip_len, ip_off; 874 875 ip_len = ntohs(ip->ip_len); 876 ip_off = ntohs(ip->ip_off); 877 878 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 879 IPSTAT_INC(ips_cantfrag); 880 return EMSGSIZE; 881 } 882 883 /* 884 * Must be able to put at least 8 bytes per fragment. 885 */ 886 if (len < 8) 887 return EMSGSIZE; 888 889 /* 890 * If the interface will not calculate checksums on 891 * fragmented packets, then do it here. 892 */ 893 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 894 in_delayed_cksum(m0); 895 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 896 } 897 #if defined(SCTP) || defined(SCTP_SUPPORT) 898 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 899 sctp_delayed_cksum(m0, hlen); 900 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 901 } 902 #endif 903 if (len > PAGE_SIZE) { 904 /* 905 * Fragment large datagrams such that each segment 906 * contains a multiple of PAGE_SIZE amount of data, 907 * plus headers. This enables a receiver to perform 908 * page-flipping zero-copy optimizations. 909 * 910 * XXX When does this help given that sender and receiver 911 * could have different page sizes, and also mtu could 912 * be less than the receiver's page size ? 913 */ 914 int newlen; 915 916 off = MIN(mtu, m0->m_pkthdr.len); 917 918 /* 919 * firstlen (off - hlen) must be aligned on an 920 * 8-byte boundary 921 */ 922 if (off < hlen) 923 goto smart_frag_failure; 924 off = ((off - hlen) & ~7) + hlen; 925 newlen = (~PAGE_MASK) & mtu; 926 if ((newlen + sizeof (struct ip)) > mtu) { 927 /* we failed, go back the default */ 928 smart_frag_failure: 929 newlen = len; 930 off = hlen + len; 931 } 932 len = newlen; 933 934 } else { 935 off = hlen + len; 936 } 937 938 firstlen = off - hlen; 939 mnext = &m0->m_nextpkt; /* pointer to next packet */ 940 941 /* 942 * Loop through length of segment after first fragment, 943 * make new header and copy data of each part and link onto chain. 944 * Here, m0 is the original packet, m is the fragment being created. 945 * The fragments are linked off the m_nextpkt of the original 946 * packet, which after processing serves as the first fragment. 947 */ 948 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 949 struct ip *mhip; /* ip header on the fragment */ 950 struct mbuf *m; 951 int mhlen = sizeof (struct ip); 952 953 m = m_gethdr(M_NOWAIT, MT_DATA); 954 if (m == NULL) { 955 error = ENOBUFS; 956 IPSTAT_INC(ips_odropped); 957 goto done; 958 } 959 /* 960 * Make sure the complete packet header gets copied 961 * from the originating mbuf to the newly created 962 * mbuf. This also ensures that existing firewall 963 * classification(s), VLAN tags and so on get copied 964 * to the resulting fragmented packet(s): 965 */ 966 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 967 m_free(m); 968 error = ENOBUFS; 969 IPSTAT_INC(ips_odropped); 970 goto done; 971 } 972 /* 973 * In the first mbuf, leave room for the link header, then 974 * copy the original IP header including options. The payload 975 * goes into an additional mbuf chain returned by m_copym(). 976 */ 977 m->m_data += max_linkhdr; 978 mhip = mtod(m, struct ip *); 979 *mhip = *ip; 980 if (hlen > sizeof (struct ip)) { 981 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 982 mhip->ip_v = IPVERSION; 983 mhip->ip_hl = mhlen >> 2; 984 } 985 m->m_len = mhlen; 986 /* XXX do we need to add ip_off below ? */ 987 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 988 if (off + len >= ip_len) 989 len = ip_len - off; 990 else 991 mhip->ip_off |= IP_MF; 992 mhip->ip_len = htons((u_short)(len + mhlen)); 993 m->m_next = m_copym(m0, off, len, M_NOWAIT); 994 if (m->m_next == NULL) { /* copy failed */ 995 m_free(m); 996 error = ENOBUFS; /* ??? */ 997 IPSTAT_INC(ips_odropped); 998 goto done; 999 } 1000 m->m_pkthdr.len = mhlen + len; 1001 #ifdef MAC 1002 mac_netinet_fragment(m0, m); 1003 #endif 1004 mhip->ip_off = htons(mhip->ip_off); 1005 mhip->ip_sum = 0; 1006 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1007 mhip->ip_sum = in_cksum(m, mhlen); 1008 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1009 } 1010 *mnext = m; 1011 mnext = &m->m_nextpkt; 1012 } 1013 IPSTAT_ADD(ips_ofragments, nfrags); 1014 1015 /* 1016 * Update first fragment by trimming what's been copied out 1017 * and updating header. 1018 */ 1019 m_adj(m0, hlen + firstlen - ip_len); 1020 m0->m_pkthdr.len = hlen + firstlen; 1021 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1022 ip->ip_off = htons(ip_off | IP_MF); 1023 ip->ip_sum = 0; 1024 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1025 ip->ip_sum = in_cksum(m0, hlen); 1026 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1027 } 1028 1029 done: 1030 *m_frag = m0; 1031 return error; 1032 } 1033 1034 void 1035 in_delayed_cksum(struct mbuf *m) 1036 { 1037 struct ip *ip; 1038 struct udphdr *uh; 1039 uint16_t cklen, csum, offset; 1040 1041 ip = mtod(m, struct ip *); 1042 offset = ip->ip_hl << 2 ; 1043 1044 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1045 /* if udp header is not in the first mbuf copy udplen */ 1046 if (offset + sizeof(struct udphdr) > m->m_len) { 1047 m_copydata(m, offset + offsetof(struct udphdr, 1048 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1049 cklen = ntohs(cklen); 1050 } else { 1051 uh = (struct udphdr *)mtodo(m, offset); 1052 cklen = ntohs(uh->uh_ulen); 1053 } 1054 csum = in_cksum_skip(m, cklen + offset, offset); 1055 if (csum == 0) 1056 csum = 0xffff; 1057 } else { 1058 cklen = ntohs(ip->ip_len); 1059 csum = in_cksum_skip(m, cklen, offset); 1060 } 1061 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1062 1063 if (offset + sizeof(csum) > m->m_len) 1064 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1065 else 1066 *(u_short *)mtodo(m, offset) = csum; 1067 } 1068 1069 /* 1070 * IP socket option processing. 1071 */ 1072 int 1073 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1074 { 1075 struct inpcb *inp = sotoinpcb(so); 1076 int error, optval; 1077 #ifdef RSS 1078 uint32_t rss_bucket; 1079 int retval; 1080 #endif 1081 1082 error = optval = 0; 1083 if (sopt->sopt_level != IPPROTO_IP) { 1084 error = EINVAL; 1085 1086 if (sopt->sopt_level == SOL_SOCKET && 1087 sopt->sopt_dir == SOPT_SET) { 1088 switch (sopt->sopt_name) { 1089 case SO_REUSEADDR: 1090 INP_WLOCK(inp); 1091 if ((so->so_options & SO_REUSEADDR) != 0) 1092 inp->inp_flags2 |= INP_REUSEADDR; 1093 else 1094 inp->inp_flags2 &= ~INP_REUSEADDR; 1095 INP_WUNLOCK(inp); 1096 error = 0; 1097 break; 1098 case SO_REUSEPORT: 1099 INP_WLOCK(inp); 1100 if ((so->so_options & SO_REUSEPORT) != 0) 1101 inp->inp_flags2 |= INP_REUSEPORT; 1102 else 1103 inp->inp_flags2 &= ~INP_REUSEPORT; 1104 INP_WUNLOCK(inp); 1105 error = 0; 1106 break; 1107 case SO_REUSEPORT_LB: 1108 INP_WLOCK(inp); 1109 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1110 inp->inp_flags2 |= INP_REUSEPORT_LB; 1111 else 1112 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1113 INP_WUNLOCK(inp); 1114 error = 0; 1115 break; 1116 case SO_SETFIB: 1117 INP_WLOCK(inp); 1118 inp->inp_inc.inc_fibnum = so->so_fibnum; 1119 INP_WUNLOCK(inp); 1120 error = 0; 1121 break; 1122 case SO_MAX_PACING_RATE: 1123 #ifdef RATELIMIT 1124 INP_WLOCK(inp); 1125 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1126 INP_WUNLOCK(inp); 1127 error = 0; 1128 #else 1129 error = EOPNOTSUPP; 1130 #endif 1131 break; 1132 default: 1133 break; 1134 } 1135 } 1136 return (error); 1137 } 1138 1139 switch (sopt->sopt_dir) { 1140 case SOPT_SET: 1141 switch (sopt->sopt_name) { 1142 case IP_OPTIONS: 1143 #ifdef notyet 1144 case IP_RETOPTS: 1145 #endif 1146 { 1147 struct mbuf *m; 1148 if (sopt->sopt_valsize > MLEN) { 1149 error = EMSGSIZE; 1150 break; 1151 } 1152 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1153 if (m == NULL) { 1154 error = ENOBUFS; 1155 break; 1156 } 1157 m->m_len = sopt->sopt_valsize; 1158 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1159 m->m_len); 1160 if (error) { 1161 m_free(m); 1162 break; 1163 } 1164 INP_WLOCK(inp); 1165 error = ip_pcbopts(inp, sopt->sopt_name, m); 1166 INP_WUNLOCK(inp); 1167 return (error); 1168 } 1169 1170 case IP_BINDANY: 1171 if (sopt->sopt_td != NULL) { 1172 error = priv_check(sopt->sopt_td, 1173 PRIV_NETINET_BINDANY); 1174 if (error) 1175 break; 1176 } 1177 /* FALLTHROUGH */ 1178 case IP_BINDMULTI: 1179 #ifdef RSS 1180 case IP_RSS_LISTEN_BUCKET: 1181 #endif 1182 case IP_TOS: 1183 case IP_TTL: 1184 case IP_MINTTL: 1185 case IP_RECVOPTS: 1186 case IP_RECVRETOPTS: 1187 case IP_ORIGDSTADDR: 1188 case IP_RECVDSTADDR: 1189 case IP_RECVTTL: 1190 case IP_RECVIF: 1191 case IP_ONESBCAST: 1192 case IP_DONTFRAG: 1193 case IP_RECVTOS: 1194 case IP_RECVFLOWID: 1195 #ifdef RSS 1196 case IP_RECVRSSBUCKETID: 1197 #endif 1198 case IP_VLAN_PCP: 1199 error = sooptcopyin(sopt, &optval, sizeof optval, 1200 sizeof optval); 1201 if (error) 1202 break; 1203 1204 switch (sopt->sopt_name) { 1205 case IP_TOS: 1206 inp->inp_ip_tos = optval; 1207 break; 1208 1209 case IP_TTL: 1210 inp->inp_ip_ttl = optval; 1211 break; 1212 1213 case IP_MINTTL: 1214 if (optval >= 0 && optval <= MAXTTL) 1215 inp->inp_ip_minttl = optval; 1216 else 1217 error = EINVAL; 1218 break; 1219 1220 #define OPTSET(bit) do { \ 1221 INP_WLOCK(inp); \ 1222 if (optval) \ 1223 inp->inp_flags |= bit; \ 1224 else \ 1225 inp->inp_flags &= ~bit; \ 1226 INP_WUNLOCK(inp); \ 1227 } while (0) 1228 1229 #define OPTSET2(bit, val) do { \ 1230 INP_WLOCK(inp); \ 1231 if (val) \ 1232 inp->inp_flags2 |= bit; \ 1233 else \ 1234 inp->inp_flags2 &= ~bit; \ 1235 INP_WUNLOCK(inp); \ 1236 } while (0) 1237 1238 case IP_RECVOPTS: 1239 OPTSET(INP_RECVOPTS); 1240 break; 1241 1242 case IP_RECVRETOPTS: 1243 OPTSET(INP_RECVRETOPTS); 1244 break; 1245 1246 case IP_RECVDSTADDR: 1247 OPTSET(INP_RECVDSTADDR); 1248 break; 1249 1250 case IP_ORIGDSTADDR: 1251 OPTSET2(INP_ORIGDSTADDR, optval); 1252 break; 1253 1254 case IP_RECVTTL: 1255 OPTSET(INP_RECVTTL); 1256 break; 1257 1258 case IP_RECVIF: 1259 OPTSET(INP_RECVIF); 1260 break; 1261 1262 case IP_ONESBCAST: 1263 OPTSET(INP_ONESBCAST); 1264 break; 1265 case IP_DONTFRAG: 1266 OPTSET(INP_DONTFRAG); 1267 break; 1268 case IP_BINDANY: 1269 OPTSET(INP_BINDANY); 1270 break; 1271 case IP_RECVTOS: 1272 OPTSET(INP_RECVTOS); 1273 break; 1274 case IP_BINDMULTI: 1275 OPTSET2(INP_BINDMULTI, optval); 1276 break; 1277 case IP_RECVFLOWID: 1278 OPTSET2(INP_RECVFLOWID, optval); 1279 break; 1280 #ifdef RSS 1281 case IP_RSS_LISTEN_BUCKET: 1282 if ((optval >= 0) && 1283 (optval < rss_getnumbuckets())) { 1284 inp->inp_rss_listen_bucket = optval; 1285 OPTSET2(INP_RSS_BUCKET_SET, 1); 1286 } else { 1287 error = EINVAL; 1288 } 1289 break; 1290 case IP_RECVRSSBUCKETID: 1291 OPTSET2(INP_RECVRSSBUCKETID, optval); 1292 break; 1293 #endif 1294 case IP_VLAN_PCP: 1295 if ((optval >= -1) && (optval <= 1296 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1297 if (optval == -1) { 1298 INP_WLOCK(inp); 1299 inp->inp_flags2 &= 1300 ~(INP_2PCP_SET | 1301 INP_2PCP_MASK); 1302 INP_WUNLOCK(inp); 1303 } else { 1304 INP_WLOCK(inp); 1305 inp->inp_flags2 |= 1306 INP_2PCP_SET; 1307 inp->inp_flags2 &= 1308 ~INP_2PCP_MASK; 1309 inp->inp_flags2 |= 1310 optval << INP_2PCP_SHIFT; 1311 INP_WUNLOCK(inp); 1312 } 1313 } else 1314 error = EINVAL; 1315 break; 1316 } 1317 break; 1318 #undef OPTSET 1319 #undef OPTSET2 1320 1321 /* 1322 * Multicast socket options are processed by the in_mcast 1323 * module. 1324 */ 1325 case IP_MULTICAST_IF: 1326 case IP_MULTICAST_VIF: 1327 case IP_MULTICAST_TTL: 1328 case IP_MULTICAST_LOOP: 1329 case IP_ADD_MEMBERSHIP: 1330 case IP_DROP_MEMBERSHIP: 1331 case IP_ADD_SOURCE_MEMBERSHIP: 1332 case IP_DROP_SOURCE_MEMBERSHIP: 1333 case IP_BLOCK_SOURCE: 1334 case IP_UNBLOCK_SOURCE: 1335 case IP_MSFILTER: 1336 case MCAST_JOIN_GROUP: 1337 case MCAST_LEAVE_GROUP: 1338 case MCAST_JOIN_SOURCE_GROUP: 1339 case MCAST_LEAVE_SOURCE_GROUP: 1340 case MCAST_BLOCK_SOURCE: 1341 case MCAST_UNBLOCK_SOURCE: 1342 error = inp_setmoptions(inp, sopt); 1343 break; 1344 1345 case IP_PORTRANGE: 1346 error = sooptcopyin(sopt, &optval, sizeof optval, 1347 sizeof optval); 1348 if (error) 1349 break; 1350 1351 INP_WLOCK(inp); 1352 switch (optval) { 1353 case IP_PORTRANGE_DEFAULT: 1354 inp->inp_flags &= ~(INP_LOWPORT); 1355 inp->inp_flags &= ~(INP_HIGHPORT); 1356 break; 1357 1358 case IP_PORTRANGE_HIGH: 1359 inp->inp_flags &= ~(INP_LOWPORT); 1360 inp->inp_flags |= INP_HIGHPORT; 1361 break; 1362 1363 case IP_PORTRANGE_LOW: 1364 inp->inp_flags &= ~(INP_HIGHPORT); 1365 inp->inp_flags |= INP_LOWPORT; 1366 break; 1367 1368 default: 1369 error = EINVAL; 1370 break; 1371 } 1372 INP_WUNLOCK(inp); 1373 break; 1374 1375 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1376 case IP_IPSEC_POLICY: 1377 if (IPSEC_ENABLED(ipv4)) { 1378 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1379 break; 1380 } 1381 /* FALLTHROUGH */ 1382 #endif /* IPSEC */ 1383 1384 default: 1385 error = ENOPROTOOPT; 1386 break; 1387 } 1388 break; 1389 1390 case SOPT_GET: 1391 switch (sopt->sopt_name) { 1392 case IP_OPTIONS: 1393 case IP_RETOPTS: 1394 INP_RLOCK(inp); 1395 if (inp->inp_options) { 1396 struct mbuf *options; 1397 1398 options = m_copym(inp->inp_options, 0, 1399 M_COPYALL, M_NOWAIT); 1400 INP_RUNLOCK(inp); 1401 if (options != NULL) { 1402 error = sooptcopyout(sopt, 1403 mtod(options, char *), 1404 options->m_len); 1405 m_freem(options); 1406 } else 1407 error = ENOMEM; 1408 } else { 1409 INP_RUNLOCK(inp); 1410 sopt->sopt_valsize = 0; 1411 } 1412 break; 1413 1414 case IP_TOS: 1415 case IP_TTL: 1416 case IP_MINTTL: 1417 case IP_RECVOPTS: 1418 case IP_RECVRETOPTS: 1419 case IP_ORIGDSTADDR: 1420 case IP_RECVDSTADDR: 1421 case IP_RECVTTL: 1422 case IP_RECVIF: 1423 case IP_PORTRANGE: 1424 case IP_ONESBCAST: 1425 case IP_DONTFRAG: 1426 case IP_BINDANY: 1427 case IP_RECVTOS: 1428 case IP_BINDMULTI: 1429 case IP_FLOWID: 1430 case IP_FLOWTYPE: 1431 case IP_RECVFLOWID: 1432 #ifdef RSS 1433 case IP_RSSBUCKETID: 1434 case IP_RECVRSSBUCKETID: 1435 #endif 1436 case IP_VLAN_PCP: 1437 switch (sopt->sopt_name) { 1438 case IP_TOS: 1439 optval = inp->inp_ip_tos; 1440 break; 1441 1442 case IP_TTL: 1443 optval = inp->inp_ip_ttl; 1444 break; 1445 1446 case IP_MINTTL: 1447 optval = inp->inp_ip_minttl; 1448 break; 1449 1450 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1451 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1452 1453 case IP_RECVOPTS: 1454 optval = OPTBIT(INP_RECVOPTS); 1455 break; 1456 1457 case IP_RECVRETOPTS: 1458 optval = OPTBIT(INP_RECVRETOPTS); 1459 break; 1460 1461 case IP_RECVDSTADDR: 1462 optval = OPTBIT(INP_RECVDSTADDR); 1463 break; 1464 1465 case IP_ORIGDSTADDR: 1466 optval = OPTBIT2(INP_ORIGDSTADDR); 1467 break; 1468 1469 case IP_RECVTTL: 1470 optval = OPTBIT(INP_RECVTTL); 1471 break; 1472 1473 case IP_RECVIF: 1474 optval = OPTBIT(INP_RECVIF); 1475 break; 1476 1477 case IP_PORTRANGE: 1478 if (inp->inp_flags & INP_HIGHPORT) 1479 optval = IP_PORTRANGE_HIGH; 1480 else if (inp->inp_flags & INP_LOWPORT) 1481 optval = IP_PORTRANGE_LOW; 1482 else 1483 optval = 0; 1484 break; 1485 1486 case IP_ONESBCAST: 1487 optval = OPTBIT(INP_ONESBCAST); 1488 break; 1489 case IP_DONTFRAG: 1490 optval = OPTBIT(INP_DONTFRAG); 1491 break; 1492 case IP_BINDANY: 1493 optval = OPTBIT(INP_BINDANY); 1494 break; 1495 case IP_RECVTOS: 1496 optval = OPTBIT(INP_RECVTOS); 1497 break; 1498 case IP_FLOWID: 1499 optval = inp->inp_flowid; 1500 break; 1501 case IP_FLOWTYPE: 1502 optval = inp->inp_flowtype; 1503 break; 1504 case IP_RECVFLOWID: 1505 optval = OPTBIT2(INP_RECVFLOWID); 1506 break; 1507 #ifdef RSS 1508 case IP_RSSBUCKETID: 1509 retval = rss_hash2bucket(inp->inp_flowid, 1510 inp->inp_flowtype, 1511 &rss_bucket); 1512 if (retval == 0) 1513 optval = rss_bucket; 1514 else 1515 error = EINVAL; 1516 break; 1517 case IP_RECVRSSBUCKETID: 1518 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1519 break; 1520 #endif 1521 case IP_BINDMULTI: 1522 optval = OPTBIT2(INP_BINDMULTI); 1523 break; 1524 case IP_VLAN_PCP: 1525 if (OPTBIT2(INP_2PCP_SET)) { 1526 optval = (inp->inp_flags2 & 1527 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1528 } else { 1529 optval = -1; 1530 } 1531 break; 1532 } 1533 error = sooptcopyout(sopt, &optval, sizeof optval); 1534 break; 1535 1536 /* 1537 * Multicast socket options are processed by the in_mcast 1538 * module. 1539 */ 1540 case IP_MULTICAST_IF: 1541 case IP_MULTICAST_VIF: 1542 case IP_MULTICAST_TTL: 1543 case IP_MULTICAST_LOOP: 1544 case IP_MSFILTER: 1545 error = inp_getmoptions(inp, sopt); 1546 break; 1547 1548 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1549 case IP_IPSEC_POLICY: 1550 if (IPSEC_ENABLED(ipv4)) { 1551 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1552 break; 1553 } 1554 /* FALLTHROUGH */ 1555 #endif /* IPSEC */ 1556 1557 default: 1558 error = ENOPROTOOPT; 1559 break; 1560 } 1561 break; 1562 } 1563 return (error); 1564 } 1565 1566 /* 1567 * Routine called from ip_output() to loop back a copy of an IP multicast 1568 * packet to the input queue of a specified interface. Note that this 1569 * calls the output routine of the loopback "driver", but with an interface 1570 * pointer that might NOT be a loopback interface -- evil, but easier than 1571 * replicating that code here. 1572 */ 1573 static void 1574 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1575 { 1576 struct ip *ip; 1577 struct mbuf *copym; 1578 1579 /* 1580 * Make a deep copy of the packet because we're going to 1581 * modify the pack in order to generate checksums. 1582 */ 1583 copym = m_dup(m, M_NOWAIT); 1584 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1585 copym = m_pullup(copym, hlen); 1586 if (copym != NULL) { 1587 /* If needed, compute the checksum and mark it as valid. */ 1588 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1589 in_delayed_cksum(copym); 1590 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1591 copym->m_pkthdr.csum_flags |= 1592 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1593 copym->m_pkthdr.csum_data = 0xffff; 1594 } 1595 /* 1596 * We don't bother to fragment if the IP length is greater 1597 * than the interface's MTU. Can this possibly matter? 1598 */ 1599 ip = mtod(copym, struct ip *); 1600 ip->ip_sum = 0; 1601 ip->ip_sum = in_cksum(copym, hlen); 1602 if_simloop(ifp, copym, AF_INET, 0); 1603 } 1604 } 1605