1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/counter.h> 36 #include <sys/epoch.h> 37 #include <sys/gtaskqueue.h> 38 #include <sys/kernel.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/sysctl.h> 48 #include <sys/turnstile.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_kern.h> 52 #include <vm/uma.h> 53 54 #include <ck_epoch.h> 55 56 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); 57 58 #ifdef __amd64__ 59 #define EPOCH_ALIGN CACHE_LINE_SIZE*2 60 #else 61 #define EPOCH_ALIGN CACHE_LINE_SIZE 62 #endif 63 64 TAILQ_HEAD (epoch_tdlist, epoch_tracker); 65 typedef struct epoch_record { 66 ck_epoch_record_t er_record; 67 volatile struct epoch_tdlist er_tdlist; 68 volatile uint32_t er_gen; 69 uint32_t er_cpuid; 70 } __aligned(EPOCH_ALIGN) *epoch_record_t; 71 72 struct epoch { 73 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); 74 epoch_record_t e_pcpu_record; 75 int e_idx; 76 int e_flags; 77 }; 78 79 /* arbitrary --- needs benchmarking */ 80 #define MAX_ADAPTIVE_SPIN 100 81 #define MAX_EPOCHS 64 82 83 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context)); 84 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); 85 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); 86 87 /* Stats. */ 88 static counter_u64_t block_count; 89 90 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, 91 &block_count, "# of times a thread was in an epoch when epoch_wait was called"); 92 static counter_u64_t migrate_count; 93 94 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, 95 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); 96 static counter_u64_t turnstile_count; 97 98 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, 99 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); 100 static counter_u64_t switch_count; 101 102 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, 103 &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); 104 static counter_u64_t epoch_call_count; 105 106 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW, 107 &epoch_call_count, "# of times a callback was deferred"); 108 static counter_u64_t epoch_call_task_count; 109 110 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW, 111 &epoch_call_task_count, "# of times a callback task was run"); 112 113 TAILQ_HEAD (threadlist, thread); 114 115 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, 116 ck_epoch_entry_container) 117 118 epoch_t allepochs[MAX_EPOCHS]; 119 120 DPCPU_DEFINE(struct grouptask, epoch_cb_task); 121 DPCPU_DEFINE(int, epoch_cb_count); 122 123 static __read_mostly int inited; 124 static __read_mostly int epoch_count; 125 __read_mostly epoch_t global_epoch; 126 __read_mostly epoch_t global_epoch_preempt; 127 128 static void epoch_call_task(void *context __unused); 129 static uma_zone_t pcpu_zone_record; 130 131 static void 132 epoch_init(void *arg __unused) 133 { 134 int cpu; 135 136 block_count = counter_u64_alloc(M_WAITOK); 137 migrate_count = counter_u64_alloc(M_WAITOK); 138 turnstile_count = counter_u64_alloc(M_WAITOK); 139 switch_count = counter_u64_alloc(M_WAITOK); 140 epoch_call_count = counter_u64_alloc(M_WAITOK); 141 epoch_call_task_count = counter_u64_alloc(M_WAITOK); 142 143 pcpu_zone_record = uma_zcreate("epoch_record pcpu", 144 sizeof(struct epoch_record), NULL, NULL, NULL, NULL, 145 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 146 CPU_FOREACH(cpu) { 147 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, 148 epoch_call_task, NULL); 149 taskqgroup_attach_cpu(qgroup_softirq, 150 DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL, 151 "epoch call task"); 152 } 153 inited = 1; 154 global_epoch = epoch_alloc(0); 155 global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT); 156 } 157 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL); 158 159 #if !defined(EARLY_AP_STARTUP) 160 static void 161 epoch_init_smp(void *dummy __unused) 162 { 163 inited = 2; 164 } 165 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL); 166 #endif 167 168 static void 169 epoch_ctor(epoch_t epoch) 170 { 171 epoch_record_t er; 172 int cpu; 173 174 epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK); 175 CPU_FOREACH(cpu) { 176 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); 177 bzero(er, sizeof(*er)); 178 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 179 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 180 er->er_cpuid = cpu; 181 } 182 } 183 184 static void 185 epoch_adjust_prio(struct thread *td, u_char prio) 186 { 187 188 thread_lock(td); 189 sched_prio(td, prio); 190 thread_unlock(td); 191 } 192 193 epoch_t 194 epoch_alloc(int flags) 195 { 196 epoch_t epoch; 197 198 if (__predict_false(!inited)) 199 panic("%s called too early in boot", __func__); 200 epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK); 201 ck_epoch_init(&epoch->e_epoch); 202 epoch_ctor(epoch); 203 MPASS(epoch_count < MAX_EPOCHS - 2); 204 epoch->e_flags = flags; 205 epoch->e_idx = epoch_count; 206 allepochs[epoch_count++] = epoch; 207 return (epoch); 208 } 209 210 void 211 epoch_free(epoch_t epoch) 212 { 213 #ifdef INVARIANTS 214 struct epoch_record *er; 215 int cpu; 216 217 CPU_FOREACH(cpu) { 218 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); 219 MPASS(TAILQ_EMPTY(&er->er_tdlist)); 220 } 221 #endif 222 allepochs[epoch->e_idx] = NULL; 223 epoch_wait(global_epoch); 224 uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record); 225 free(epoch, M_EPOCH); 226 } 227 228 static epoch_record_t 229 epoch_currecord(epoch_t epoch) 230 { 231 232 return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu)); 233 } 234 235 #define INIT_CHECK(epoch) \ 236 do { \ 237 if (__predict_false((epoch) == NULL)) \ 238 return; \ 239 } while (0) 240 241 void 242 epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et) 243 { 244 struct epoch_record *er; 245 struct thread *td; 246 247 MPASS(cold || epoch != NULL); 248 INIT_CHECK(epoch); 249 MPASS(epoch->e_flags & EPOCH_PREEMPT); 250 #ifdef EPOCH_TRACKER_DEBUG 251 et->et_magic_pre = EPOCH_MAGIC0; 252 et->et_magic_post = EPOCH_MAGIC1; 253 #endif 254 td = curthread; 255 et->et_td = td; 256 td->td_epochnest++; 257 critical_enter(); 258 sched_pin(); 259 260 td->td_pre_epoch_prio = td->td_priority; 261 er = epoch_currecord(epoch); 262 TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link); 263 ck_epoch_begin(&er->er_record, &et->et_section); 264 critical_exit(); 265 } 266 267 void 268 epoch_enter(epoch_t epoch) 269 { 270 struct thread *td; 271 epoch_record_t er; 272 273 MPASS(cold || epoch != NULL); 274 INIT_CHECK(epoch); 275 td = curthread; 276 277 td->td_epochnest++; 278 critical_enter(); 279 er = epoch_currecord(epoch); 280 ck_epoch_begin(&er->er_record, NULL); 281 } 282 283 void 284 epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et) 285 { 286 struct epoch_record *er; 287 struct thread *td; 288 289 INIT_CHECK(epoch); 290 td = curthread; 291 critical_enter(); 292 sched_unpin(); 293 MPASS(td->td_epochnest); 294 td->td_epochnest--; 295 er = epoch_currecord(epoch); 296 MPASS(epoch->e_flags & EPOCH_PREEMPT); 297 MPASS(et != NULL); 298 MPASS(et->et_td == td); 299 #ifdef EPOCH_TRACKER_DEBUG 300 MPASS(et->et_magic_pre == EPOCH_MAGIC0); 301 MPASS(et->et_magic_post == EPOCH_MAGIC1); 302 et->et_magic_pre = 0; 303 et->et_magic_post = 0; 304 #endif 305 #ifdef INVARIANTS 306 et->et_td = (void*)0xDEADBEEF; 307 #endif 308 ck_epoch_end(&er->er_record, &et->et_section); 309 TAILQ_REMOVE(&er->er_tdlist, et, et_link); 310 er->er_gen++; 311 if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) 312 epoch_adjust_prio(td, td->td_pre_epoch_prio); 313 critical_exit(); 314 } 315 316 void 317 epoch_exit(epoch_t epoch) 318 { 319 struct thread *td; 320 epoch_record_t er; 321 322 INIT_CHECK(epoch); 323 td = curthread; 324 MPASS(td->td_epochnest); 325 td->td_epochnest--; 326 er = epoch_currecord(epoch); 327 ck_epoch_end(&er->er_record, NULL); 328 critical_exit(); 329 } 330 331 /* 332 * epoch_block_handler_preempt() is a callback from the CK code when another 333 * thread is currently in an epoch section. 334 */ 335 static void 336 epoch_block_handler_preempt(struct ck_epoch *global __unused, 337 ck_epoch_record_t *cr, void *arg __unused) 338 { 339 epoch_record_t record; 340 struct thread *td, *owner, *curwaittd; 341 struct epoch_tracker *tdwait; 342 struct turnstile *ts; 343 struct lock_object *lock; 344 int spincount, gen; 345 int locksheld __unused; 346 347 record = __containerof(cr, struct epoch_record, er_record); 348 td = curthread; 349 locksheld = td->td_locks; 350 spincount = 0; 351 counter_u64_add(block_count, 1); 352 /* 353 * We lost a race and there's no longer any threads 354 * on the CPU in an epoch section. 355 */ 356 if (TAILQ_EMPTY(&record->er_tdlist)) 357 return; 358 359 if (record->er_cpuid != curcpu) { 360 /* 361 * If the head of the list is running, we can wait for it 362 * to remove itself from the list and thus save us the 363 * overhead of a migration 364 */ 365 gen = record->er_gen; 366 thread_unlock(td); 367 /* 368 * We can't actually check if the waiting thread is running 369 * so we simply poll for it to exit before giving up and 370 * migrating. 371 */ 372 do { 373 cpu_spinwait(); 374 } while (!TAILQ_EMPTY(&record->er_tdlist) && 375 gen == record->er_gen && 376 spincount++ < MAX_ADAPTIVE_SPIN); 377 thread_lock(td); 378 /* 379 * If the generation has changed we can poll again 380 * otherwise we need to migrate. 381 */ 382 if (gen != record->er_gen) 383 return; 384 /* 385 * Being on the same CPU as that of the record on which 386 * we need to wait allows us access to the thread 387 * list associated with that CPU. We can then examine the 388 * oldest thread in the queue and wait on its turnstile 389 * until it resumes and so on until a grace period 390 * elapses. 391 * 392 */ 393 counter_u64_add(migrate_count, 1); 394 sched_bind(td, record->er_cpuid); 395 /* 396 * At this point we need to return to the ck code 397 * to scan to see if a grace period has elapsed. 398 * We can't move on to check the thread list, because 399 * in the meantime new threads may have arrived that 400 * in fact belong to a different epoch. 401 */ 402 return; 403 } 404 /* 405 * Try to find a thread in an epoch section on this CPU 406 * waiting on a turnstile. Otherwise find the lowest 407 * priority thread (highest prio value) and drop our priority 408 * to match to allow it to run. 409 */ 410 TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) { 411 /* 412 * Propagate our priority to any other waiters to prevent us 413 * from starving them. They will have their original priority 414 * restore on exit from epoch_wait(). 415 */ 416 curwaittd = tdwait->et_td; 417 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) { 418 critical_enter(); 419 thread_unlock(td); 420 thread_lock(curwaittd); 421 sched_prio(curwaittd, td->td_priority); 422 thread_unlock(curwaittd); 423 thread_lock(td); 424 critical_exit(); 425 } 426 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) && 427 ((ts = curwaittd->td_blocked) != NULL)) { 428 /* 429 * We unlock td to allow turnstile_wait to reacquire 430 * the thread lock. Before unlocking it we enter a 431 * critical section to prevent preemption after we 432 * reenable interrupts by dropping the thread lock in 433 * order to prevent curwaittd from getting to run. 434 */ 435 critical_enter(); 436 thread_unlock(td); 437 owner = turnstile_lock(ts, &lock); 438 /* 439 * The owner pointer indicates that the lock succeeded. 440 * Only in case we hold the lock and the turnstile we 441 * locked is still the one that curwaittd is blocked on 442 * can we continue. Otherwise the turnstile pointer has 443 * been changed out from underneath us, as in the case 444 * where the lock holder has signalled curwaittd, 445 * and we need to continue. 446 */ 447 if (owner != NULL && ts == curwaittd->td_blocked) { 448 MPASS(TD_IS_INHIBITED(curwaittd) && 449 TD_ON_LOCK(curwaittd)); 450 critical_exit(); 451 turnstile_wait(ts, owner, curwaittd->td_tsqueue); 452 counter_u64_add(turnstile_count, 1); 453 thread_lock(td); 454 return; 455 } else if (owner != NULL) 456 turnstile_unlock(ts, lock); 457 thread_lock(td); 458 critical_exit(); 459 KASSERT(td->td_locks == locksheld, 460 ("%d extra locks held", td->td_locks - locksheld)); 461 } 462 } 463 /* 464 * We didn't find any threads actually blocked on a lock 465 * so we have nothing to do except context switch away. 466 */ 467 counter_u64_add(switch_count, 1); 468 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 469 470 /* 471 * Release the thread lock while yielding to 472 * allow other threads to acquire the lock 473 * pointed to by TDQ_LOCKPTR(td). Else a 474 * deadlock like situation might happen. (HPS) 475 */ 476 thread_unlock(td); 477 thread_lock(td); 478 } 479 480 void 481 epoch_wait_preempt(epoch_t epoch) 482 { 483 struct thread *td; 484 int was_bound; 485 int old_cpu; 486 int old_pinned; 487 u_char old_prio; 488 int locks __unused; 489 490 MPASS(cold || epoch != NULL); 491 INIT_CHECK(epoch); 492 td = curthread; 493 #ifdef INVARIANTS 494 locks = curthread->td_locks; 495 MPASS(epoch->e_flags & EPOCH_PREEMPT); 496 if ((epoch->e_flags & EPOCH_LOCKED) == 0) 497 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 498 "epoch_wait() can be long running"); 499 KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle " 500 "of an epoch section of the same epoch")); 501 #endif 502 thread_lock(td); 503 DROP_GIANT(); 504 505 old_cpu = PCPU_GET(cpuid); 506 old_pinned = td->td_pinned; 507 old_prio = td->td_priority; 508 was_bound = sched_is_bound(td); 509 sched_unbind(td); 510 td->td_pinned = 0; 511 sched_bind(td, old_cpu); 512 513 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, 514 NULL); 515 516 /* restore CPU binding, if any */ 517 if (was_bound != 0) { 518 sched_bind(td, old_cpu); 519 } else { 520 /* get thread back to initial CPU, if any */ 521 if (old_pinned != 0) 522 sched_bind(td, old_cpu); 523 sched_unbind(td); 524 } 525 /* restore pinned after bind */ 526 td->td_pinned = old_pinned; 527 528 /* restore thread priority */ 529 sched_prio(td, old_prio); 530 thread_unlock(td); 531 PICKUP_GIANT(); 532 KASSERT(td->td_locks == locks, 533 ("%d residual locks held", td->td_locks - locks)); 534 } 535 536 static void 537 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, 538 void *arg __unused) 539 { 540 cpu_spinwait(); 541 } 542 543 void 544 epoch_wait(epoch_t epoch) 545 { 546 547 MPASS(cold || epoch != NULL); 548 INIT_CHECK(epoch); 549 MPASS(epoch->e_flags == 0); 550 critical_enter(); 551 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); 552 critical_exit(); 553 } 554 555 void 556 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) 557 { 558 epoch_record_t er; 559 ck_epoch_entry_t *cb; 560 561 cb = (void *)ctx; 562 563 MPASS(callback); 564 /* too early in boot to have epoch set up */ 565 if (__predict_false(epoch == NULL)) 566 goto boottime; 567 #if !defined(EARLY_AP_STARTUP) 568 if (__predict_false(inited < 2)) 569 goto boottime; 570 #endif 571 572 critical_enter(); 573 *DPCPU_PTR(epoch_cb_count) += 1; 574 er = epoch_currecord(epoch); 575 ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback); 576 critical_exit(); 577 return; 578 boottime: 579 callback(ctx); 580 } 581 582 static void 583 epoch_call_task(void *arg __unused) 584 { 585 ck_stack_entry_t *cursor, *head, *next; 586 ck_epoch_record_t *record; 587 epoch_record_t er; 588 epoch_t epoch; 589 ck_stack_t cb_stack; 590 int i, npending, total; 591 592 ck_stack_init(&cb_stack); 593 critical_enter(); 594 epoch_enter(global_epoch); 595 for (total = i = 0; i < epoch_count; i++) { 596 if (__predict_false((epoch = allepochs[i]) == NULL)) 597 continue; 598 er = epoch_currecord(epoch); 599 record = &er->er_record; 600 if ((npending = record->n_pending) == 0) 601 continue; 602 ck_epoch_poll_deferred(record, &cb_stack); 603 total += npending - record->n_pending; 604 } 605 epoch_exit(global_epoch); 606 *DPCPU_PTR(epoch_cb_count) -= total; 607 critical_exit(); 608 609 counter_u64_add(epoch_call_count, total); 610 counter_u64_add(epoch_call_task_count, 1); 611 612 head = ck_stack_batch_pop_npsc(&cb_stack); 613 for (cursor = head; cursor != NULL; cursor = next) { 614 struct ck_epoch_entry *entry = 615 ck_epoch_entry_container(cursor); 616 617 next = CK_STACK_NEXT(cursor); 618 entry->function(entry); 619 } 620 } 621 622 int 623 in_epoch_verbose(epoch_t epoch, int dump_onfail) 624 { 625 struct epoch_tracker *tdwait; 626 struct thread *td; 627 epoch_record_t er; 628 629 td = curthread; 630 if (td->td_epochnest == 0) 631 return (0); 632 if (__predict_false((epoch) == NULL)) 633 return (0); 634 critical_enter(); 635 er = epoch_currecord(epoch); 636 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) 637 if (tdwait->et_td == td) { 638 critical_exit(); 639 return (1); 640 } 641 #ifdef INVARIANTS 642 if (dump_onfail) { 643 MPASS(td->td_pinned); 644 printf("cpu: %d id: %d\n", curcpu, td->td_tid); 645 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) 646 printf("td_tid: %d ", tdwait->et_td->td_tid); 647 printf("\n"); 648 } 649 #endif 650 critical_exit(); 651 return (0); 652 } 653 654 int 655 in_epoch(epoch_t epoch) 656 { 657 return (in_epoch_verbose(epoch, 0)); 658 } 659 660 void 661 epoch_thread_init(struct thread *td) 662 { 663 664 td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK); 665 } 666 667 void 668 epoch_thread_fini(struct thread *td) 669 { 670 671 free(td->td_et, M_EPOCH); 672 } 673