xref: /freebsd/sys/kern/subr_epoch.c (revision 964219664dcec4198441910904fb9064569d174d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/counter.h>
36 #include <sys/epoch.h>
37 #include <sys/gtaskqueue.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_kern.h>
52 
53 #include <ck_epoch.h>
54 
55 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
56 
57 /* arbitrary --- needs benchmarking */
58 #define MAX_ADAPTIVE_SPIN 1000
59 #define MAX_EPOCHS 64
60 
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66 
67 CTASSERT(sizeof(epoch_section_t) == sizeof(ck_epoch_section_t));
68 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
69 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
70 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
71 
72 
73 /* Stats. */
74 static counter_u64_t block_count;
75 
76 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
77     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
78 static counter_u64_t migrate_count;
79 
80 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
81     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
82 static counter_u64_t turnstile_count;
83 
84 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
85     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
86 static counter_u64_t switch_count;
87 
88 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
89     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
90 static counter_u64_t epoch_call_count;
91 
92 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
93     &epoch_call_count, "# of times a callback was deferred");
94 static counter_u64_t epoch_call_task_count;
95 
96 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
97     &epoch_call_task_count, "# of times a callback task was run");
98 
99 TAILQ_HEAD (threadlist, thread);
100 
101 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
102     ck_epoch_entry_container)
103 typedef struct epoch_record {
104 	ck_epoch_record_t er_record;
105 	volatile struct threadlist er_tdlist;
106 	volatile uint32_t er_gen;
107 	uint32_t er_cpuid;
108 }      *epoch_record_t;
109 
110 struct epoch_pcpu_state {
111 	struct epoch_record eps_record;
112 }	__aligned(EPOCH_ALIGN);
113 
114 struct epoch {
115 	struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
116 	struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN);
117 	int	e_idx;
118 	int	e_flags;
119 	struct epoch_pcpu_state *e_pcpu[0];
120 };
121 
122 epoch_t	allepochs[MAX_EPOCHS];
123 
124 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
125 DPCPU_DEFINE(int, epoch_cb_count);
126 
127 static __read_mostly int domcount[MAXMEMDOM];
128 static __read_mostly int domoffsets[MAXMEMDOM];
129 static __read_mostly int inited;
130 static __read_mostly int epoch_count;
131 __read_mostly epoch_t global_epoch;
132 __read_mostly epoch_t global_epoch_preempt;
133 
134 static void epoch_call_task(void *context __unused);
135 
136 #if defined(__powerpc64__) || defined(__powerpc__) || !defined(NUMA)
137 static bool usedomains = false;
138 #else
139 static bool usedomains = true;
140 #endif
141 static void
142 epoch_init(void *arg __unused)
143 {
144 	int domain, cpu;
145 
146 	block_count = counter_u64_alloc(M_WAITOK);
147 	migrate_count = counter_u64_alloc(M_WAITOK);
148 	turnstile_count = counter_u64_alloc(M_WAITOK);
149 	switch_count = counter_u64_alloc(M_WAITOK);
150 	epoch_call_count = counter_u64_alloc(M_WAITOK);
151 	epoch_call_task_count = counter_u64_alloc(M_WAITOK);
152 	if (usedomains == false)
153 		goto done;
154 	domain = 0;
155 	domoffsets[0] = 0;
156 	for (domain = 0; domain < vm_ndomains; domain++) {
157 		domcount[domain] = CPU_COUNT(&cpuset_domain[domain]);
158 		if (bootverbose)
159 			printf("domcount[%d] %d\n", domain, domcount[domain]);
160 	}
161 	for (domain = 1; domain < vm_ndomains; domain++)
162 		domoffsets[domain] = domoffsets[domain - 1] + domcount[domain - 1];
163 
164 	for (domain = 0; domain < vm_ndomains; domain++) {
165 		if (domcount[domain] == 0) {
166 			usedomains = false;
167 			break;
168 		}
169 	}
170 done:
171 	CPU_FOREACH(cpu) {
172 		GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL);
173 		taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task");
174 	}
175 	inited = 1;
176 	global_epoch = epoch_alloc(0);
177 	global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
178 }
179 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
180 
181 #if !defined(EARLY_AP_STARTUP)
182 static void
183 epoch_init_smp(void *dummy __unused)
184 {
185 	inited = 2;
186 }
187 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
188 #endif
189 
190 
191 static void
192 epoch_init_numa(epoch_t epoch)
193 {
194 	int domain, cpu_offset;
195 	struct epoch_pcpu_state *eps;
196 	epoch_record_t er;
197 
198 	for (domain = 0; domain < vm_ndomains; domain++) {
199 		eps = malloc_domain(sizeof(*eps) * domcount[domain], M_EPOCH,
200 		    domain, M_ZERO | M_WAITOK);
201 		epoch->e_pcpu_dom[domain] = eps;
202 		cpu_offset = domoffsets[domain];
203 		for (int i = 0; i < domcount[domain]; i++, eps++) {
204 			epoch->e_pcpu[cpu_offset + i] = eps;
205 			er = &eps->eps_record;
206 			ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
207 			TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
208 			er->er_cpuid = cpu_offset + i;
209 		}
210 	}
211 }
212 
213 static void
214 epoch_init_legacy(epoch_t epoch)
215 {
216 	struct epoch_pcpu_state *eps;
217 	epoch_record_t er;
218 
219 	eps = malloc(sizeof(*eps) * mp_ncpus, M_EPOCH, M_ZERO | M_WAITOK);
220 	epoch->e_pcpu_dom[0] = eps;
221 	for (int i = 0; i < mp_ncpus; i++, eps++) {
222 		epoch->e_pcpu[i] = eps;
223 		er = &eps->eps_record;
224 		ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
225 		TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
226 		er->er_cpuid = i;
227 	}
228 }
229 
230 epoch_t
231 epoch_alloc(int flags)
232 {
233 	epoch_t epoch;
234 
235 	if (__predict_false(!inited))
236 		panic("%s called too early in boot", __func__);
237 	epoch = malloc(sizeof(struct epoch) + mp_ncpus * sizeof(void *),
238 	    M_EPOCH, M_ZERO | M_WAITOK);
239 	ck_epoch_init(&epoch->e_epoch);
240 	if (usedomains)
241 		epoch_init_numa(epoch);
242 	else
243 		epoch_init_legacy(epoch);
244 	MPASS(epoch_count < MAX_EPOCHS - 2);
245 	epoch->e_flags = flags;
246 	epoch->e_idx = epoch_count;
247 	allepochs[epoch_count++] = epoch;
248 	return (epoch);
249 }
250 
251 void
252 epoch_free(epoch_t epoch)
253 {
254 	int domain;
255 #ifdef INVARIANTS
256 	struct epoch_pcpu_state *eps;
257 	int cpu;
258 
259 	CPU_FOREACH(cpu) {
260 		eps = epoch->e_pcpu[cpu];
261 		MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
262 	}
263 #endif
264 	allepochs[epoch->e_idx] = NULL;
265 	epoch_wait(global_epoch);
266 	if (usedomains)
267 		for (domain = 0; domain < vm_ndomains; domain++)
268 			free_domain(epoch->e_pcpu_dom[domain], M_EPOCH);
269 	else
270 		free(epoch->e_pcpu_dom[0], M_EPOCH);
271 	free(epoch, M_EPOCH);
272 }
273 
274 #define INIT_CHECK(epoch)								\
275 	do {											\
276 		if (__predict_false((epoch) == NULL))		\
277 			return;									\
278 	} while (0)
279 
280 void
281 epoch_enter_preempt_internal(epoch_t epoch, struct thread *td)
282 {
283 	struct epoch_pcpu_state *eps;
284 
285 	MPASS(cold || epoch != NULL);
286 	INIT_CHECK(epoch);
287 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
288 	critical_enter();
289 	td->td_pre_epoch_prio = td->td_priority;
290 	eps = epoch->e_pcpu[curcpu];
291 #ifdef INVARIANTS
292 	MPASS(td->td_epochnest < UCHAR_MAX - 2);
293 	if (td->td_epochnest > 1) {
294 		struct thread *curtd;
295 		int found = 0;
296 
297 		TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq)
298 		    if (curtd == td)
299 			found = 1;
300 		KASSERT(found, ("recursing on a second epoch"));
301 		critical_exit();
302 		return;
303 	}
304 #endif
305 	TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq);
306 	sched_pin();
307 	ck_epoch_begin(&eps->eps_record.er_record, (ck_epoch_section_t *)&td->td_epoch_section);
308 	critical_exit();
309 }
310 
311 
312 void
313 epoch_enter(epoch_t epoch)
314 {
315 	ck_epoch_record_t *record;
316 	struct thread *td;
317 
318 	MPASS(cold || epoch != NULL);
319 	INIT_CHECK(epoch);
320 	td = curthread;
321 
322 	critical_enter();
323 	td->td_epochnest++;
324 	record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
325 	ck_epoch_begin(record, NULL);
326 }
327 
328 void
329 epoch_exit_preempt_internal(epoch_t epoch, struct thread *td)
330 {
331 	struct epoch_pcpu_state *eps;
332 
333 	MPASS(td->td_epochnest == 0);
334 	INIT_CHECK(epoch);
335 	critical_enter();
336 	eps = epoch->e_pcpu[curcpu];
337 
338 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
339 	ck_epoch_end(&eps->eps_record.er_record, (ck_epoch_section_t *)&td->td_epoch_section);
340 	TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
341 	eps->eps_record.er_gen++;
342 	sched_unpin();
343 	if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) {
344 		thread_lock(td);
345 		sched_prio(td, td->td_pre_epoch_prio);
346 		thread_unlock(td);
347 	}
348 	critical_exit();
349 }
350 
351 void
352 epoch_exit(epoch_t epoch)
353 {
354 	ck_epoch_record_t *record;
355 	struct thread *td;
356 
357 	INIT_CHECK(epoch);
358 	td = curthread;
359 	td->td_epochnest--;
360 	record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
361 	ck_epoch_end(record, NULL);
362 	critical_exit();
363 }
364 
365 /*
366  * epoch_block_handler_preempt is a callback from the ck code when another thread is
367  * currently in an epoch section.
368  */
369 static void
370 epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
371     void *arg __unused)
372 {
373 	epoch_record_t record;
374 	struct thread *td, *tdwait, *owner;
375 	struct turnstile *ts;
376 	struct lock_object *lock;
377 	int spincount, gen;
378 	int locksheld __unused;
379 
380 	record = __containerof(cr, struct epoch_record, er_record);
381 	td = curthread;
382 	locksheld = td->td_locks;
383 	spincount = 0;
384 	counter_u64_add(block_count, 1);
385 	if (record->er_cpuid != curcpu) {
386 		/*
387 		 * If the head of the list is running, we can wait for it
388 		 * to remove itself from the list and thus save us the
389 		 * overhead of a migration
390 		 */
391 		if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
392 		    TD_IS_RUNNING(tdwait)) {
393 			gen = record->er_gen;
394 			thread_unlock(td);
395 			do {
396 				cpu_spinwait();
397 			} while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
398 			    gen == record->er_gen && TD_IS_RUNNING(tdwait) &&
399 			    spincount++ < MAX_ADAPTIVE_SPIN);
400 			thread_lock(td);
401 			return;
402 		}
403 		/*
404 		 * Being on the same CPU as that of the record on which
405 		 * we need to wait allows us access to the thread
406 		 * list associated with that CPU. We can then examine the
407 		 * oldest thread in the queue and wait on its turnstile
408 		 * until it resumes and so on until a grace period
409 		 * elapses.
410 		 *
411 		 */
412 		counter_u64_add(migrate_count, 1);
413 		sched_bind(td, record->er_cpuid);
414 		/*
415 		 * At this point we need to return to the ck code
416 		 * to scan to see if a grace period has elapsed.
417 		 * We can't move on to check the thread list, because
418 		 * in the meantime new threads may have arrived that
419 		 * in fact belong to a different epoch.
420 		 */
421 		return;
422 	}
423 	/*
424 	 * Try to find a thread in an epoch section on this CPU
425 	 * waiting on a turnstile. Otherwise find the lowest
426 	 * priority thread (highest prio value) and drop our priority
427 	 * to match to allow it to run.
428 	 */
429 	TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
430 		/*
431 		 * Propagate our priority to any other waiters to prevent us
432 		 * from starving them. They will have their original priority
433 		 * restore on exit from epoch_wait().
434 		 */
435 		if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) {
436 			critical_enter();
437 			thread_unlock(td);
438 			thread_lock(tdwait);
439 			sched_prio(tdwait, td->td_priority);
440 			thread_unlock(tdwait);
441 			thread_lock(td);
442 			critical_exit();
443 		}
444 		if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
445 		    ((ts = tdwait->td_blocked) != NULL)) {
446 			/*
447 			 * We unlock td to allow turnstile_wait to reacquire the
448 			 * the thread lock. Before unlocking it we enter a critical
449 			 * section to prevent preemption after we reenable interrupts
450 			 * by dropping the thread lock in order to prevent tdwait
451 			 * from getting to run.
452 			 */
453 			critical_enter();
454 			thread_unlock(td);
455 			owner = turnstile_lock(ts, &lock);
456 			/*
457 			 * The owner pointer indicates that the lock succeeded. Only
458 			 * in case we hold the lock and the turnstile we locked is still
459 			 * the one that tdwait is blocked on can we continue. Otherwise
460 			 * The turnstile pointer has been changed out from underneath
461 			 * us, as in the case where the lock holder has signalled tdwait,
462 			 * and we need to continue.
463 			 */
464 			if (owner != NULL && ts == tdwait->td_blocked) {
465 				MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait));
466 				critical_exit();
467 				turnstile_wait(ts, owner, tdwait->td_tsqueue);
468 				counter_u64_add(turnstile_count, 1);
469 				thread_lock(td);
470 				return;
471 			} else if (owner != NULL)
472 				turnstile_unlock(ts, lock);
473 			thread_lock(td);
474 			critical_exit();
475 			KASSERT(td->td_locks == locksheld,
476 			    ("%d extra locks held", td->td_locks - locksheld));
477 		}
478 	}
479 	/*
480 	 * We didn't find any threads actually blocked on a lock
481 	 * so we have nothing to do except context switch away.
482 	 */
483 	counter_u64_add(switch_count, 1);
484 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
485 
486 	/*
487 	 * Release the thread lock while yielding to
488 	 * allow other threads to acquire the lock
489 	 * pointed to by TDQ_LOCKPTR(td). Else a
490 	 * deadlock like situation might happen. (HPS)
491 	 */
492 	thread_unlock(td);
493 	thread_lock(td);
494 }
495 
496 void
497 epoch_wait_preempt(epoch_t epoch)
498 {
499 	struct thread *td;
500 	int was_bound;
501 	int old_cpu;
502 	int old_pinned;
503 	u_char old_prio;
504 	int locks __unused;
505 
506 	MPASS(cold || epoch != NULL);
507 	INIT_CHECK(epoch);
508 	td = curthread;
509 #ifdef INVARIANTS
510 	locks = curthread->td_locks;
511 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
512 	if ((epoch->e_flags & EPOCH_LOCKED) == 0)
513 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
514 		    "epoch_wait() can be long running");
515 	KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section"));
516 #endif
517 	thread_lock(td);
518 	DROP_GIANT();
519 
520 	old_cpu = PCPU_GET(cpuid);
521 	old_pinned = td->td_pinned;
522 	old_prio = td->td_priority;
523 	was_bound = sched_is_bound(td);
524 	sched_unbind(td);
525 	td->td_pinned = 0;
526 	sched_bind(td, old_cpu);
527 
528 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL);
529 
530 	/* restore CPU binding, if any */
531 	if (was_bound != 0) {
532 		sched_bind(td, old_cpu);
533 	} else {
534 		/* get thread back to initial CPU, if any */
535 		if (old_pinned != 0)
536 			sched_bind(td, old_cpu);
537 		sched_unbind(td);
538 	}
539 	/* restore pinned after bind */
540 	td->td_pinned = old_pinned;
541 
542 	/* restore thread priority */
543 	sched_prio(td, old_prio);
544 	thread_unlock(td);
545 	PICKUP_GIANT();
546 	KASSERT(td->td_locks == locks,
547 	    ("%d residual locks held", td->td_locks - locks));
548 }
549 
550 static void
551 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
552     void *arg __unused)
553 {
554 	cpu_spinwait();
555 }
556 
557 void
558 epoch_wait(epoch_t epoch)
559 {
560 
561 	MPASS(cold || epoch != NULL);
562 	INIT_CHECK(epoch);
563 	MPASS(epoch->e_flags == 0);
564 	critical_enter();
565 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
566 	critical_exit();
567 }
568 
569 void
570 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
571 {
572 	struct epoch_pcpu_state *eps;
573 	ck_epoch_entry_t *cb;
574 
575 	cb = (void *)ctx;
576 
577 	MPASS(callback);
578 	/* too early in boot to have epoch set up */
579 	if (__predict_false(epoch == NULL))
580 		goto boottime;
581 #if !defined(EARLY_AP_STARTUP)
582 	if (__predict_false(inited < 2))
583 		goto boottime;
584 #endif
585 
586 	critical_enter();
587 	*DPCPU_PTR(epoch_cb_count) += 1;
588 	eps = epoch->e_pcpu[curcpu];
589 	ck_epoch_call(&eps->eps_record.er_record, cb, (ck_epoch_cb_t *)callback);
590 	critical_exit();
591 	return;
592 boottime:
593 	callback(ctx);
594 }
595 
596 static void
597 epoch_call_task(void *arg __unused)
598 {
599 	ck_stack_entry_t *cursor, *head, *next;
600 	ck_epoch_record_t *record;
601 	epoch_t epoch;
602 	ck_stack_t cb_stack;
603 	int i, npending, total;
604 
605 	ck_stack_init(&cb_stack);
606 	critical_enter();
607 	epoch_enter(global_epoch);
608 	for (total = i = 0; i < epoch_count; i++) {
609 		if (__predict_false((epoch = allepochs[i]) == NULL))
610 			continue;
611 		record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
612 		if ((npending = record->n_pending) == 0)
613 			continue;
614 		ck_epoch_poll_deferred(record, &cb_stack);
615 		total += npending - record->n_pending;
616 	}
617 	epoch_exit(global_epoch);
618 	*DPCPU_PTR(epoch_cb_count) -= total;
619 	critical_exit();
620 
621 	counter_u64_add(epoch_call_count, total);
622 	counter_u64_add(epoch_call_task_count, 1);
623 
624 	head = ck_stack_batch_pop_npsc(&cb_stack);
625 	for (cursor = head; cursor != NULL; cursor = next) {
626 		struct ck_epoch_entry *entry =
627 		ck_epoch_entry_container(cursor);
628 
629 		next = CK_STACK_NEXT(cursor);
630 		entry->function(entry);
631 	}
632 }
633 
634 int
635 in_epoch(void)
636 {
637 	return (curthread->td_epochnest != 0);
638 }
639