1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/counter.h> 36 #include <sys/epoch.h> 37 #include <sys/gtaskqueue.h> 38 #include <sys/kernel.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/sysctl.h> 48 #include <sys/turnstile.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_kern.h> 52 53 #include <ck_epoch.h> 54 55 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); 56 57 /* arbitrary --- needs benchmarking */ 58 #define MAX_ADAPTIVE_SPIN 1000 59 #define MAX_EPOCHS 64 60 61 #ifdef __amd64__ 62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2 63 #else 64 #define EPOCH_ALIGN CACHE_LINE_SIZE 65 #endif 66 67 CTASSERT(sizeof(epoch_section_t) == sizeof(ck_epoch_section_t)); 68 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context)); 69 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); 70 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); 71 72 73 /* Stats. */ 74 static counter_u64_t block_count; 75 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, 76 &block_count, "# of times a thread was in an epoch when epoch_wait was called"); 77 static counter_u64_t migrate_count; 78 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, 79 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); 80 static counter_u64_t turnstile_count; 81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, 82 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); 83 static counter_u64_t switch_count; 84 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, 85 &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); 86 static counter_u64_t epoch_call_count; 87 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW, 88 &epoch_call_count, "# of times a callback was deferred"); 89 static counter_u64_t epoch_call_task_count; 90 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW, 91 &epoch_call_task_count, "# of times a callback task was run"); 92 93 TAILQ_HEAD(threadlist, thread); 94 95 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, 96 ck_epoch_entry_container) 97 98 typedef struct epoch_record { 99 ck_epoch_record_t er_record; 100 volatile struct threadlist er_tdlist; 101 volatile uint32_t er_gen; 102 uint32_t er_cpuid; 103 } *epoch_record_t; 104 105 struct epoch_pcpu_state { 106 struct epoch_record eps_record; 107 } __aligned(EPOCH_ALIGN); 108 109 struct epoch { 110 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); 111 struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN); 112 int e_idx; 113 int e_flags; 114 struct epoch_pcpu_state *e_pcpu[0]; 115 }; 116 117 epoch_t allepochs[MAX_EPOCHS]; 118 119 DPCPU_DEFINE(struct grouptask, epoch_cb_task); 120 DPCPU_DEFINE(int, epoch_cb_count); 121 122 static __read_mostly int domcount[MAXMEMDOM]; 123 static __read_mostly int domoffsets[MAXMEMDOM]; 124 static __read_mostly int inited; 125 static __read_mostly int epoch_count; 126 __read_mostly epoch_t global_epoch; 127 __read_mostly epoch_t global_epoch_critical; 128 129 static void epoch_call_task(void *context __unused); 130 131 #if defined(__powerpc64__) || defined(__powerpc__) || !defined(NUMA) 132 static bool usedomains = false; 133 #else 134 static bool usedomains = true; 135 #endif 136 static void 137 epoch_init(void *arg __unused) 138 { 139 int domain, count, cpu; 140 141 block_count = counter_u64_alloc(M_WAITOK); 142 migrate_count = counter_u64_alloc(M_WAITOK); 143 turnstile_count = counter_u64_alloc(M_WAITOK); 144 switch_count = counter_u64_alloc(M_WAITOK); 145 epoch_call_count = counter_u64_alloc(M_WAITOK); 146 epoch_call_task_count = counter_u64_alloc(M_WAITOK); 147 if (usedomains == false) 148 goto done; 149 count = domain = 0; 150 domoffsets[0] = 0; 151 for (domain = 0; domain < vm_ndomains; domain++) { 152 domcount[domain] = CPU_COUNT(&cpuset_domain[domain]); 153 if (bootverbose) 154 printf("domcount[%d] %d\n", domain, domcount[domain]); 155 } 156 for (domain = 1; domain < vm_ndomains; domain++) 157 domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1]; 158 159 for (domain = 0; domain < vm_ndomains; domain++) { 160 if (domcount[domain] == 0) { 161 usedomains = false; 162 break; 163 } 164 } 165 done: 166 CPU_FOREACH(cpu) { 167 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL); 168 taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task"); 169 } 170 inited = 1; 171 global_epoch = epoch_alloc(0); 172 global_epoch_critical = epoch_alloc(EPOCH_CRITICAL); 173 } 174 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL); 175 176 static void 177 epoch_init_numa(epoch_t epoch) 178 { 179 int domain, cpu_offset; 180 struct epoch_pcpu_state *eps; 181 epoch_record_t er; 182 183 for (domain = 0; domain < vm_ndomains; domain++) { 184 eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH, 185 domain, M_ZERO|M_WAITOK); 186 epoch->e_pcpu_dom[domain] = eps; 187 cpu_offset = domoffsets[domain]; 188 for (int i = 0; i < domcount[domain]; i++, eps++) { 189 epoch->e_pcpu[cpu_offset + i] = eps; 190 er = &eps->eps_record; 191 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 192 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 193 er->er_cpuid = cpu_offset + i; 194 } 195 } 196 } 197 198 static void 199 epoch_init_legacy(epoch_t epoch) 200 { 201 struct epoch_pcpu_state *eps; 202 epoch_record_t er; 203 204 eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK); 205 epoch->e_pcpu_dom[0] = eps; 206 for (int i = 0; i < mp_ncpus; i++, eps++) { 207 epoch->e_pcpu[i] = eps; 208 er = &eps->eps_record; 209 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 210 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 211 er->er_cpuid = i; 212 } 213 } 214 215 epoch_t 216 epoch_alloc(int flags) 217 { 218 epoch_t epoch; 219 220 if (__predict_false(!inited)) 221 panic("%s called too early in boot", __func__); 222 epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*), 223 M_EPOCH, M_ZERO|M_WAITOK); 224 ck_epoch_init(&epoch->e_epoch); 225 if (usedomains) 226 epoch_init_numa(epoch); 227 else 228 epoch_init_legacy(epoch); 229 MPASS(epoch_count < MAX_EPOCHS-2); 230 epoch->e_flags = flags; 231 epoch->e_idx = epoch_count; 232 allepochs[epoch_count++] = epoch; 233 return (epoch); 234 } 235 236 void 237 epoch_free(epoch_t epoch) 238 { 239 int domain; 240 #ifdef INVARIANTS 241 struct epoch_pcpu_state *eps; 242 int cpu; 243 244 CPU_FOREACH(cpu) { 245 eps = epoch->e_pcpu[cpu]; 246 MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist)); 247 } 248 #endif 249 allepochs[epoch->e_idx] = NULL; 250 epoch_wait_critical(global_epoch_critical); 251 if (usedomains) 252 for (domain = 0; domain < vm_ndomains; domain++) 253 free_domain(epoch->e_pcpu_dom[domain], M_EPOCH); 254 else 255 free(epoch->e_pcpu_dom[0], M_EPOCH); 256 free(epoch, M_EPOCH); 257 } 258 259 #define INIT_CHECK(epoch) \ 260 do { \ 261 if (__predict_false((epoch) == NULL)) \ 262 return; \ 263 } while (0) 264 265 void 266 epoch_enter_internal(epoch_t epoch, struct thread *td) 267 { 268 struct epoch_pcpu_state *eps; 269 270 INIT_CHECK(epoch); 271 critical_enter(); 272 td->td_pre_epoch_prio = td->td_priority; 273 eps = epoch->e_pcpu[curcpu]; 274 #ifdef INVARIANTS 275 MPASS(td->td_epochnest < UCHAR_MAX - 2); 276 if (td->td_epochnest > 1) { 277 struct thread *curtd; 278 int found = 0; 279 280 TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq) 281 if (curtd == td) 282 found = 1; 283 KASSERT(found, ("recursing on a second epoch")); 284 critical_exit(); 285 return; 286 } 287 #endif 288 TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq); 289 sched_pin(); 290 ck_epoch_begin(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section); 291 critical_exit(); 292 } 293 294 295 void 296 epoch_enter_critical(epoch_t epoch) 297 { 298 ck_epoch_record_t *record; 299 ck_epoch_section_t *section; 300 struct thread *td; 301 302 section = NULL; 303 td = curthread; 304 critical_enter(); 305 if (__predict_true(td->td_epochnest++ == 0)) 306 section = (ck_epoch_section_t*)&td->td_epoch_section; 307 308 record = &epoch->e_pcpu[curcpu]->eps_record.er_record; 309 ck_epoch_begin(record, section); 310 } 311 312 void 313 epoch_exit_internal(epoch_t epoch, struct thread *td) 314 { 315 struct epoch_pcpu_state *eps; 316 317 MPASS(td->td_epochnest == 0); 318 INIT_CHECK(epoch); 319 critical_enter(); 320 eps = epoch->e_pcpu[curcpu]; 321 322 ck_epoch_end(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section); 323 TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq); 324 eps->eps_record.er_gen++; 325 sched_unpin(); 326 if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) { 327 thread_lock(td); 328 sched_prio(td, td->td_pre_epoch_prio); 329 thread_unlock(td); 330 } 331 critical_exit(); 332 } 333 334 void 335 epoch_exit_critical(epoch_t epoch) 336 { 337 ck_epoch_record_t *record; 338 ck_epoch_section_t *section; 339 struct thread *td; 340 341 section = NULL; 342 td = curthread; 343 MPASS(td->td_critnest); 344 if (__predict_true(td->td_epochnest-- == 1)) 345 section = (ck_epoch_section_t*)&td->td_epoch_section; 346 record = &epoch->e_pcpu[curcpu]->eps_record.er_record; 347 ck_epoch_end(record, section); 348 critical_exit(); 349 } 350 351 /* 352 * epoch_block_handler is a callback from the ck code when another thread is 353 * currently in an epoch section. 354 */ 355 static void 356 epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr, 357 void *arg __unused) 358 { 359 epoch_record_t record; 360 struct epoch_pcpu_state *eps; 361 struct thread *td, *tdwait, *owner; 362 struct turnstile *ts; 363 struct lock_object *lock; 364 int spincount, gen; 365 366 eps = arg; 367 record = __containerof(cr, struct epoch_record, er_record); 368 td = curthread; 369 spincount = 0; 370 counter_u64_add(block_count, 1); 371 if (record->er_cpuid != curcpu) { 372 /* 373 * If the head of the list is running, we can wait for it 374 * to remove itself from the list and thus save us the 375 * overhead of a migration 376 */ 377 if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL && 378 TD_IS_RUNNING(tdwait)) { 379 gen = record->er_gen; 380 thread_unlock(td); 381 do { 382 cpu_spinwait(); 383 } while (tdwait == TAILQ_FIRST(&record->er_tdlist) && 384 gen == record->er_gen && TD_IS_RUNNING(tdwait) && 385 spincount++ < MAX_ADAPTIVE_SPIN); 386 thread_lock(td); 387 return; 388 } 389 390 /* 391 * Being on the same CPU as that of the record on which 392 * we need to wait allows us access to the thread 393 * list associated with that CPU. We can then examine the 394 * oldest thread in the queue and wait on its turnstile 395 * until it resumes and so on until a grace period 396 * elapses. 397 * 398 */ 399 counter_u64_add(migrate_count, 1); 400 sched_bind(td, record->er_cpuid); 401 /* 402 * At this point we need to return to the ck code 403 * to scan to see if a grace period has elapsed. 404 * We can't move on to check the thread list, because 405 * in the meantime new threads may have arrived that 406 * in fact belong to a different epoch. 407 */ 408 return; 409 } 410 /* 411 * Try to find a thread in an epoch section on this CPU 412 * waiting on a turnstile. Otherwise find the lowest 413 * priority thread (highest prio value) and drop our priority 414 * to match to allow it to run. 415 */ 416 TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) { 417 /* 418 * Propagate our priority to any other waiters to prevent us 419 * from starving them. They will have their original priority 420 * restore on exit from epoch_wait(). 421 */ 422 if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) { 423 critical_enter(); 424 thread_unlock(td); 425 thread_lock(tdwait); 426 sched_prio(tdwait, td->td_priority); 427 thread_unlock(tdwait); 428 thread_lock(td); 429 critical_exit(); 430 } 431 if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) && 432 ((ts = tdwait->td_blocked) != NULL)) { 433 /* 434 * We unlock td to allow turnstile_wait to reacquire the 435 * the thread lock. Before unlocking it we enter a critical 436 * section to prevent preemption after we reenable interrupts 437 * by dropping the thread lock in order to prevent tdwait 438 * from getting to run. 439 */ 440 critical_enter(); 441 thread_unlock(td); 442 owner = turnstile_lock(ts, &lock); 443 /* 444 * The owner pointer indicates that the lock succeeded. Only 445 * in case we hold the lock and the turnstile we locked is still 446 * the one that tdwait is blocked on can we continue. Otherwise 447 * The turnstile pointer has been changed out from underneath 448 * us, as in the case where the lock holder has signalled tdwait, 449 * and we need to continue. 450 */ 451 if (owner != NULL && ts == tdwait->td_blocked) { 452 MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait)); 453 critical_exit(); 454 turnstile_wait(ts, owner, tdwait->td_tsqueue); 455 counter_u64_add(turnstile_count, 1); 456 thread_lock(td); 457 return; 458 } else if (owner != NULL) 459 turnstile_unlock(ts, lock); 460 thread_lock(td); 461 critical_exit(); 462 KASSERT(td->td_locks == 0, 463 ("%d locks held", td->td_locks)); 464 } 465 } 466 /* 467 * We didn't find any threads actually blocked on a lock 468 * so we have nothing to do except context switch away. 469 */ 470 counter_u64_add(switch_count, 1); 471 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 472 473 /* 474 * Release the thread lock while yielding to 475 * allow other threads to acquire the lock 476 * pointed to by TDQ_LOCKPTR(td). Else a 477 * deadlock like situation might happen. (HPS) 478 */ 479 thread_unlock(td); 480 thread_lock(td); 481 } 482 483 void 484 epoch_wait(epoch_t epoch) 485 { 486 struct thread *td; 487 int was_bound; 488 int old_cpu; 489 int old_pinned; 490 u_char old_prio; 491 #ifdef INVARIANTS 492 int locks; 493 494 locks = curthread->td_locks; 495 #endif 496 INIT_CHECK(epoch); 497 498 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 499 "epoch_wait() can sleep"); 500 501 td = curthread; 502 KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section")); 503 thread_lock(td); 504 505 DROP_GIANT(); 506 507 old_cpu = PCPU_GET(cpuid); 508 old_pinned = td->td_pinned; 509 old_prio = td->td_priority; 510 was_bound = sched_is_bound(td); 511 sched_unbind(td); 512 td->td_pinned = 0; 513 sched_bind(td, old_cpu); 514 515 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); 516 517 /* restore CPU binding, if any */ 518 if (was_bound != 0) { 519 sched_bind(td, old_cpu); 520 } else { 521 /* get thread back to initial CPU, if any */ 522 if (old_pinned != 0) 523 sched_bind(td, old_cpu); 524 sched_unbind(td); 525 } 526 /* restore pinned after bind */ 527 td->td_pinned = old_pinned; 528 529 /* restore thread priority */ 530 sched_prio(td, old_prio); 531 thread_unlock(td); 532 PICKUP_GIANT(); 533 KASSERT(td->td_locks == locks, 534 ("%d residual locks held", td->td_locks - locks)); 535 } 536 537 static void 538 epoch_block_handler_critical(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, 539 void *arg __unused) 540 { 541 cpu_spinwait(); 542 } 543 544 void 545 epoch_wait_critical(epoch_t epoch) 546 { 547 548 MPASS(epoch->e_flags & EPOCH_CRITICAL); 549 critical_enter(); 550 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_critical, NULL); 551 critical_exit(); 552 } 553 554 void 555 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) 556 { 557 struct epoch_pcpu_state *eps; 558 ck_epoch_entry_t *cb; 559 560 cb = (void *)ctx; 561 562 MPASS(callback); 563 /* too early in boot to have epoch set up */ 564 if (__predict_false(epoch == NULL)) 565 goto boottime; 566 567 critical_enter(); 568 *DPCPU_PTR(epoch_cb_count) += 1; 569 eps = epoch->e_pcpu[curcpu]; 570 ck_epoch_call(&eps->eps_record.er_record, cb, (ck_epoch_cb_t*)callback); 571 critical_exit(); 572 return; 573 boottime: 574 callback(ctx); 575 } 576 577 static void 578 epoch_call_task(void *arg __unused) 579 { 580 ck_stack_entry_t *cursor, *head, *next; 581 ck_epoch_record_t *record; 582 epoch_t epoch; 583 ck_stack_t cb_stack; 584 int i, npending, total; 585 586 ck_stack_init(&cb_stack); 587 critical_enter(); 588 epoch_enter_critical(global_epoch_critical); 589 for (total = i = 0; i < epoch_count; i++) { 590 if (__predict_false((epoch = allepochs[i]) == NULL)) 591 continue; 592 record = &epoch->e_pcpu[curcpu]->eps_record.er_record; 593 if ((npending = record->n_pending) == 0) 594 continue; 595 ck_epoch_poll_deferred(record, &cb_stack); 596 total += npending - record->n_pending; 597 } 598 epoch_exit_critical(global_epoch_critical); 599 *DPCPU_PTR(epoch_cb_count) -= total; 600 critical_exit(); 601 602 counter_u64_add(epoch_call_count, total); 603 counter_u64_add(epoch_call_task_count, 1); 604 605 head = ck_stack_batch_pop_npsc(&cb_stack); 606 for (cursor = head; cursor != NULL; cursor = next) { 607 struct ck_epoch_entry *entry = 608 ck_epoch_entry_container(cursor); 609 next = CK_STACK_NEXT(cursor); 610 entry->function(entry); 611 } 612 } 613 614 int 615 in_epoch(void) 616 { 617 return (curthread->td_epochnest != 0); 618 } 619