1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/counter.h> 35 #include <sys/epoch.h> 36 #include <sys/gtaskqueue.h> 37 #include <sys/kernel.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/pcpu.h> 43 #include <sys/proc.h> 44 #include <sys/sched.h> 45 #include <sys/sx.h> 46 #include <sys/smp.h> 47 #include <sys/sysctl.h> 48 #include <sys/turnstile.h> 49 #ifdef EPOCH_TRACE 50 #include <machine/stdarg.h> 51 #include <sys/stack.h> 52 #include <sys/tree.h> 53 #endif 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_kern.h> 57 #include <vm/uma.h> 58 59 #include <ck_epoch.h> 60 61 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); 62 63 #ifdef __amd64__ 64 #define EPOCH_ALIGN CACHE_LINE_SIZE*2 65 #else 66 #define EPOCH_ALIGN CACHE_LINE_SIZE 67 #endif 68 69 TAILQ_HEAD (epoch_tdlist, epoch_tracker); 70 typedef struct epoch_record { 71 ck_epoch_record_t er_record; 72 struct epoch_context er_drain_ctx; 73 struct epoch *er_parent; 74 volatile struct epoch_tdlist er_tdlist; 75 volatile uint32_t er_gen; 76 uint32_t er_cpuid; 77 } __aligned(EPOCH_ALIGN) *epoch_record_t; 78 79 struct epoch { 80 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); 81 epoch_record_t e_pcpu_record; 82 int e_idx; 83 int e_flags; 84 struct sx e_drain_sx; 85 struct mtx e_drain_mtx; 86 volatile int e_drain_count; 87 const char *e_name; 88 }; 89 90 /* arbitrary --- needs benchmarking */ 91 #define MAX_ADAPTIVE_SPIN 100 92 #define MAX_EPOCHS 64 93 94 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context)); 95 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); 96 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); 97 98 /* Stats. */ 99 static counter_u64_t block_count; 100 101 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, 102 &block_count, "# of times a thread was in an epoch when epoch_wait was called"); 103 static counter_u64_t migrate_count; 104 105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, 106 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); 107 static counter_u64_t turnstile_count; 108 109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, 110 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); 111 static counter_u64_t switch_count; 112 113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, 114 &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); 115 static counter_u64_t epoch_call_count; 116 117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW, 118 &epoch_call_count, "# of times a callback was deferred"); 119 static counter_u64_t epoch_call_task_count; 120 121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW, 122 &epoch_call_task_count, "# of times a callback task was run"); 123 124 TAILQ_HEAD (threadlist, thread); 125 126 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, 127 ck_epoch_entry_container) 128 129 epoch_t allepochs[MAX_EPOCHS]; 130 131 DPCPU_DEFINE(struct grouptask, epoch_cb_task); 132 DPCPU_DEFINE(int, epoch_cb_count); 133 134 static __read_mostly int inited; 135 static __read_mostly int epoch_count; 136 __read_mostly epoch_t global_epoch; 137 __read_mostly epoch_t global_epoch_preempt; 138 139 static void epoch_call_task(void *context __unused); 140 static uma_zone_t pcpu_zone_record; 141 142 #ifdef EPOCH_TRACE 143 struct stackentry { 144 RB_ENTRY(stackentry) se_node; 145 struct stack se_stack; 146 }; 147 148 static int 149 stackentry_compare(struct stackentry *a, struct stackentry *b) 150 { 151 152 if (a->se_stack.depth > b->se_stack.depth) 153 return (1); 154 if (a->se_stack.depth < b->se_stack.depth) 155 return (-1); 156 for (int i = 0; i < a->se_stack.depth; i++) { 157 if (a->se_stack.pcs[i] > b->se_stack.pcs[i]) 158 return (1); 159 if (a->se_stack.pcs[i] < b->se_stack.pcs[i]) 160 return (-1); 161 } 162 163 return (0); 164 } 165 166 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks); 167 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare); 168 169 static struct mtx epoch_stacks_lock; 170 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF); 171 172 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2); 173 static inline void 174 epoch_trace_report(const char *fmt, ...) 175 { 176 va_list ap; 177 struct stackentry se, *new; 178 179 stack_zero(&se.se_stack); /* XXX: is it really needed? */ 180 stack_save(&se.se_stack); 181 182 /* Tree is never reduced - go lockless. */ 183 if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL) 184 return; 185 186 new = malloc(sizeof(*new), M_STACK, M_NOWAIT); 187 if (new != NULL) { 188 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack)); 189 190 mtx_lock(&epoch_stacks_lock); 191 new = RB_INSERT(stacktree, &epoch_stacks, new); 192 mtx_unlock(&epoch_stacks_lock); 193 if (new != NULL) 194 free(new, M_STACK); 195 } 196 197 va_start(ap, fmt); 198 (void)vprintf(fmt, ap); 199 va_end(ap); 200 stack_print_ddb(&se.se_stack); 201 } 202 203 static inline void 204 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et, 205 const char *file, int line) 206 { 207 epoch_tracker_t iet; 208 209 SLIST_FOREACH(iet, &td->td_epochs, et_tlink) 210 if (iet->et_epoch == epoch) 211 epoch_trace_report("Recursively entering epoch %s " 212 "previously entered at %s:%d\n", 213 epoch->e_name, iet->et_file, iet->et_line); 214 et->et_epoch = epoch; 215 et->et_file = file; 216 et->et_line = line; 217 SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink); 218 } 219 220 static inline void 221 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et, 222 const char *file, int line) 223 { 224 225 if (SLIST_FIRST(&td->td_epochs) != et) { 226 epoch_trace_report("Exiting epoch %s in a not nested order. " 227 "Most recently entered %s at %s:%d\n", 228 epoch->e_name, 229 SLIST_FIRST(&td->td_epochs)->et_epoch->e_name, 230 SLIST_FIRST(&td->td_epochs)->et_file, 231 SLIST_FIRST(&td->td_epochs)->et_line); 232 /* This will panic if et is not anywhere on td_epochs. */ 233 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink); 234 } else 235 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink); 236 } 237 #endif /* EPOCH_TRACE */ 238 239 static void 240 epoch_init(void *arg __unused) 241 { 242 int cpu; 243 244 block_count = counter_u64_alloc(M_WAITOK); 245 migrate_count = counter_u64_alloc(M_WAITOK); 246 turnstile_count = counter_u64_alloc(M_WAITOK); 247 switch_count = counter_u64_alloc(M_WAITOK); 248 epoch_call_count = counter_u64_alloc(M_WAITOK); 249 epoch_call_task_count = counter_u64_alloc(M_WAITOK); 250 251 pcpu_zone_record = uma_zcreate("epoch_record pcpu", 252 sizeof(struct epoch_record), NULL, NULL, NULL, NULL, 253 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 254 CPU_FOREACH(cpu) { 255 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, 256 epoch_call_task, NULL); 257 taskqgroup_attach_cpu(qgroup_softirq, 258 DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL, 259 "epoch call task"); 260 } 261 SLIST_INIT(&thread0.td_epochs); 262 inited = 1; 263 global_epoch = epoch_alloc("Global", 0); 264 global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT); 265 } 266 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL); 267 268 #if !defined(EARLY_AP_STARTUP) 269 static void 270 epoch_init_smp(void *dummy __unused) 271 { 272 inited = 2; 273 } 274 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL); 275 #endif 276 277 static void 278 epoch_ctor(epoch_t epoch) 279 { 280 epoch_record_t er; 281 int cpu; 282 283 epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK); 284 CPU_FOREACH(cpu) { 285 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); 286 bzero(er, sizeof(*er)); 287 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 288 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 289 er->er_cpuid = cpu; 290 er->er_parent = epoch; 291 } 292 } 293 294 static void 295 epoch_adjust_prio(struct thread *td, u_char prio) 296 { 297 298 thread_lock(td); 299 sched_prio(td, prio); 300 thread_unlock(td); 301 } 302 303 epoch_t 304 epoch_alloc(const char *name, int flags) 305 { 306 epoch_t epoch; 307 308 if (__predict_false(!inited)) 309 panic("%s called too early in boot", __func__); 310 epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK); 311 ck_epoch_init(&epoch->e_epoch); 312 epoch_ctor(epoch); 313 MPASS(epoch_count < MAX_EPOCHS - 2); 314 epoch->e_flags = flags; 315 epoch->e_idx = epoch_count; 316 epoch->e_name = name; 317 sx_init(&epoch->e_drain_sx, "epoch-drain-sx"); 318 mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF); 319 allepochs[epoch_count++] = epoch; 320 return (epoch); 321 } 322 323 void 324 epoch_free(epoch_t epoch) 325 { 326 327 epoch_drain_callbacks(epoch); 328 allepochs[epoch->e_idx] = NULL; 329 epoch_wait(global_epoch); 330 uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record); 331 mtx_destroy(&epoch->e_drain_mtx); 332 sx_destroy(&epoch->e_drain_sx); 333 free(epoch, M_EPOCH); 334 } 335 336 static epoch_record_t 337 epoch_currecord(epoch_t epoch) 338 { 339 340 return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu)); 341 } 342 343 #define INIT_CHECK(epoch) \ 344 do { \ 345 if (__predict_false((epoch) == NULL)) \ 346 return; \ 347 } while (0) 348 349 void 350 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE) 351 { 352 struct epoch_record *er; 353 struct thread *td; 354 355 MPASS(cold || epoch != NULL); 356 INIT_CHECK(epoch); 357 MPASS(epoch->e_flags & EPOCH_PREEMPT); 358 td = curthread; 359 #ifdef EPOCH_TRACE 360 epoch_trace_enter(td, epoch, et, file, line); 361 #endif 362 et->et_td = td; 363 td->td_epochnest++; 364 critical_enter(); 365 sched_pin(); 366 td->td_pre_epoch_prio = td->td_priority; 367 er = epoch_currecord(epoch); 368 TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link); 369 ck_epoch_begin(&er->er_record, &et->et_section); 370 critical_exit(); 371 } 372 373 void 374 epoch_enter(epoch_t epoch) 375 { 376 struct thread *td; 377 epoch_record_t er; 378 379 MPASS(cold || epoch != NULL); 380 INIT_CHECK(epoch); 381 td = curthread; 382 td->td_epochnest++; 383 critical_enter(); 384 er = epoch_currecord(epoch); 385 ck_epoch_begin(&er->er_record, NULL); 386 } 387 388 void 389 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE) 390 { 391 struct epoch_record *er; 392 struct thread *td; 393 394 INIT_CHECK(epoch); 395 td = curthread; 396 critical_enter(); 397 sched_unpin(); 398 MPASS(td->td_epochnest); 399 td->td_epochnest--; 400 er = epoch_currecord(epoch); 401 MPASS(epoch->e_flags & EPOCH_PREEMPT); 402 MPASS(et != NULL); 403 MPASS(et->et_td == td); 404 #ifdef INVARIANTS 405 et->et_td = (void*)0xDEADBEEF; 406 #endif 407 ck_epoch_end(&er->er_record, &et->et_section); 408 TAILQ_REMOVE(&er->er_tdlist, et, et_link); 409 er->er_gen++; 410 if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) 411 epoch_adjust_prio(td, td->td_pre_epoch_prio); 412 critical_exit(); 413 #ifdef EPOCH_TRACE 414 epoch_trace_exit(td, epoch, et, file, line); 415 #endif 416 } 417 418 void 419 epoch_exit(epoch_t epoch) 420 { 421 struct thread *td; 422 epoch_record_t er; 423 424 INIT_CHECK(epoch); 425 td = curthread; 426 MPASS(td->td_epochnest); 427 td->td_epochnest--; 428 er = epoch_currecord(epoch); 429 ck_epoch_end(&er->er_record, NULL); 430 critical_exit(); 431 } 432 433 /* 434 * epoch_block_handler_preempt() is a callback from the CK code when another 435 * thread is currently in an epoch section. 436 */ 437 static void 438 epoch_block_handler_preempt(struct ck_epoch *global __unused, 439 ck_epoch_record_t *cr, void *arg __unused) 440 { 441 epoch_record_t record; 442 struct thread *td, *owner, *curwaittd; 443 struct epoch_tracker *tdwait; 444 struct turnstile *ts; 445 struct lock_object *lock; 446 int spincount, gen; 447 int locksheld __unused; 448 449 record = __containerof(cr, struct epoch_record, er_record); 450 td = curthread; 451 locksheld = td->td_locks; 452 spincount = 0; 453 counter_u64_add(block_count, 1); 454 /* 455 * We lost a race and there's no longer any threads 456 * on the CPU in an epoch section. 457 */ 458 if (TAILQ_EMPTY(&record->er_tdlist)) 459 return; 460 461 if (record->er_cpuid != curcpu) { 462 /* 463 * If the head of the list is running, we can wait for it 464 * to remove itself from the list and thus save us the 465 * overhead of a migration 466 */ 467 gen = record->er_gen; 468 thread_unlock(td); 469 /* 470 * We can't actually check if the waiting thread is running 471 * so we simply poll for it to exit before giving up and 472 * migrating. 473 */ 474 do { 475 cpu_spinwait(); 476 } while (!TAILQ_EMPTY(&record->er_tdlist) && 477 gen == record->er_gen && 478 spincount++ < MAX_ADAPTIVE_SPIN); 479 thread_lock(td); 480 /* 481 * If the generation has changed we can poll again 482 * otherwise we need to migrate. 483 */ 484 if (gen != record->er_gen) 485 return; 486 /* 487 * Being on the same CPU as that of the record on which 488 * we need to wait allows us access to the thread 489 * list associated with that CPU. We can then examine the 490 * oldest thread in the queue and wait on its turnstile 491 * until it resumes and so on until a grace period 492 * elapses. 493 * 494 */ 495 counter_u64_add(migrate_count, 1); 496 sched_bind(td, record->er_cpuid); 497 /* 498 * At this point we need to return to the ck code 499 * to scan to see if a grace period has elapsed. 500 * We can't move on to check the thread list, because 501 * in the meantime new threads may have arrived that 502 * in fact belong to a different epoch. 503 */ 504 return; 505 } 506 /* 507 * Try to find a thread in an epoch section on this CPU 508 * waiting on a turnstile. Otherwise find the lowest 509 * priority thread (highest prio value) and drop our priority 510 * to match to allow it to run. 511 */ 512 TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) { 513 /* 514 * Propagate our priority to any other waiters to prevent us 515 * from starving them. They will have their original priority 516 * restore on exit from epoch_wait(). 517 */ 518 curwaittd = tdwait->et_td; 519 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) { 520 critical_enter(); 521 thread_unlock(td); 522 thread_lock(curwaittd); 523 sched_prio(curwaittd, td->td_priority); 524 thread_unlock(curwaittd); 525 thread_lock(td); 526 critical_exit(); 527 } 528 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) && 529 ((ts = curwaittd->td_blocked) != NULL)) { 530 /* 531 * We unlock td to allow turnstile_wait to reacquire 532 * the thread lock. Before unlocking it we enter a 533 * critical section to prevent preemption after we 534 * reenable interrupts by dropping the thread lock in 535 * order to prevent curwaittd from getting to run. 536 */ 537 critical_enter(); 538 thread_unlock(td); 539 540 if (turnstile_lock(ts, &lock, &owner)) { 541 if (ts == curwaittd->td_blocked) { 542 MPASS(TD_IS_INHIBITED(curwaittd) && 543 TD_ON_LOCK(curwaittd)); 544 critical_exit(); 545 turnstile_wait(ts, owner, 546 curwaittd->td_tsqueue); 547 counter_u64_add(turnstile_count, 1); 548 thread_lock(td); 549 return; 550 } 551 turnstile_unlock(ts, lock); 552 } 553 thread_lock(td); 554 critical_exit(); 555 KASSERT(td->td_locks == locksheld, 556 ("%d extra locks held", td->td_locks - locksheld)); 557 } 558 } 559 /* 560 * We didn't find any threads actually blocked on a lock 561 * so we have nothing to do except context switch away. 562 */ 563 counter_u64_add(switch_count, 1); 564 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 565 566 /* 567 * Release the thread lock while yielding to 568 * allow other threads to acquire the lock 569 * pointed to by TDQ_LOCKPTR(td). Else a 570 * deadlock like situation might happen. (HPS) 571 */ 572 thread_unlock(td); 573 thread_lock(td); 574 } 575 576 void 577 epoch_wait_preempt(epoch_t epoch) 578 { 579 struct thread *td; 580 int was_bound; 581 int old_cpu; 582 int old_pinned; 583 u_char old_prio; 584 int locks __unused; 585 586 MPASS(cold || epoch != NULL); 587 INIT_CHECK(epoch); 588 td = curthread; 589 #ifdef INVARIANTS 590 locks = curthread->td_locks; 591 MPASS(epoch->e_flags & EPOCH_PREEMPT); 592 if ((epoch->e_flags & EPOCH_LOCKED) == 0) 593 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 594 "epoch_wait() can be long running"); 595 KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle " 596 "of an epoch section of the same epoch")); 597 #endif 598 thread_lock(td); 599 DROP_GIANT(); 600 601 old_cpu = PCPU_GET(cpuid); 602 old_pinned = td->td_pinned; 603 old_prio = td->td_priority; 604 was_bound = sched_is_bound(td); 605 sched_unbind(td); 606 td->td_pinned = 0; 607 sched_bind(td, old_cpu); 608 609 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, 610 NULL); 611 612 /* restore CPU binding, if any */ 613 if (was_bound != 0) { 614 sched_bind(td, old_cpu); 615 } else { 616 /* get thread back to initial CPU, if any */ 617 if (old_pinned != 0) 618 sched_bind(td, old_cpu); 619 sched_unbind(td); 620 } 621 /* restore pinned after bind */ 622 td->td_pinned = old_pinned; 623 624 /* restore thread priority */ 625 sched_prio(td, old_prio); 626 thread_unlock(td); 627 PICKUP_GIANT(); 628 KASSERT(td->td_locks == locks, 629 ("%d residual locks held", td->td_locks - locks)); 630 } 631 632 static void 633 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, 634 void *arg __unused) 635 { 636 cpu_spinwait(); 637 } 638 639 void 640 epoch_wait(epoch_t epoch) 641 { 642 643 MPASS(cold || epoch != NULL); 644 INIT_CHECK(epoch); 645 MPASS(epoch->e_flags == 0); 646 critical_enter(); 647 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); 648 critical_exit(); 649 } 650 651 void 652 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) 653 { 654 epoch_record_t er; 655 ck_epoch_entry_t *cb; 656 657 cb = (void *)ctx; 658 659 MPASS(callback); 660 /* too early in boot to have epoch set up */ 661 if (__predict_false(epoch == NULL)) 662 goto boottime; 663 #if !defined(EARLY_AP_STARTUP) 664 if (__predict_false(inited < 2)) 665 goto boottime; 666 #endif 667 668 critical_enter(); 669 *DPCPU_PTR(epoch_cb_count) += 1; 670 er = epoch_currecord(epoch); 671 ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback); 672 critical_exit(); 673 return; 674 boottime: 675 callback(ctx); 676 } 677 678 static void 679 epoch_call_task(void *arg __unused) 680 { 681 ck_stack_entry_t *cursor, *head, *next; 682 ck_epoch_record_t *record; 683 epoch_record_t er; 684 epoch_t epoch; 685 ck_stack_t cb_stack; 686 int i, npending, total; 687 688 ck_stack_init(&cb_stack); 689 critical_enter(); 690 epoch_enter(global_epoch); 691 for (total = i = 0; i < epoch_count; i++) { 692 if (__predict_false((epoch = allepochs[i]) == NULL)) 693 continue; 694 er = epoch_currecord(epoch); 695 record = &er->er_record; 696 if ((npending = record->n_pending) == 0) 697 continue; 698 ck_epoch_poll_deferred(record, &cb_stack); 699 total += npending - record->n_pending; 700 } 701 epoch_exit(global_epoch); 702 *DPCPU_PTR(epoch_cb_count) -= total; 703 critical_exit(); 704 705 counter_u64_add(epoch_call_count, total); 706 counter_u64_add(epoch_call_task_count, 1); 707 708 head = ck_stack_batch_pop_npsc(&cb_stack); 709 for (cursor = head; cursor != NULL; cursor = next) { 710 struct ck_epoch_entry *entry = 711 ck_epoch_entry_container(cursor); 712 713 next = CK_STACK_NEXT(cursor); 714 entry->function(entry); 715 } 716 } 717 718 int 719 in_epoch_verbose(epoch_t epoch, int dump_onfail) 720 { 721 struct epoch_tracker *tdwait; 722 struct thread *td; 723 epoch_record_t er; 724 725 td = curthread; 726 if (td->td_epochnest == 0) 727 return (0); 728 if (__predict_false((epoch) == NULL)) 729 return (0); 730 critical_enter(); 731 er = epoch_currecord(epoch); 732 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) 733 if (tdwait->et_td == td) { 734 critical_exit(); 735 return (1); 736 } 737 #ifdef INVARIANTS 738 if (dump_onfail) { 739 MPASS(td->td_pinned); 740 printf("cpu: %d id: %d\n", curcpu, td->td_tid); 741 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) 742 printf("td_tid: %d ", tdwait->et_td->td_tid); 743 printf("\n"); 744 } 745 #endif 746 critical_exit(); 747 return (0); 748 } 749 750 int 751 in_epoch(epoch_t epoch) 752 { 753 return (in_epoch_verbose(epoch, 0)); 754 } 755 756 static void 757 epoch_drain_cb(struct epoch_context *ctx) 758 { 759 struct epoch *epoch = 760 __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent; 761 762 if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) { 763 mtx_lock(&epoch->e_drain_mtx); 764 wakeup(epoch); 765 mtx_unlock(&epoch->e_drain_mtx); 766 } 767 } 768 769 void 770 epoch_drain_callbacks(epoch_t epoch) 771 { 772 epoch_record_t er; 773 struct thread *td; 774 int was_bound; 775 int old_pinned; 776 int old_cpu; 777 int cpu; 778 779 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 780 "epoch_drain_callbacks() may sleep!"); 781 782 /* too early in boot to have epoch set up */ 783 if (__predict_false(epoch == NULL)) 784 return; 785 #if !defined(EARLY_AP_STARTUP) 786 if (__predict_false(inited < 2)) 787 return; 788 #endif 789 DROP_GIANT(); 790 791 sx_xlock(&epoch->e_drain_sx); 792 mtx_lock(&epoch->e_drain_mtx); 793 794 td = curthread; 795 thread_lock(td); 796 old_cpu = PCPU_GET(cpuid); 797 old_pinned = td->td_pinned; 798 was_bound = sched_is_bound(td); 799 sched_unbind(td); 800 td->td_pinned = 0; 801 802 CPU_FOREACH(cpu) 803 epoch->e_drain_count++; 804 CPU_FOREACH(cpu) { 805 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); 806 sched_bind(td, cpu); 807 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb); 808 } 809 810 /* restore CPU binding, if any */ 811 if (was_bound != 0) { 812 sched_bind(td, old_cpu); 813 } else { 814 /* get thread back to initial CPU, if any */ 815 if (old_pinned != 0) 816 sched_bind(td, old_cpu); 817 sched_unbind(td); 818 } 819 /* restore pinned after bind */ 820 td->td_pinned = old_pinned; 821 822 thread_unlock(td); 823 824 while (epoch->e_drain_count != 0) 825 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0); 826 827 mtx_unlock(&epoch->e_drain_mtx); 828 sx_xunlock(&epoch->e_drain_sx); 829 830 PICKUP_GIANT(); 831 } 832 833 void 834 epoch_thread_init(struct thread *td) 835 { 836 837 td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK); 838 } 839 840 void 841 epoch_thread_fini(struct thread *td) 842 { 843 844 free(td->td_et, M_EPOCH); 845 } 846