1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/proc.h> 42 #include <sys/sglist.h> 43 #include <sys/uio.h> 44 45 #include <vm/vm.h> 46 #include <vm/vm_page.h> 47 #include <vm/pmap.h> 48 #include <vm/vm_map.h> 49 50 #include <sys/ktr.h> 51 52 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists"); 53 54 /* 55 * Convenience macros to save the state of an sglist so it can be restored 56 * if an append attempt fails. Since sglist's only grow we only need to 57 * save the current count of segments and the length of the ending segment. 58 * Earlier segments will not be changed by an append, and the only change 59 * that can occur to the ending segment is that it can be extended. 60 */ 61 struct sgsave { 62 u_short sg_nseg; 63 size_t ss_len; 64 }; 65 66 #define SGLIST_SAVE(sg, sgsave) do { \ 67 (sgsave).sg_nseg = (sg)->sg_nseg; \ 68 if ((sgsave).sg_nseg > 0) \ 69 (sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \ 70 else \ 71 (sgsave).ss_len = 0; \ 72 } while (0) 73 74 #define SGLIST_RESTORE(sg, sgsave) do { \ 75 (sg)->sg_nseg = (sgsave).sg_nseg; \ 76 if ((sgsave).sg_nseg > 0) \ 77 (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \ 78 } while (0) 79 80 /* 81 * Append a single (paddr, len) to a sglist. sg is the list and ss is 82 * the current segment in the list. If we run out of segments then 83 * EFBIG will be returned. 84 */ 85 static __inline int 86 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp, 87 vm_paddr_t paddr, size_t len) 88 { 89 struct sglist_seg *ss; 90 91 ss = *ssp; 92 if (ss->ss_paddr + ss->ss_len == paddr) 93 ss->ss_len += len; 94 else { 95 if (sg->sg_nseg == sg->sg_maxseg) 96 return (EFBIG); 97 ss++; 98 ss->ss_paddr = paddr; 99 ss->ss_len = len; 100 sg->sg_nseg++; 101 *ssp = ss; 102 } 103 return (0); 104 } 105 106 /* 107 * Worker routine to append a virtual address range (either kernel or 108 * user) to a scatter/gather list. 109 */ 110 static __inline int 111 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap, 112 size_t *donep) 113 { 114 struct sglist_seg *ss; 115 vm_offset_t vaddr, offset; 116 vm_paddr_t paddr; 117 size_t seglen; 118 int error; 119 120 if (donep) 121 *donep = 0; 122 if (len == 0) 123 return (0); 124 125 /* Do the first page. It may have an offset. */ 126 vaddr = (vm_offset_t)buf; 127 offset = vaddr & PAGE_MASK; 128 if (pmap != NULL) 129 paddr = pmap_extract(pmap, vaddr); 130 else 131 paddr = pmap_kextract(vaddr); 132 seglen = MIN(len, PAGE_SIZE - offset); 133 if (sg->sg_nseg == 0) { 134 ss = sg->sg_segs; 135 ss->ss_paddr = paddr; 136 ss->ss_len = seglen; 137 sg->sg_nseg = 1; 138 } else { 139 ss = &sg->sg_segs[sg->sg_nseg - 1]; 140 error = _sglist_append_range(sg, &ss, paddr, seglen); 141 if (error) 142 return (error); 143 } 144 vaddr += seglen; 145 len -= seglen; 146 if (donep) 147 *donep += seglen; 148 149 while (len > 0) { 150 seglen = MIN(len, PAGE_SIZE); 151 if (pmap != NULL) 152 paddr = pmap_extract(pmap, vaddr); 153 else 154 paddr = pmap_kextract(vaddr); 155 error = _sglist_append_range(sg, &ss, paddr, seglen); 156 if (error) 157 return (error); 158 vaddr += seglen; 159 len -= seglen; 160 if (donep) 161 *donep += seglen; 162 } 163 164 return (0); 165 } 166 167 /* 168 * Determine the number of scatter/gather list elements needed to 169 * describe a kernel virtual address range. 170 */ 171 int 172 sglist_count(void *buf, size_t len) 173 { 174 vm_offset_t vaddr, vendaddr; 175 vm_paddr_t lastaddr, paddr; 176 int nsegs; 177 178 if (len == 0) 179 return (0); 180 181 vaddr = trunc_page((vm_offset_t)buf); 182 vendaddr = (vm_offset_t)buf + len; 183 nsegs = 1; 184 lastaddr = pmap_kextract(vaddr); 185 vaddr += PAGE_SIZE; 186 while (vaddr < vendaddr) { 187 paddr = pmap_kextract(vaddr); 188 if (lastaddr + PAGE_SIZE != paddr) 189 nsegs++; 190 lastaddr = paddr; 191 vaddr += PAGE_SIZE; 192 } 193 return (nsegs); 194 } 195 196 /* 197 * Determine the number of scatter/gather list elements needed to 198 * describe a buffer backed by an array of VM pages. 199 */ 200 int 201 sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len) 202 { 203 vm_paddr_t lastaddr, paddr; 204 int i, nsegs; 205 206 if (len == 0) 207 return (0); 208 209 len += pgoff; 210 nsegs = 1; 211 lastaddr = VM_PAGE_TO_PHYS(m[0]); 212 for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) { 213 paddr = VM_PAGE_TO_PHYS(m[i]); 214 if (lastaddr + PAGE_SIZE != paddr) 215 nsegs++; 216 lastaddr = paddr; 217 } 218 return (nsegs); 219 } 220 221 /* 222 * Determine the number of scatter/gather list elements needed to 223 * describe an M_EXTPG mbuf. 224 */ 225 int 226 sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len) 227 { 228 vm_paddr_t nextaddr, paddr; 229 size_t seglen, segoff; 230 int i, nsegs, pglen, pgoff; 231 232 if (len == 0) 233 return (0); 234 235 nsegs = 0; 236 if (m->m_epg_hdrlen != 0) { 237 if (off >= m->m_epg_hdrlen) { 238 off -= m->m_epg_hdrlen; 239 } else { 240 seglen = m->m_epg_hdrlen - off; 241 segoff = off; 242 seglen = MIN(seglen, len); 243 off = 0; 244 len -= seglen; 245 nsegs += sglist_count(&m->m_epg_hdr[segoff], 246 seglen); 247 } 248 } 249 nextaddr = 0; 250 pgoff = m->m_epg_1st_off; 251 for (i = 0; i < m->m_epg_npgs && len > 0; i++) { 252 pglen = m_epg_pagelen(m, i, pgoff); 253 if (off >= pglen) { 254 off -= pglen; 255 pgoff = 0; 256 continue; 257 } 258 seglen = pglen - off; 259 segoff = pgoff + off; 260 off = 0; 261 seglen = MIN(seglen, len); 262 len -= seglen; 263 paddr = m->m_epg_pa[i] + segoff; 264 if (paddr != nextaddr) 265 nsegs++; 266 nextaddr = paddr + seglen; 267 pgoff = 0; 268 }; 269 if (len != 0) { 270 seglen = MIN(len, m->m_epg_trllen - off); 271 len -= seglen; 272 nsegs += sglist_count(&m->m_epg_trail[off], seglen); 273 } 274 KASSERT(len == 0, ("len != 0")); 275 return (nsegs); 276 } 277 278 /* 279 * Allocate a scatter/gather list along with 'nsegs' segments. The 280 * 'mflags' parameters are the same as passed to malloc(9). The caller 281 * should use sglist_free() to free this list. 282 */ 283 struct sglist * 284 sglist_alloc(int nsegs, int mflags) 285 { 286 struct sglist *sg; 287 288 sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg), 289 M_SGLIST, mflags); 290 if (sg == NULL) 291 return (NULL); 292 sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1)); 293 return (sg); 294 } 295 296 /* 297 * Free a scatter/gather list allocated via sglist_allc(). 298 */ 299 void 300 sglist_free(struct sglist *sg) 301 { 302 303 if (sg == NULL) 304 return; 305 306 if (refcount_release(&sg->sg_refs)) 307 free(sg, M_SGLIST); 308 } 309 310 /* 311 * Append the segments to describe a single kernel virtual address 312 * range to a scatter/gather list. If there are insufficient 313 * segments, then this fails with EFBIG. 314 */ 315 int 316 sglist_append(struct sglist *sg, void *buf, size_t len) 317 { 318 struct sgsave save; 319 int error; 320 321 if (sg->sg_maxseg == 0) 322 return (EINVAL); 323 SGLIST_SAVE(sg, save); 324 error = _sglist_append_buf(sg, buf, len, NULL, NULL); 325 if (error) 326 SGLIST_RESTORE(sg, save); 327 return (error); 328 } 329 330 /* 331 * Append the segments to describe a bio's data to a scatter/gather list. 332 * If there are insufficient segments, then this fails with EFBIG. 333 * 334 * NOTE: This function expects bio_bcount to be initialized. 335 */ 336 int 337 sglist_append_bio(struct sglist *sg, struct bio *bp) 338 { 339 int error; 340 341 if ((bp->bio_flags & BIO_UNMAPPED) == 0) 342 error = sglist_append(sg, bp->bio_data, bp->bio_bcount); 343 else 344 error = sglist_append_vmpages(sg, bp->bio_ma, 345 bp->bio_ma_offset, bp->bio_bcount); 346 return (error); 347 } 348 349 /* 350 * Append a single physical address range to a scatter/gather list. 351 * If there are insufficient segments, then this fails with EFBIG. 352 */ 353 int 354 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len) 355 { 356 struct sglist_seg *ss; 357 struct sgsave save; 358 int error; 359 360 if (sg->sg_maxseg == 0) 361 return (EINVAL); 362 if (len == 0) 363 return (0); 364 365 if (sg->sg_nseg == 0) { 366 sg->sg_segs[0].ss_paddr = paddr; 367 sg->sg_segs[0].ss_len = len; 368 sg->sg_nseg = 1; 369 return (0); 370 } 371 ss = &sg->sg_segs[sg->sg_nseg - 1]; 372 SGLIST_SAVE(sg, save); 373 error = _sglist_append_range(sg, &ss, paddr, len); 374 if (error) 375 SGLIST_RESTORE(sg, save); 376 return (error); 377 } 378 379 /* 380 * Append the segments of single multi-page mbuf. 381 * If there are insufficient segments, then this fails with EFBIG. 382 */ 383 int 384 sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off, 385 size_t len) 386 { 387 size_t seglen, segoff; 388 vm_paddr_t paddr; 389 int error, i, pglen, pgoff; 390 391 M_ASSERTEXTPG(m); 392 393 error = 0; 394 if (m->m_epg_hdrlen != 0) { 395 if (off >= m->m_epg_hdrlen) { 396 off -= m->m_epg_hdrlen; 397 } else { 398 seglen = m->m_epg_hdrlen - off; 399 segoff = off; 400 seglen = MIN(seglen, len); 401 off = 0; 402 len -= seglen; 403 error = sglist_append(sg, 404 &m->m_epg_hdr[segoff], seglen); 405 } 406 } 407 pgoff = m->m_epg_1st_off; 408 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 409 pglen = m_epg_pagelen(m, i, pgoff); 410 if (off >= pglen) { 411 off -= pglen; 412 pgoff = 0; 413 continue; 414 } 415 seglen = pglen - off; 416 segoff = pgoff + off; 417 off = 0; 418 seglen = MIN(seglen, len); 419 len -= seglen; 420 paddr = m->m_epg_pa[i] + segoff; 421 error = sglist_append_phys(sg, paddr, seglen); 422 pgoff = 0; 423 }; 424 if (error == 0 && len > 0) { 425 seglen = MIN(len, m->m_epg_trllen - off); 426 len -= seglen; 427 error = sglist_append(sg, 428 &m->m_epg_trail[off], seglen); 429 } 430 if (error == 0) 431 KASSERT(len == 0, ("len != 0")); 432 return (error); 433 } 434 435 /* 436 * Append the segments that describe a single mbuf chain to a 437 * scatter/gather list. If there are insufficient segments, then this 438 * fails with EFBIG. 439 */ 440 int 441 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0) 442 { 443 struct sgsave save; 444 struct mbuf *m; 445 int error; 446 447 if (sg->sg_maxseg == 0) 448 return (EINVAL); 449 450 error = 0; 451 SGLIST_SAVE(sg, save); 452 for (m = m0; m != NULL; m = m->m_next) { 453 if (m->m_len > 0) { 454 if ((m->m_flags & M_EXTPG) != 0) 455 error = sglist_append_mbuf_epg(sg, m, 456 mtod(m, vm_offset_t), m->m_len); 457 else 458 error = sglist_append(sg, m->m_data, 459 m->m_len); 460 if (error) { 461 SGLIST_RESTORE(sg, save); 462 return (error); 463 } 464 } 465 } 466 return (0); 467 } 468 469 /* 470 * Append the segments that describe a buffer spanning an array of VM 471 * pages. The buffer begins at an offset of 'pgoff' in the first 472 * page. 473 */ 474 int 475 sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff, 476 size_t len) 477 { 478 struct sgsave save; 479 struct sglist_seg *ss; 480 vm_paddr_t paddr; 481 size_t seglen; 482 int error, i; 483 484 if (sg->sg_maxseg == 0) 485 return (EINVAL); 486 if (len == 0) 487 return (0); 488 489 SGLIST_SAVE(sg, save); 490 i = 0; 491 if (sg->sg_nseg == 0) { 492 seglen = min(PAGE_SIZE - pgoff, len); 493 sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff; 494 sg->sg_segs[0].ss_len = seglen; 495 sg->sg_nseg = 1; 496 pgoff = 0; 497 len -= seglen; 498 i++; 499 } 500 ss = &sg->sg_segs[sg->sg_nseg - 1]; 501 for (; len > 0; i++, len -= seglen) { 502 seglen = min(PAGE_SIZE - pgoff, len); 503 paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff; 504 error = _sglist_append_range(sg, &ss, paddr, seglen); 505 if (error) { 506 SGLIST_RESTORE(sg, save); 507 return (error); 508 } 509 pgoff = 0; 510 } 511 return (0); 512 } 513 514 /* 515 * Append the segments that describe a single user address range to a 516 * scatter/gather list. If there are insufficient segments, then this 517 * fails with EFBIG. 518 */ 519 int 520 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td) 521 { 522 struct sgsave save; 523 int error; 524 525 if (sg->sg_maxseg == 0) 526 return (EINVAL); 527 SGLIST_SAVE(sg, save); 528 error = _sglist_append_buf(sg, buf, len, 529 vmspace_pmap(td->td_proc->p_vmspace), NULL); 530 if (error) 531 SGLIST_RESTORE(sg, save); 532 return (error); 533 } 534 535 /* 536 * Append a subset of an existing scatter/gather list 'source' to a 537 * the scatter/gather list 'sg'. If there are insufficient segments, 538 * then this fails with EFBIG. 539 */ 540 int 541 sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset, 542 size_t length) 543 { 544 struct sgsave save; 545 struct sglist_seg *ss; 546 size_t seglen; 547 int error, i; 548 549 if (sg->sg_maxseg == 0 || length == 0) 550 return (EINVAL); 551 SGLIST_SAVE(sg, save); 552 error = EINVAL; 553 ss = &sg->sg_segs[sg->sg_nseg - 1]; 554 for (i = 0; i < source->sg_nseg; i++) { 555 if (offset >= source->sg_segs[i].ss_len) { 556 offset -= source->sg_segs[i].ss_len; 557 continue; 558 } 559 seglen = source->sg_segs[i].ss_len - offset; 560 if (seglen > length) 561 seglen = length; 562 error = _sglist_append_range(sg, &ss, 563 source->sg_segs[i].ss_paddr + offset, seglen); 564 if (error) 565 break; 566 offset = 0; 567 length -= seglen; 568 if (length == 0) 569 break; 570 } 571 if (length != 0) 572 error = EINVAL; 573 if (error) 574 SGLIST_RESTORE(sg, save); 575 return (error); 576 } 577 578 /* 579 * Append the segments that describe a single uio to a scatter/gather 580 * list. If there are insufficient segments, then this fails with 581 * EFBIG. 582 */ 583 int 584 sglist_append_uio(struct sglist *sg, struct uio *uio) 585 { 586 struct iovec *iov; 587 struct sgsave save; 588 size_t resid, minlen; 589 pmap_t pmap; 590 int error, i; 591 592 if (sg->sg_maxseg == 0) 593 return (EINVAL); 594 595 resid = uio->uio_resid; 596 iov = uio->uio_iov; 597 598 if (uio->uio_segflg == UIO_USERSPACE) { 599 KASSERT(uio->uio_td != NULL, 600 ("sglist_append_uio: USERSPACE but no thread")); 601 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace); 602 } else 603 pmap = NULL; 604 605 error = 0; 606 SGLIST_SAVE(sg, save); 607 for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) { 608 /* 609 * Now at the first iovec to load. Load each iovec 610 * until we have exhausted the residual count. 611 */ 612 minlen = MIN(resid, iov[i].iov_len); 613 if (minlen > 0) { 614 error = _sglist_append_buf(sg, iov[i].iov_base, minlen, 615 pmap, NULL); 616 if (error) { 617 SGLIST_RESTORE(sg, save); 618 return (error); 619 } 620 resid -= minlen; 621 } 622 } 623 return (0); 624 } 625 626 /* 627 * Append the segments that describe at most 'resid' bytes from a 628 * single uio to a scatter/gather list. If there are insufficient 629 * segments, then only the amount that fits is appended. 630 */ 631 int 632 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid) 633 { 634 struct iovec *iov; 635 size_t done; 636 pmap_t pmap; 637 int error, len; 638 639 if (sg->sg_maxseg == 0) 640 return (EINVAL); 641 642 if (uio->uio_segflg == UIO_USERSPACE) { 643 KASSERT(uio->uio_td != NULL, 644 ("sglist_consume_uio: USERSPACE but no thread")); 645 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace); 646 } else 647 pmap = NULL; 648 649 error = 0; 650 while (resid > 0 && uio->uio_resid) { 651 iov = uio->uio_iov; 652 len = iov->iov_len; 653 if (len == 0) { 654 uio->uio_iov++; 655 uio->uio_iovcnt--; 656 continue; 657 } 658 if (len > resid) 659 len = resid; 660 661 /* 662 * Try to append this iovec. If we run out of room, 663 * then break out of the loop. 664 */ 665 error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done); 666 iov->iov_base = (char *)iov->iov_base + done; 667 iov->iov_len -= done; 668 uio->uio_resid -= done; 669 uio->uio_offset += done; 670 resid -= done; 671 if (error) 672 break; 673 } 674 return (0); 675 } 676 677 /* 678 * Allocate and populate a scatter/gather list to describe a single 679 * kernel virtual address range. 680 */ 681 struct sglist * 682 sglist_build(void *buf, size_t len, int mflags) 683 { 684 struct sglist *sg; 685 int nsegs; 686 687 if (len == 0) 688 return (NULL); 689 690 nsegs = sglist_count(buf, len); 691 sg = sglist_alloc(nsegs, mflags); 692 if (sg == NULL) 693 return (NULL); 694 if (sglist_append(sg, buf, len) != 0) { 695 sglist_free(sg); 696 return (NULL); 697 } 698 return (sg); 699 } 700 701 /* 702 * Clone a new copy of a scatter/gather list. 703 */ 704 struct sglist * 705 sglist_clone(struct sglist *sg, int mflags) 706 { 707 struct sglist *new; 708 709 if (sg == NULL) 710 return (NULL); 711 new = sglist_alloc(sg->sg_maxseg, mflags); 712 if (new == NULL) 713 return (NULL); 714 new->sg_nseg = sg->sg_nseg; 715 bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) * 716 sg->sg_nseg); 717 return (new); 718 } 719 720 /* 721 * Calculate the total length of the segments described in a 722 * scatter/gather list. 723 */ 724 size_t 725 sglist_length(struct sglist *sg) 726 { 727 size_t space; 728 int i; 729 730 space = 0; 731 for (i = 0; i < sg->sg_nseg; i++) 732 space += sg->sg_segs[i].ss_len; 733 return (space); 734 } 735 736 /* 737 * Split a scatter/gather list into two lists. The scatter/gather 738 * entries for the first 'length' bytes of the 'original' list are 739 * stored in the '*head' list and are removed from 'original'. 740 * 741 * If '*head' is NULL, then a new list will be allocated using 742 * 'mflags'. If M_NOWAIT is specified and the allocation fails, 743 * ENOMEM will be returned. 744 * 745 * If '*head' is not NULL, it should point to an empty sglist. If it 746 * does not have enough room for the remaining space, then EFBIG will 747 * be returned. If '*head' is not empty, then EINVAL will be 748 * returned. 749 * 750 * If 'original' is shared (refcount > 1), then EDOOFUS will be 751 * returned. 752 */ 753 int 754 sglist_split(struct sglist *original, struct sglist **head, size_t length, 755 int mflags) 756 { 757 struct sglist *sg; 758 size_t space, split; 759 int count, i; 760 761 if (original->sg_refs > 1) 762 return (EDOOFUS); 763 764 /* Figure out how big of a sglist '*head' has to hold. */ 765 count = 0; 766 space = 0; 767 split = 0; 768 for (i = 0; i < original->sg_nseg; i++) { 769 space += original->sg_segs[i].ss_len; 770 count++; 771 if (space >= length) { 772 /* 773 * If 'length' falls in the middle of a 774 * scatter/gather list entry, then 'split' 775 * holds how much of that entry will remain in 776 * 'original'. 777 */ 778 split = space - length; 779 break; 780 } 781 } 782 783 /* Nothing to do, so leave head empty. */ 784 if (count == 0) 785 return (0); 786 787 if (*head == NULL) { 788 sg = sglist_alloc(count, mflags); 789 if (sg == NULL) 790 return (ENOMEM); 791 *head = sg; 792 } else { 793 sg = *head; 794 if (sg->sg_maxseg < count) 795 return (EFBIG); 796 if (sg->sg_nseg != 0) 797 return (EINVAL); 798 } 799 800 /* Copy 'count' entries to 'sg' from 'original'. */ 801 bcopy(original->sg_segs, sg->sg_segs, count * 802 sizeof(struct sglist_seg)); 803 sg->sg_nseg = count; 804 805 /* 806 * If we had to split a list entry, fixup the last entry in 807 * 'sg' and the new first entry in 'original'. We also 808 * decrement 'count' by 1 since we will only be removing 809 * 'count - 1' segments from 'original' now. 810 */ 811 if (split != 0) { 812 count--; 813 sg->sg_segs[count].ss_len -= split; 814 original->sg_segs[count].ss_paddr = 815 sg->sg_segs[count].ss_paddr + split; 816 original->sg_segs[count].ss_len = split; 817 } 818 819 /* Trim 'count' entries from the front of 'original'. */ 820 original->sg_nseg -= count; 821 bcopy(original->sg_segs + count, original->sg_segs, count * 822 sizeof(struct sglist_seg)); 823 return (0); 824 } 825 826 /* 827 * Append the scatter/gather list elements in 'second' to the 828 * scatter/gather list 'first'. If there is not enough space in 829 * 'first', EFBIG is returned. 830 */ 831 int 832 sglist_join(struct sglist *first, struct sglist *second) 833 { 834 struct sglist_seg *flast, *sfirst; 835 int append; 836 837 /* If 'second' is empty, there is nothing to do. */ 838 if (second->sg_nseg == 0) 839 return (0); 840 841 /* 842 * If the first entry in 'second' can be appended to the last entry 843 * in 'first' then set append to '1'. 844 */ 845 append = 0; 846 flast = &first->sg_segs[first->sg_nseg - 1]; 847 sfirst = &second->sg_segs[0]; 848 if (first->sg_nseg != 0 && 849 flast->ss_paddr + flast->ss_len == sfirst->ss_paddr) 850 append = 1; 851 852 /* Make sure 'first' has enough room. */ 853 if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg) 854 return (EFBIG); 855 856 /* Merge last in 'first' and first in 'second' if needed. */ 857 if (append) 858 flast->ss_len += sfirst->ss_len; 859 860 /* Append new segments from 'second' to 'first'. */ 861 bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append, 862 (second->sg_nseg - append) * sizeof(struct sglist_seg)); 863 first->sg_nseg += second->sg_nseg - append; 864 sglist_reset(second); 865 return (0); 866 } 867 868 /* 869 * Generate a new scatter/gather list from a range of an existing 870 * scatter/gather list. The 'offset' and 'length' parameters specify 871 * the logical range of the 'original' list to extract. If that range 872 * is not a subset of the length of 'original', then EINVAL is 873 * returned. The new scatter/gather list is stored in '*slice'. 874 * 875 * If '*slice' is NULL, then a new list will be allocated using 876 * 'mflags'. If M_NOWAIT is specified and the allocation fails, 877 * ENOMEM will be returned. 878 * 879 * If '*slice' is not NULL, it should point to an empty sglist. If it 880 * does not have enough room for the remaining space, then EFBIG will 881 * be returned. If '*slice' is not empty, then EINVAL will be 882 * returned. 883 */ 884 int 885 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset, 886 size_t length, int mflags) 887 { 888 struct sglist *sg; 889 size_t space, end, foffs, loffs; 890 int count, i, fseg; 891 892 /* Nothing to do. */ 893 if (length == 0) 894 return (0); 895 896 /* Figure out how many segments '*slice' needs to have. */ 897 end = offset + length; 898 space = 0; 899 count = 0; 900 fseg = 0; 901 foffs = loffs = 0; 902 for (i = 0; i < original->sg_nseg; i++) { 903 space += original->sg_segs[i].ss_len; 904 if (space > offset) { 905 /* 906 * When we hit the first segment, store its index 907 * in 'fseg' and the offset into the first segment 908 * of 'offset' in 'foffs'. 909 */ 910 if (count == 0) { 911 fseg = i; 912 foffs = offset - (space - 913 original->sg_segs[i].ss_len); 914 CTR1(KTR_DEV, "sglist_slice: foffs = %08lx", 915 foffs); 916 } 917 count++; 918 919 /* 920 * When we hit the last segment, break out of 921 * the loop. Store the amount of extra space 922 * at the end of this segment in 'loffs'. 923 */ 924 if (space >= end) { 925 loffs = space - end; 926 CTR1(KTR_DEV, "sglist_slice: loffs = %08lx", 927 loffs); 928 break; 929 } 930 } 931 } 932 933 /* If we never hit 'end', then 'length' ran off the end, so fail. */ 934 if (space < end) 935 return (EINVAL); 936 937 if (*slice == NULL) { 938 sg = sglist_alloc(count, mflags); 939 if (sg == NULL) 940 return (ENOMEM); 941 *slice = sg; 942 } else { 943 sg = *slice; 944 if (sg->sg_maxseg < count) 945 return (EFBIG); 946 if (sg->sg_nseg != 0) 947 return (EINVAL); 948 } 949 950 /* 951 * Copy over 'count' segments from 'original' starting at 952 * 'fseg' to 'sg'. 953 */ 954 bcopy(original->sg_segs + fseg, sg->sg_segs, 955 count * sizeof(struct sglist_seg)); 956 sg->sg_nseg = count; 957 958 /* Fixup first and last segments if needed. */ 959 if (foffs != 0) { 960 sg->sg_segs[0].ss_paddr += foffs; 961 sg->sg_segs[0].ss_len -= foffs; 962 CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx", 963 (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len); 964 } 965 if (loffs != 0) { 966 sg->sg_segs[count - 1].ss_len -= loffs; 967 CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1, 968 sg->sg_segs[count - 1].ss_len); 969 } 970 return (0); 971 } 972