xref: /freebsd/sys/kern/subr_sglist.c (revision 9268022b74279434ed6300244e3f977e56a8ceb5)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/bio.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/uio.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_page.h>
45 #include <vm/pmap.h>
46 #include <vm/vm_map.h>
47 
48 #include <sys/ktr.h>
49 
50 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
51 
52 /*
53  * Convenience macros to save the state of an sglist so it can be restored
54  * if an append attempt fails.  Since sglist's only grow we only need to
55  * save the current count of segments and the length of the ending segment.
56  * Earlier segments will not be changed by an append, and the only change
57  * that can occur to the ending segment is that it can be extended.
58  */
59 struct sgsave {
60 	u_short sg_nseg;
61 	size_t ss_len;
62 };
63 
64 #define	SGLIST_SAVE(sg, sgsave) do {					\
65 	(sgsave).sg_nseg = (sg)->sg_nseg;				\
66 	if ((sgsave).sg_nseg > 0)					\
67 		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
68 	else								\
69 		(sgsave).ss_len = 0;					\
70 } while (0)
71 
72 #define	SGLIST_RESTORE(sg, sgsave) do {					\
73 	(sg)->sg_nseg = (sgsave).sg_nseg;				\
74 	if ((sgsave).sg_nseg > 0)					\
75 		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
76 } while (0)
77 
78 /*
79  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
80  * the current segment in the list.  If we run out of segments then
81  * EFBIG will be returned.
82  */
83 static __inline int
84 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
85     vm_paddr_t paddr, size_t len)
86 {
87 	struct sglist_seg *ss;
88 
89 	ss = *ssp;
90 	if (ss->ss_paddr + ss->ss_len == paddr)
91 		ss->ss_len += len;
92 	else {
93 		if (sg->sg_nseg == sg->sg_maxseg)
94 			return (EFBIG);
95 		ss++;
96 		ss->ss_paddr = paddr;
97 		ss->ss_len = len;
98 		sg->sg_nseg++;
99 		*ssp = ss;
100 	}
101 	return (0);
102 }
103 
104 /*
105  * Worker routine to append a virtual address range (either kernel or
106  * user) to a scatter/gather list.
107  */
108 static __inline int
109 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
110     size_t *donep)
111 {
112 	struct sglist_seg *ss;
113 	vm_offset_t vaddr, offset;
114 	vm_paddr_t paddr;
115 	size_t seglen;
116 	int error;
117 
118 	if (donep)
119 		*donep = 0;
120 	if (len == 0)
121 		return (0);
122 
123 	/* Do the first page.  It may have an offset. */
124 	vaddr = (vm_offset_t)buf;
125 	offset = vaddr & PAGE_MASK;
126 	if (pmap != NULL)
127 		paddr = pmap_extract(pmap, vaddr);
128 	else
129 		paddr = pmap_kextract(vaddr);
130 	seglen = MIN(len, PAGE_SIZE - offset);
131 	if (sg->sg_nseg == 0) {
132 		ss = sg->sg_segs;
133 		ss->ss_paddr = paddr;
134 		ss->ss_len = seglen;
135 		sg->sg_nseg = 1;
136 	} else {
137 		ss = &sg->sg_segs[sg->sg_nseg - 1];
138 		error = _sglist_append_range(sg, &ss, paddr, seglen);
139 		if (error)
140 			return (error);
141 	}
142 	vaddr += seglen;
143 	len -= seglen;
144 	if (donep)
145 		*donep += seglen;
146 
147 	while (len > 0) {
148 		seglen = MIN(len, PAGE_SIZE);
149 		if (pmap != NULL)
150 			paddr = pmap_extract(pmap, vaddr);
151 		else
152 			paddr = pmap_kextract(vaddr);
153 		error = _sglist_append_range(sg, &ss, paddr, seglen);
154 		if (error)
155 			return (error);
156 		vaddr += seglen;
157 		len -= seglen;
158 		if (donep)
159 			*donep += seglen;
160 	}
161 
162 	return (0);
163 }
164 
165 /*
166  * Determine the number of scatter/gather list elements needed to
167  * describe a kernel virtual address range.
168  */
169 int
170 sglist_count(void *buf, size_t len)
171 {
172 	vm_offset_t vaddr, vendaddr;
173 	vm_paddr_t lastaddr, paddr;
174 	int nsegs;
175 
176 	if (len == 0)
177 		return (0);
178 
179 	vaddr = trunc_page((vm_offset_t)buf);
180 	vendaddr = (vm_offset_t)buf + len;
181 	nsegs = 1;
182 	lastaddr = pmap_kextract(vaddr);
183 	vaddr += PAGE_SIZE;
184 	while (vaddr < vendaddr) {
185 		paddr = pmap_kextract(vaddr);
186 		if (lastaddr + PAGE_SIZE != paddr)
187 			nsegs++;
188 		lastaddr = paddr;
189 		vaddr += PAGE_SIZE;
190 	}
191 	return (nsegs);
192 }
193 
194 /*
195  * Allocate a scatter/gather list along with 'nsegs' segments.  The
196  * 'mflags' parameters are the same as passed to malloc(9).  The caller
197  * should use sglist_free() to free this list.
198  */
199 struct sglist *
200 sglist_alloc(int nsegs, int mflags)
201 {
202 	struct sglist *sg;
203 
204 	sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
205 	    M_SGLIST, mflags);
206 	if (sg == NULL)
207 		return (NULL);
208 	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
209 	return (sg);
210 }
211 
212 /*
213  * Free a scatter/gather list allocated via sglist_allc().
214  */
215 void
216 sglist_free(struct sglist *sg)
217 {
218 
219 	if (refcount_release(&sg->sg_refs))
220 		free(sg, M_SGLIST);
221 }
222 
223 /*
224  * Append the segments to describe a single kernel virtual address
225  * range to a scatter/gather list.  If there are insufficient
226  * segments, then this fails with EFBIG.
227  */
228 int
229 sglist_append(struct sglist *sg, void *buf, size_t len)
230 {
231 	struct sgsave save;
232 	int error;
233 
234 	if (sg->sg_maxseg == 0)
235 		return (EINVAL);
236 	SGLIST_SAVE(sg, save);
237 	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
238 	if (error)
239 		SGLIST_RESTORE(sg, save);
240 	return (error);
241 }
242 
243 /*
244  * Append the segments to describe a bio's data to a scatter/gather list.
245  * If there are insufficient segments, then this fails with EFBIG.
246  *
247  * NOTE: This function expects bio_bcount to be initialized.
248  */
249 int
250 sglist_append_bio(struct sglist *sg, struct bio *bp)
251 {
252 	struct sgsave save;
253 	vm_paddr_t paddr;
254 	size_t len, tlen;
255 	int error, i, ma_offs;
256 
257 	if ((bp->bio_flags & BIO_UNMAPPED) == 0) {
258 		error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
259 		return (error);
260 	}
261 
262 	if (sg->sg_maxseg == 0)
263 		return (EINVAL);
264 
265 	SGLIST_SAVE(sg, save);
266 	tlen = bp->bio_bcount;
267 	ma_offs = bp->bio_ma_offset;
268 	for (i = 0; tlen > 0; i++, tlen -= len) {
269 		len = min(PAGE_SIZE - ma_offs, tlen);
270 		paddr = VM_PAGE_TO_PHYS(bp->bio_ma[i]) + ma_offs;
271 		error = sglist_append_phys(sg, paddr, len);
272 		if (error) {
273 			SGLIST_RESTORE(sg, save);
274 			return (error);
275 		}
276 		ma_offs = 0;
277 	}
278 	return (0);
279 }
280 
281 /*
282  * Append a single physical address range to a scatter/gather list.
283  * If there are insufficient segments, then this fails with EFBIG.
284  */
285 int
286 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
287 {
288 	struct sglist_seg *ss;
289 	struct sgsave save;
290 	int error;
291 
292 	if (sg->sg_maxseg == 0)
293 		return (EINVAL);
294 	if (len == 0)
295 		return (0);
296 
297 	if (sg->sg_nseg == 0) {
298 		sg->sg_segs[0].ss_paddr = paddr;
299 		sg->sg_segs[0].ss_len = len;
300 		sg->sg_nseg = 1;
301 		return (0);
302 	}
303 	ss = &sg->sg_segs[sg->sg_nseg - 1];
304 	SGLIST_SAVE(sg, save);
305 	error = _sglist_append_range(sg, &ss, paddr, len);
306 	if (error)
307 		SGLIST_RESTORE(sg, save);
308 	return (error);
309 }
310 
311 /*
312  * Append the segments that describe a single mbuf chain to a
313  * scatter/gather list.  If there are insufficient segments, then this
314  * fails with EFBIG.
315  */
316 int
317 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
318 {
319 	struct sgsave save;
320 	struct mbuf *m;
321 	int error;
322 
323 	if (sg->sg_maxseg == 0)
324 		return (EINVAL);
325 
326 	error = 0;
327 	SGLIST_SAVE(sg, save);
328 	for (m = m0; m != NULL; m = m->m_next) {
329 		if (m->m_len > 0) {
330 			error = sglist_append(sg, m->m_data, m->m_len);
331 			if (error) {
332 				SGLIST_RESTORE(sg, save);
333 				return (error);
334 			}
335 		}
336 	}
337 	return (0);
338 }
339 
340 /*
341  * Append the segments that describe a single user address range to a
342  * scatter/gather list.  If there are insufficient segments, then this
343  * fails with EFBIG.
344  */
345 int
346 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
347 {
348 	struct sgsave save;
349 	int error;
350 
351 	if (sg->sg_maxseg == 0)
352 		return (EINVAL);
353 	SGLIST_SAVE(sg, save);
354 	error = _sglist_append_buf(sg, buf, len,
355 	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
356 	if (error)
357 		SGLIST_RESTORE(sg, save);
358 	return (error);
359 }
360 
361 /*
362  * Append the segments that describe a single uio to a scatter/gather
363  * list.  If there are insufficient segments, then this fails with
364  * EFBIG.
365  */
366 int
367 sglist_append_uio(struct sglist *sg, struct uio *uio)
368 {
369 	struct iovec *iov;
370 	struct sgsave save;
371 	size_t resid, minlen;
372 	pmap_t pmap;
373 	int error, i;
374 
375 	if (sg->sg_maxseg == 0)
376 		return (EINVAL);
377 
378 	resid = uio->uio_resid;
379 	iov = uio->uio_iov;
380 
381 	if (uio->uio_segflg == UIO_USERSPACE) {
382 		KASSERT(uio->uio_td != NULL,
383 		    ("sglist_append_uio: USERSPACE but no thread"));
384 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
385 	} else
386 		pmap = NULL;
387 
388 	error = 0;
389 	SGLIST_SAVE(sg, save);
390 	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
391 		/*
392 		 * Now at the first iovec to load.  Load each iovec
393 		 * until we have exhausted the residual count.
394 		 */
395 		minlen = MIN(resid, iov[i].iov_len);
396 		if (minlen > 0) {
397 			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
398 			    pmap, NULL);
399 			if (error) {
400 				SGLIST_RESTORE(sg, save);
401 				return (error);
402 			}
403 			resid -= minlen;
404 		}
405 	}
406 	return (0);
407 }
408 
409 /*
410  * Append the segments that describe at most 'resid' bytes from a
411  * single uio to a scatter/gather list.  If there are insufficient
412  * segments, then only the amount that fits is appended.
413  */
414 int
415 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
416 {
417 	struct iovec *iov;
418 	size_t done;
419 	pmap_t pmap;
420 	int error, len;
421 
422 	if (sg->sg_maxseg == 0)
423 		return (EINVAL);
424 
425 	if (uio->uio_segflg == UIO_USERSPACE) {
426 		KASSERT(uio->uio_td != NULL,
427 		    ("sglist_consume_uio: USERSPACE but no thread"));
428 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
429 	} else
430 		pmap = NULL;
431 
432 	error = 0;
433 	while (resid > 0 && uio->uio_resid) {
434 		iov = uio->uio_iov;
435 		len = iov->iov_len;
436 		if (len == 0) {
437 			uio->uio_iov++;
438 			uio->uio_iovcnt--;
439 			continue;
440 		}
441 		if (len > resid)
442 			len = resid;
443 
444 		/*
445 		 * Try to append this iovec.  If we run out of room,
446 		 * then break out of the loop.
447 		 */
448 		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
449 		iov->iov_base = (char *)iov->iov_base + done;
450 		iov->iov_len -= done;
451 		uio->uio_resid -= done;
452 		uio->uio_offset += done;
453 		resid -= done;
454 		if (error)
455 			break;
456 	}
457 	return (0);
458 }
459 
460 /*
461  * Allocate and populate a scatter/gather list to describe a single
462  * kernel virtual address range.
463  */
464 struct sglist *
465 sglist_build(void *buf, size_t len, int mflags)
466 {
467 	struct sglist *sg;
468 	int nsegs;
469 
470 	if (len == 0)
471 		return (NULL);
472 
473 	nsegs = sglist_count(buf, len);
474 	sg = sglist_alloc(nsegs, mflags);
475 	if (sg == NULL)
476 		return (NULL);
477 	if (sglist_append(sg, buf, len) != 0) {
478 		sglist_free(sg);
479 		return (NULL);
480 	}
481 	return (sg);
482 }
483 
484 /*
485  * Clone a new copy of a scatter/gather list.
486  */
487 struct sglist *
488 sglist_clone(struct sglist *sg, int mflags)
489 {
490 	struct sglist *new;
491 
492 	if (sg == NULL)
493 		return (NULL);
494 	new = sglist_alloc(sg->sg_maxseg, mflags);
495 	if (new == NULL)
496 		return (NULL);
497 	new->sg_nseg = sg->sg_nseg;
498 	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
499 	    sg->sg_nseg);
500 	return (new);
501 }
502 
503 /*
504  * Calculate the total length of the segments described in a
505  * scatter/gather list.
506  */
507 size_t
508 sglist_length(struct sglist *sg)
509 {
510 	size_t space;
511 	int i;
512 
513 	space = 0;
514 	for (i = 0; i < sg->sg_nseg; i++)
515 		space += sg->sg_segs[i].ss_len;
516 	return (space);
517 }
518 
519 /*
520  * Split a scatter/gather list into two lists.  The scatter/gather
521  * entries for the first 'length' bytes of the 'original' list are
522  * stored in the '*head' list and are removed from 'original'.
523  *
524  * If '*head' is NULL, then a new list will be allocated using
525  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
526  * ENOMEM will be returned.
527  *
528  * If '*head' is not NULL, it should point to an empty sglist.  If it
529  * does not have enough room for the remaining space, then EFBIG will
530  * be returned.  If '*head' is not empty, then EINVAL will be
531  * returned.
532  *
533  * If 'original' is shared (refcount > 1), then EDOOFUS will be
534  * returned.
535  */
536 int
537 sglist_split(struct sglist *original, struct sglist **head, size_t length,
538     int mflags)
539 {
540 	struct sglist *sg;
541 	size_t space, split;
542 	int count, i;
543 
544 	if (original->sg_refs > 1)
545 		return (EDOOFUS);
546 
547 	/* Figure out how big of a sglist '*head' has to hold. */
548 	count = 0;
549 	space = 0;
550 	split = 0;
551 	for (i = 0; i < original->sg_nseg; i++) {
552 		space += original->sg_segs[i].ss_len;
553 		count++;
554 		if (space >= length) {
555 			/*
556 			 * If 'length' falls in the middle of a
557 			 * scatter/gather list entry, then 'split'
558 			 * holds how much of that entry will remain in
559 			 * 'original'.
560 			 */
561 			split = space - length;
562 			break;
563 		}
564 	}
565 
566 	/* Nothing to do, so leave head empty. */
567 	if (count == 0)
568 		return (0);
569 
570 	if (*head == NULL) {
571 		sg = sglist_alloc(count, mflags);
572 		if (sg == NULL)
573 			return (ENOMEM);
574 		*head = sg;
575 	} else {
576 		sg = *head;
577 		if (sg->sg_maxseg < count)
578 			return (EFBIG);
579 		if (sg->sg_nseg != 0)
580 			return (EINVAL);
581 	}
582 
583 	/* Copy 'count' entries to 'sg' from 'original'. */
584 	bcopy(original->sg_segs, sg->sg_segs, count *
585 	    sizeof(struct sglist_seg));
586 	sg->sg_nseg = count;
587 
588 	/*
589 	 * If we had to split a list entry, fixup the last entry in
590 	 * 'sg' and the new first entry in 'original'.  We also
591 	 * decrement 'count' by 1 since we will only be removing
592 	 * 'count - 1' segments from 'original' now.
593 	 */
594 	if (split != 0) {
595 		count--;
596 		sg->sg_segs[count].ss_len -= split;
597 		original->sg_segs[count].ss_paddr =
598 		    sg->sg_segs[count].ss_paddr + split;
599 		original->sg_segs[count].ss_len = split;
600 	}
601 
602 	/* Trim 'count' entries from the front of 'original'. */
603 	original->sg_nseg -= count;
604 	bcopy(original->sg_segs + count, original->sg_segs, count *
605 	    sizeof(struct sglist_seg));
606 	return (0);
607 }
608 
609 /*
610  * Append the scatter/gather list elements in 'second' to the
611  * scatter/gather list 'first'.  If there is not enough space in
612  * 'first', EFBIG is returned.
613  */
614 int
615 sglist_join(struct sglist *first, struct sglist *second)
616 {
617 	struct sglist_seg *flast, *sfirst;
618 	int append;
619 
620 	/* If 'second' is empty, there is nothing to do. */
621 	if (second->sg_nseg == 0)
622 		return (0);
623 
624 	/*
625 	 * If the first entry in 'second' can be appended to the last entry
626 	 * in 'first' then set append to '1'.
627 	 */
628 	append = 0;
629 	flast = &first->sg_segs[first->sg_nseg - 1];
630 	sfirst = &second->sg_segs[0];
631 	if (first->sg_nseg != 0 &&
632 	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
633 		append = 1;
634 
635 	/* Make sure 'first' has enough room. */
636 	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
637 		return (EFBIG);
638 
639 	/* Merge last in 'first' and first in 'second' if needed. */
640 	if (append)
641 		flast->ss_len += sfirst->ss_len;
642 
643 	/* Append new segments from 'second' to 'first'. */
644 	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
645 	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
646 	first->sg_nseg += second->sg_nseg - append;
647 	sglist_reset(second);
648 	return (0);
649 }
650 
651 /*
652  * Generate a new scatter/gather list from a range of an existing
653  * scatter/gather list.  The 'offset' and 'length' parameters specify
654  * the logical range of the 'original' list to extract.  If that range
655  * is not a subset of the length of 'original', then EINVAL is
656  * returned.  The new scatter/gather list is stored in '*slice'.
657  *
658  * If '*slice' is NULL, then a new list will be allocated using
659  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
660  * ENOMEM will be returned.
661  *
662  * If '*slice' is not NULL, it should point to an empty sglist.  If it
663  * does not have enough room for the remaining space, then EFBIG will
664  * be returned.  If '*slice' is not empty, then EINVAL will be
665  * returned.
666  */
667 int
668 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
669     size_t length, int mflags)
670 {
671 	struct sglist *sg;
672 	size_t space, end, foffs, loffs;
673 	int count, i, fseg;
674 
675 	/* Nothing to do. */
676 	if (length == 0)
677 		return (0);
678 
679 	/* Figure out how many segments '*slice' needs to have. */
680 	end = offset + length;
681 	space = 0;
682 	count = 0;
683 	fseg = 0;
684 	foffs = loffs = 0;
685 	for (i = 0; i < original->sg_nseg; i++) {
686 		space += original->sg_segs[i].ss_len;
687 		if (space > offset) {
688 			/*
689 			 * When we hit the first segment, store its index
690 			 * in 'fseg' and the offset into the first segment
691 			 * of 'offset' in 'foffs'.
692 			 */
693 			if (count == 0) {
694 				fseg = i;
695 				foffs = offset - (space -
696 				    original->sg_segs[i].ss_len);
697 				CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
698 				    foffs);
699 			}
700 			count++;
701 
702 			/*
703 			 * When we hit the last segment, break out of
704 			 * the loop.  Store the amount of extra space
705 			 * at the end of this segment in 'loffs'.
706 			 */
707 			if (space >= end) {
708 				loffs = space - end;
709 				CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
710 				    loffs);
711 				break;
712 			}
713 		}
714 	}
715 
716 	/* If we never hit 'end', then 'length' ran off the end, so fail. */
717 	if (space < end)
718 		return (EINVAL);
719 
720 	if (*slice == NULL) {
721 		sg = sglist_alloc(count, mflags);
722 		if (sg == NULL)
723 			return (ENOMEM);
724 		*slice = sg;
725 	} else {
726 		sg = *slice;
727 		if (sg->sg_maxseg < count)
728 			return (EFBIG);
729 		if (sg->sg_nseg != 0)
730 			return (EINVAL);
731 	}
732 
733 	/*
734 	 * Copy over 'count' segments from 'original' starting at
735 	 * 'fseg' to 'sg'.
736 	 */
737 	bcopy(original->sg_segs + fseg, sg->sg_segs,
738 	    count * sizeof(struct sglist_seg));
739 	sg->sg_nseg = count;
740 
741 	/* Fixup first and last segments if needed. */
742 	if (foffs != 0) {
743 		sg->sg_segs[0].ss_paddr += foffs;
744 		sg->sg_segs[0].ss_len -= foffs;
745 		CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
746 		    (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
747 	}
748 	if (loffs != 0) {
749 		sg->sg_segs[count - 1].ss_len -= loffs;
750 		CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
751 		    sg->sg_segs[count - 1].ss_len);
752 	}
753 	return (0);
754 }
755