xref: /freebsd/sys/kern/subr_epoch.c (revision ab1e0d2410ece7d391a5b1e2cbc9d1e9857c2fdb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_kern.h>
52 #include <vm/uma.h>
53 
54 #include <ck_epoch.h>
55 
56 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
57 
58 #ifdef __amd64__
59 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
60 #else
61 #define EPOCH_ALIGN CACHE_LINE_SIZE
62 #endif
63 
64 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
65 typedef struct epoch_record {
66 	ck_epoch_record_t er_record;
67 	volatile struct epoch_tdlist er_tdlist;
68 	volatile uint32_t er_gen;
69 	uint32_t er_cpuid;
70 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
71 
72 struct epoch {
73 	struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
74 	epoch_record_t e_pcpu_record;
75 	int	e_idx;
76 	int	e_flags;
77 };
78 
79 /* arbitrary --- needs benchmarking */
80 #define MAX_ADAPTIVE_SPIN 100
81 #define MAX_EPOCHS 64
82 
83 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
84 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
85 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
86 
87 /* Stats. */
88 static counter_u64_t block_count;
89 
90 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
91     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
92 static counter_u64_t migrate_count;
93 
94 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
95     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
96 static counter_u64_t turnstile_count;
97 
98 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
99     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
100 static counter_u64_t switch_count;
101 
102 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
103     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
104 static counter_u64_t epoch_call_count;
105 
106 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
107     &epoch_call_count, "# of times a callback was deferred");
108 static counter_u64_t epoch_call_task_count;
109 
110 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
111     &epoch_call_task_count, "# of times a callback task was run");
112 
113 TAILQ_HEAD (threadlist, thread);
114 
115 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
116     ck_epoch_entry_container)
117 
118 epoch_t	allepochs[MAX_EPOCHS];
119 
120 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
121 DPCPU_DEFINE(int, epoch_cb_count);
122 
123 static __read_mostly int inited;
124 static __read_mostly int epoch_count;
125 __read_mostly epoch_t global_epoch;
126 __read_mostly epoch_t global_epoch_preempt;
127 
128 static void epoch_call_task(void *context __unused);
129 static 	uma_zone_t pcpu_zone_record;
130 
131 static void
132 epoch_init(void *arg __unused)
133 {
134 	int cpu;
135 
136 	block_count = counter_u64_alloc(M_WAITOK);
137 	migrate_count = counter_u64_alloc(M_WAITOK);
138 	turnstile_count = counter_u64_alloc(M_WAITOK);
139 	switch_count = counter_u64_alloc(M_WAITOK);
140 	epoch_call_count = counter_u64_alloc(M_WAITOK);
141 	epoch_call_task_count = counter_u64_alloc(M_WAITOK);
142 
143 	pcpu_zone_record = uma_zcreate("epoch_record pcpu",
144 	    sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
145 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
146 	CPU_FOREACH(cpu) {
147 		GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
148 		    epoch_call_task, NULL);
149 		taskqgroup_attach_cpu(qgroup_softirq,
150 		    DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1,
151 		    "epoch call task");
152 	}
153 	inited = 1;
154 	global_epoch = epoch_alloc(0);
155 	global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
156 }
157 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
158 
159 #if !defined(EARLY_AP_STARTUP)
160 static void
161 epoch_init_smp(void *dummy __unused)
162 {
163 	inited = 2;
164 }
165 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
166 #endif
167 
168 static void
169 epoch_ctor(epoch_t epoch)
170 {
171 	epoch_record_t er;
172 	int cpu;
173 
174 	epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
175 	CPU_FOREACH(cpu) {
176 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
177 		bzero(er, sizeof(*er));
178 		ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
179 		TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
180 		er->er_cpuid = cpu;
181 	}
182 }
183 
184 static void
185 epoch_adjust_prio(struct thread *td, u_char prio)
186 {
187 
188 	thread_lock(td);
189 	sched_prio(td, prio);
190 	thread_unlock(td);
191 }
192 
193 epoch_t
194 epoch_alloc(int flags)
195 {
196 	epoch_t epoch;
197 
198 	if (__predict_false(!inited))
199 		panic("%s called too early in boot", __func__);
200 	epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK);
201 	ck_epoch_init(&epoch->e_epoch);
202 	epoch_ctor(epoch);
203 	MPASS(epoch_count < MAX_EPOCHS - 2);
204 	epoch->e_flags = flags;
205 	epoch->e_idx = epoch_count;
206 	allepochs[epoch_count++] = epoch;
207 	return (epoch);
208 }
209 
210 void
211 epoch_free(epoch_t epoch)
212 {
213 #ifdef INVARIANTS
214 	struct epoch_record *er;
215 	int cpu;
216 
217 	CPU_FOREACH(cpu) {
218 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
219 		MPASS(TAILQ_EMPTY(&er->er_tdlist));
220 	}
221 #endif
222 	allepochs[epoch->e_idx] = NULL;
223 	epoch_wait(global_epoch);
224 	uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
225 	free(epoch, M_EPOCH);
226 }
227 
228 static epoch_record_t
229 epoch_currecord(epoch_t epoch)
230 {
231 
232 	return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
233 }
234 
235 #define INIT_CHECK(epoch)					\
236 	do {							\
237 		if (__predict_false((epoch) == NULL))		\
238 			return;					\
239 	} while (0)
240 
241 void
242 epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et)
243 {
244 	struct epoch_record *er;
245 	struct thread *td;
246 
247 	MPASS(cold || epoch != NULL);
248 	INIT_CHECK(epoch);
249 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
250 #ifdef EPOCH_TRACKER_DEBUG
251 	et->et_magic_pre = EPOCH_MAGIC0;
252 	et->et_magic_post = EPOCH_MAGIC1;
253 #endif
254 	td = curthread;
255 	et->et_td = td;
256 	td->td_epochnest++;
257 	critical_enter();
258 	sched_pin();
259 
260 	td->td_pre_epoch_prio = td->td_priority;
261 	er = epoch_currecord(epoch);
262 	TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
263 	ck_epoch_begin(&er->er_record, &et->et_section);
264 	critical_exit();
265 }
266 
267 void
268 epoch_enter(epoch_t epoch)
269 {
270 	struct thread *td;
271 	epoch_record_t er;
272 
273 	MPASS(cold || epoch != NULL);
274 	INIT_CHECK(epoch);
275 	td = curthread;
276 
277 	td->td_epochnest++;
278 	critical_enter();
279 	er = epoch_currecord(epoch);
280 	ck_epoch_begin(&er->er_record, NULL);
281 }
282 
283 void
284 epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et)
285 {
286 	struct epoch_record *er;
287 	struct thread *td;
288 
289 	INIT_CHECK(epoch);
290 	td = curthread;
291 	critical_enter();
292 	sched_unpin();
293 	MPASS(td->td_epochnest);
294 	td->td_epochnest--;
295 	er = epoch_currecord(epoch);
296 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
297 	MPASS(et != NULL);
298 	MPASS(et->et_td == td);
299 #ifdef EPOCH_TRACKER_DEBUG
300 	MPASS(et->et_magic_pre == EPOCH_MAGIC0);
301 	MPASS(et->et_magic_post == EPOCH_MAGIC1);
302 	et->et_magic_pre = 0;
303 	et->et_magic_post = 0;
304 #endif
305 #ifdef INVARIANTS
306 	et->et_td = (void*)0xDEADBEEF;
307 #endif
308 	ck_epoch_end(&er->er_record, &et->et_section);
309 	TAILQ_REMOVE(&er->er_tdlist, et, et_link);
310 	er->er_gen++;
311 	if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
312 		epoch_adjust_prio(td, td->td_pre_epoch_prio);
313 	critical_exit();
314 }
315 
316 void
317 epoch_exit(epoch_t epoch)
318 {
319 	struct thread *td;
320 	epoch_record_t er;
321 
322 	INIT_CHECK(epoch);
323 	td = curthread;
324 	MPASS(td->td_epochnest);
325 	td->td_epochnest--;
326 	er = epoch_currecord(epoch);
327 	ck_epoch_end(&er->er_record, NULL);
328 	critical_exit();
329 }
330 
331 /*
332  * epoch_block_handler_preempt() is a callback from the CK code when another
333  * thread is currently in an epoch section.
334  */
335 static void
336 epoch_block_handler_preempt(struct ck_epoch *global __unused,
337     ck_epoch_record_t *cr, void *arg __unused)
338 {
339 	epoch_record_t record;
340 	struct thread *td, *owner, *curwaittd;
341 	struct epoch_tracker *tdwait;
342 	struct turnstile *ts;
343 	struct lock_object *lock;
344 	int spincount, gen;
345 	int locksheld __unused;
346 
347 	record = __containerof(cr, struct epoch_record, er_record);
348 	td = curthread;
349 	locksheld = td->td_locks;
350 	spincount = 0;
351 	counter_u64_add(block_count, 1);
352 	/*
353 	 * We lost a race and there's no longer any threads
354 	 * on the CPU in an epoch section.
355 	 */
356 	if (TAILQ_EMPTY(&record->er_tdlist))
357 		return;
358 
359 	if (record->er_cpuid != curcpu) {
360 		/*
361 		 * If the head of the list is running, we can wait for it
362 		 * to remove itself from the list and thus save us the
363 		 * overhead of a migration
364 		 */
365 		gen = record->er_gen;
366 		thread_unlock(td);
367 		/*
368 		 * We can't actually check if the waiting thread is running
369 		 * so we simply poll for it to exit before giving up and
370 		 * migrating.
371 		 */
372 		do {
373 			cpu_spinwait();
374 		} while (!TAILQ_EMPTY(&record->er_tdlist) &&
375 				 gen == record->er_gen &&
376 				 spincount++ < MAX_ADAPTIVE_SPIN);
377 		thread_lock(td);
378 		/*
379 		 * If the generation has changed we can poll again
380 		 * otherwise we need to migrate.
381 		 */
382 		if (gen != record->er_gen)
383 			return;
384 		/*
385 		 * Being on the same CPU as that of the record on which
386 		 * we need to wait allows us access to the thread
387 		 * list associated with that CPU. We can then examine the
388 		 * oldest thread in the queue and wait on its turnstile
389 		 * until it resumes and so on until a grace period
390 		 * elapses.
391 		 *
392 		 */
393 		counter_u64_add(migrate_count, 1);
394 		sched_bind(td, record->er_cpuid);
395 		/*
396 		 * At this point we need to return to the ck code
397 		 * to scan to see if a grace period has elapsed.
398 		 * We can't move on to check the thread list, because
399 		 * in the meantime new threads may have arrived that
400 		 * in fact belong to a different epoch.
401 		 */
402 		return;
403 	}
404 	/*
405 	 * Try to find a thread in an epoch section on this CPU
406 	 * waiting on a turnstile. Otherwise find the lowest
407 	 * priority thread (highest prio value) and drop our priority
408 	 * to match to allow it to run.
409 	 */
410 	TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
411 		/*
412 		 * Propagate our priority to any other waiters to prevent us
413 		 * from starving them. They will have their original priority
414 		 * restore on exit from epoch_wait().
415 		 */
416 		curwaittd = tdwait->et_td;
417 		if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
418 			critical_enter();
419 			thread_unlock(td);
420 			thread_lock(curwaittd);
421 			sched_prio(curwaittd, td->td_priority);
422 			thread_unlock(curwaittd);
423 			thread_lock(td);
424 			critical_exit();
425 		}
426 		if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
427 		    ((ts = curwaittd->td_blocked) != NULL)) {
428 			/*
429 			 * We unlock td to allow turnstile_wait to reacquire
430 			 * the thread lock. Before unlocking it we enter a
431 			 * critical section to prevent preemption after we
432 			 * reenable interrupts by dropping the thread lock in
433 			 * order to prevent curwaittd from getting to run.
434 			 */
435 			critical_enter();
436 			thread_unlock(td);
437 			owner = turnstile_lock(ts, &lock);
438 			/*
439 			 * The owner pointer indicates that the lock succeeded.
440 			 * Only in case we hold the lock and the turnstile we
441 			 * locked is still the one that curwaittd is blocked on
442 			 * can we continue. Otherwise the turnstile pointer has
443 			 * been changed out from underneath us, as in the case
444 			 * where the lock holder has signalled curwaittd,
445 			 * and we need to continue.
446 			 */
447 			if (owner != NULL && ts == curwaittd->td_blocked) {
448 				MPASS(TD_IS_INHIBITED(curwaittd) &&
449 				    TD_ON_LOCK(curwaittd));
450 				critical_exit();
451 				turnstile_wait(ts, owner, curwaittd->td_tsqueue);
452 				counter_u64_add(turnstile_count, 1);
453 				thread_lock(td);
454 				return;
455 			} else if (owner != NULL)
456 				turnstile_unlock(ts, lock);
457 			thread_lock(td);
458 			critical_exit();
459 			KASSERT(td->td_locks == locksheld,
460 			    ("%d extra locks held", td->td_locks - locksheld));
461 		}
462 	}
463 	/*
464 	 * We didn't find any threads actually blocked on a lock
465 	 * so we have nothing to do except context switch away.
466 	 */
467 	counter_u64_add(switch_count, 1);
468 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
469 
470 	/*
471 	 * Release the thread lock while yielding to
472 	 * allow other threads to acquire the lock
473 	 * pointed to by TDQ_LOCKPTR(td). Else a
474 	 * deadlock like situation might happen. (HPS)
475 	 */
476 	thread_unlock(td);
477 	thread_lock(td);
478 }
479 
480 void
481 epoch_wait_preempt(epoch_t epoch)
482 {
483 	struct thread *td;
484 	int was_bound;
485 	int old_cpu;
486 	int old_pinned;
487 	u_char old_prio;
488 	int locks __unused;
489 
490 	MPASS(cold || epoch != NULL);
491 	INIT_CHECK(epoch);
492 	td = curthread;
493 #ifdef INVARIANTS
494 	locks = curthread->td_locks;
495 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
496 	if ((epoch->e_flags & EPOCH_LOCKED) == 0)
497 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
498 		    "epoch_wait() can be long running");
499 	KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
500 	    "of an epoch section of the same epoch"));
501 #endif
502 	thread_lock(td);
503 	DROP_GIANT();
504 
505 	old_cpu = PCPU_GET(cpuid);
506 	old_pinned = td->td_pinned;
507 	old_prio = td->td_priority;
508 	was_bound = sched_is_bound(td);
509 	sched_unbind(td);
510 	td->td_pinned = 0;
511 	sched_bind(td, old_cpu);
512 
513 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
514 	    NULL);
515 
516 	/* restore CPU binding, if any */
517 	if (was_bound != 0) {
518 		sched_bind(td, old_cpu);
519 	} else {
520 		/* get thread back to initial CPU, if any */
521 		if (old_pinned != 0)
522 			sched_bind(td, old_cpu);
523 		sched_unbind(td);
524 	}
525 	/* restore pinned after bind */
526 	td->td_pinned = old_pinned;
527 
528 	/* restore thread priority */
529 	sched_prio(td, old_prio);
530 	thread_unlock(td);
531 	PICKUP_GIANT();
532 	KASSERT(td->td_locks == locks,
533 	    ("%d residual locks held", td->td_locks - locks));
534 }
535 
536 static void
537 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
538     void *arg __unused)
539 {
540 	cpu_spinwait();
541 }
542 
543 void
544 epoch_wait(epoch_t epoch)
545 {
546 
547 	MPASS(cold || epoch != NULL);
548 	INIT_CHECK(epoch);
549 	MPASS(epoch->e_flags == 0);
550 	critical_enter();
551 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
552 	critical_exit();
553 }
554 
555 void
556 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
557 {
558 	epoch_record_t er;
559 	ck_epoch_entry_t *cb;
560 
561 	cb = (void *)ctx;
562 
563 	MPASS(callback);
564 	/* too early in boot to have epoch set up */
565 	if (__predict_false(epoch == NULL))
566 		goto boottime;
567 #if !defined(EARLY_AP_STARTUP)
568 	if (__predict_false(inited < 2))
569 		goto boottime;
570 #endif
571 
572 	critical_enter();
573 	*DPCPU_PTR(epoch_cb_count) += 1;
574 	er = epoch_currecord(epoch);
575 	ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
576 	critical_exit();
577 	return;
578 boottime:
579 	callback(ctx);
580 }
581 
582 static void
583 epoch_call_task(void *arg __unused)
584 {
585 	ck_stack_entry_t *cursor, *head, *next;
586 	ck_epoch_record_t *record;
587 	epoch_record_t er;
588 	epoch_t epoch;
589 	ck_stack_t cb_stack;
590 	int i, npending, total;
591 
592 	ck_stack_init(&cb_stack);
593 	critical_enter();
594 	epoch_enter(global_epoch);
595 	for (total = i = 0; i < epoch_count; i++) {
596 		if (__predict_false((epoch = allepochs[i]) == NULL))
597 			continue;
598 		er = epoch_currecord(epoch);
599 		record = &er->er_record;
600 		if ((npending = record->n_pending) == 0)
601 			continue;
602 		ck_epoch_poll_deferred(record, &cb_stack);
603 		total += npending - record->n_pending;
604 	}
605 	epoch_exit(global_epoch);
606 	*DPCPU_PTR(epoch_cb_count) -= total;
607 	critical_exit();
608 
609 	counter_u64_add(epoch_call_count, total);
610 	counter_u64_add(epoch_call_task_count, 1);
611 
612 	head = ck_stack_batch_pop_npsc(&cb_stack);
613 	for (cursor = head; cursor != NULL; cursor = next) {
614 		struct ck_epoch_entry *entry =
615 		    ck_epoch_entry_container(cursor);
616 
617 		next = CK_STACK_NEXT(cursor);
618 		entry->function(entry);
619 	}
620 }
621 
622 int
623 in_epoch_verbose(epoch_t epoch, int dump_onfail)
624 {
625 	struct epoch_tracker *tdwait;
626 	struct thread *td;
627 	epoch_record_t er;
628 
629 	td = curthread;
630 	if (td->td_epochnest == 0)
631 		return (0);
632 	if (__predict_false((epoch) == NULL))
633 		return (0);
634 	critical_enter();
635 	er = epoch_currecord(epoch);
636 	TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
637 		if (tdwait->et_td == td) {
638 			critical_exit();
639 			return (1);
640 		}
641 #ifdef INVARIANTS
642 	if (dump_onfail) {
643 		MPASS(td->td_pinned);
644 		printf("cpu: %d id: %d\n", curcpu, td->td_tid);
645 		TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
646 			printf("td_tid: %d ", tdwait->et_td->td_tid);
647 		printf("\n");
648 	}
649 #endif
650 	critical_exit();
651 	return (0);
652 }
653 
654 int
655 in_epoch(epoch_t epoch)
656 {
657 	return (in_epoch_verbose(epoch, 0));
658 }
659 
660 void
661 epoch_thread_init(struct thread *td)
662 {
663 
664 	td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK);
665 }
666 
667 void
668 epoch_thread_fini(struct thread *td)
669 {
670 
671 	free(td->td_et, M_EPOCH);
672 }
673