xref: /freebsd/sys/kern/subr_epoch.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/counter.h>
35 #include <sys/epoch.h>
36 #include <sys/gtaskqueue.h>
37 #include <sys/kernel.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/sx.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 #include <sys/turnstile.h>
49 #ifdef EPOCH_TRACE
50 #include <machine/stdarg.h>
51 #include <sys/stack.h>
52 #include <sys/tree.h>
53 #endif
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/uma.h>
58 
59 #include <ck_epoch.h>
60 
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66 
67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
68 typedef struct epoch_record {
69 	ck_epoch_record_t er_record;
70 	struct epoch_context er_drain_ctx;
71 	struct epoch *er_parent;
72 	volatile struct epoch_tdlist er_tdlist;
73 	volatile uint32_t er_gen;
74 	uint32_t er_cpuid;
75 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
76 
77 struct epoch {
78 	struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
79 	epoch_record_t e_pcpu_record;
80 	int	e_in_use;
81 	int	e_flags;
82 	struct sx e_drain_sx;
83 	struct mtx e_drain_mtx;
84 	volatile int e_drain_count;
85 	const char *e_name;
86 };
87 
88 /* arbitrary --- needs benchmarking */
89 #define MAX_ADAPTIVE_SPIN 100
90 #define MAX_EPOCHS 64
91 
92 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
93 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
94     "epoch information");
95 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
96     "epoch stats");
97 
98 /* Stats. */
99 static counter_u64_t block_count;
100 
101 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
102     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
103 static counter_u64_t migrate_count;
104 
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
106     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
107 static counter_u64_t turnstile_count;
108 
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
110     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
111 static counter_u64_t switch_count;
112 
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
114     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
115 static counter_u64_t epoch_call_count;
116 
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
118     &epoch_call_count, "# of times a callback was deferred");
119 static counter_u64_t epoch_call_task_count;
120 
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
122     &epoch_call_task_count, "# of times a callback task was run");
123 
124 TAILQ_HEAD (threadlist, thread);
125 
126 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
127     ck_epoch_entry_container)
128 
129 static struct epoch epoch_array[MAX_EPOCHS];
130 
131 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
132 DPCPU_DEFINE(int, epoch_cb_count);
133 
134 static __read_mostly int inited;
135 __read_mostly epoch_t global_epoch;
136 __read_mostly epoch_t global_epoch_preempt;
137 
138 static void epoch_call_task(void *context __unused);
139 static 	uma_zone_t pcpu_zone_record;
140 
141 static struct sx epoch_sx;
142 
143 #define	EPOCH_LOCK() sx_xlock(&epoch_sx)
144 #define	EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
145 
146 #ifdef EPOCH_TRACE
147 struct stackentry {
148 	RB_ENTRY(stackentry) se_node;
149 	struct stack se_stack;
150 };
151 
152 static int
153 stackentry_compare(struct stackentry *a, struct stackentry *b)
154 {
155 
156 	if (a->se_stack.depth > b->se_stack.depth)
157 		return (1);
158 	if (a->se_stack.depth < b->se_stack.depth)
159 		return (-1);
160 	for (int i = 0; i < a->se_stack.depth; i++) {
161 		if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
162 			return (1);
163 		if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
164 			return (-1);
165 	}
166 
167 	return (0);
168 }
169 
170 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
171 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
172 
173 static struct mtx epoch_stacks_lock;
174 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
175 
176 static bool epoch_trace_stack_print = true;
177 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
178     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
179 
180 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
181 static inline void
182 epoch_trace_report(const char *fmt, ...)
183 {
184 	va_list ap;
185 	struct stackentry se, *new;
186 
187 	stack_zero(&se.se_stack);	/* XXX: is it really needed? */
188 	stack_save(&se.se_stack);
189 
190 	/* Tree is never reduced - go lockless. */
191 	if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
192 		return;
193 
194 	new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
195 	if (new != NULL) {
196 		bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
197 
198 		mtx_lock(&epoch_stacks_lock);
199 		new = RB_INSERT(stacktree, &epoch_stacks, new);
200 		mtx_unlock(&epoch_stacks_lock);
201 		if (new != NULL)
202 			free(new, M_STACK);
203 	}
204 
205 	va_start(ap, fmt);
206 	(void)vprintf(fmt, ap);
207 	va_end(ap);
208 	if (epoch_trace_stack_print)
209 		stack_print_ddb(&se.se_stack);
210 }
211 
212 static inline void
213 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
214     const char *file, int line)
215 {
216 	epoch_tracker_t iet;
217 
218 	SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
219 		if (iet->et_epoch == epoch)
220 			epoch_trace_report("Recursively entering epoch %s "
221 			    "at %s:%d, previously entered at %s:%d\n",
222 			    epoch->e_name, file, line,
223 			    iet->et_file, iet->et_line);
224 	et->et_epoch = epoch;
225 	et->et_file = file;
226 	et->et_line = line;
227 	SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
228 }
229 
230 static inline void
231 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
232     const char *file, int line)
233 {
234 
235 	if (SLIST_FIRST(&td->td_epochs) != et) {
236 		epoch_trace_report("Exiting epoch %s in a not nested order "
237 		    "at %s:%d. Most recently entered %s at %s:%d\n",
238 		    epoch->e_name,
239 		    file, line,
240 		    SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
241 		    SLIST_FIRST(&td->td_epochs)->et_file,
242 		    SLIST_FIRST(&td->td_epochs)->et_line);
243 		/* This will panic if et is not anywhere on td_epochs. */
244 		SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
245 	} else
246 		SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
247 }
248 
249 /* Used by assertions that check thread state before going to sleep. */
250 void
251 epoch_trace_list(struct thread *td)
252 {
253 	epoch_tracker_t iet;
254 
255 	SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
256 		printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
257 		    iet->et_file, iet->et_line);
258 }
259 #endif /* EPOCH_TRACE */
260 
261 static void
262 epoch_init(void *arg __unused)
263 {
264 	int cpu;
265 
266 	block_count = counter_u64_alloc(M_WAITOK);
267 	migrate_count = counter_u64_alloc(M_WAITOK);
268 	turnstile_count = counter_u64_alloc(M_WAITOK);
269 	switch_count = counter_u64_alloc(M_WAITOK);
270 	epoch_call_count = counter_u64_alloc(M_WAITOK);
271 	epoch_call_task_count = counter_u64_alloc(M_WAITOK);
272 
273 	pcpu_zone_record = uma_zcreate("epoch_record pcpu",
274 	    sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
275 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
276 	CPU_FOREACH(cpu) {
277 		GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
278 		    epoch_call_task, NULL);
279 		taskqgroup_attach_cpu(qgroup_softirq,
280 		    DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
281 		    "epoch call task");
282 	}
283 #ifdef EPOCH_TRACE
284 	SLIST_INIT(&thread0.td_epochs);
285 #endif
286 	sx_init(&epoch_sx, "epoch-sx");
287 	inited = 1;
288 	global_epoch = epoch_alloc("Global", 0);
289 	global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
290 }
291 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
292 
293 #if !defined(EARLY_AP_STARTUP)
294 static void
295 epoch_init_smp(void *dummy __unused)
296 {
297 	inited = 2;
298 }
299 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
300 #endif
301 
302 static void
303 epoch_ctor(epoch_t epoch)
304 {
305 	epoch_record_t er;
306 	int cpu;
307 
308 	epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
309 	CPU_FOREACH(cpu) {
310 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
311 		bzero(er, sizeof(*er));
312 		ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
313 		TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
314 		er->er_cpuid = cpu;
315 		er->er_parent = epoch;
316 	}
317 }
318 
319 static void
320 epoch_adjust_prio(struct thread *td, u_char prio)
321 {
322 
323 	thread_lock(td);
324 	sched_prio(td, prio);
325 	thread_unlock(td);
326 }
327 
328 epoch_t
329 epoch_alloc(const char *name, int flags)
330 {
331 	epoch_t epoch;
332 	int i;
333 
334 	MPASS(name != NULL);
335 
336 	if (__predict_false(!inited))
337 		panic("%s called too early in boot", __func__);
338 
339 	EPOCH_LOCK();
340 
341 	/*
342 	 * Find a free index in the epoch array. If no free index is
343 	 * found, try to use the index after the last one.
344 	 */
345 	for (i = 0;; i++) {
346 		/*
347 		 * If too many epochs are currently allocated,
348 		 * return NULL.
349 		 */
350 		if (i == MAX_EPOCHS) {
351 			epoch = NULL;
352 			goto done;
353 		}
354 		if (epoch_array[i].e_in_use == 0)
355 			break;
356 	}
357 
358 	epoch = epoch_array + i;
359 	ck_epoch_init(&epoch->e_epoch);
360 	epoch_ctor(epoch);
361 	epoch->e_flags = flags;
362 	epoch->e_name = name;
363 	sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
364 	mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
365 
366 	/*
367 	 * Set e_in_use last, because when this field is set the
368 	 * epoch_call_task() function will start scanning this epoch
369 	 * structure.
370 	 */
371 	atomic_store_rel_int(&epoch->e_in_use, 1);
372 done:
373 	EPOCH_UNLOCK();
374 	return (epoch);
375 }
376 
377 void
378 epoch_free(epoch_t epoch)
379 {
380 
381 	EPOCH_LOCK();
382 
383 	MPASS(epoch->e_in_use != 0);
384 
385 	epoch_drain_callbacks(epoch);
386 
387 	atomic_store_rel_int(&epoch->e_in_use, 0);
388 	/*
389 	 * Make sure the epoch_call_task() function see e_in_use equal
390 	 * to zero, by calling epoch_wait() on the global_epoch:
391 	 */
392 	epoch_wait(global_epoch);
393 	uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
394 	mtx_destroy(&epoch->e_drain_mtx);
395 	sx_destroy(&epoch->e_drain_sx);
396 	memset(epoch, 0, sizeof(*epoch));
397 
398 	EPOCH_UNLOCK();
399 }
400 
401 static epoch_record_t
402 epoch_currecord(epoch_t epoch)
403 {
404 
405 	return (zpcpu_get(epoch->e_pcpu_record));
406 }
407 
408 #define INIT_CHECK(epoch)					\
409 	do {							\
410 		if (__predict_false((epoch) == NULL))		\
411 			return;					\
412 	} while (0)
413 
414 void
415 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
416 {
417 	struct epoch_record *er;
418 	struct thread *td;
419 
420 	MPASS(cold || epoch != NULL);
421 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
422 	td = curthread;
423 	MPASS((vm_offset_t)et >= td->td_kstack &&
424 	    (vm_offset_t)et + sizeof(struct epoch_tracker) <=
425 	    td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
426 
427 	INIT_CHECK(epoch);
428 #ifdef EPOCH_TRACE
429 	epoch_trace_enter(td, epoch, et, file, line);
430 #endif
431 	et->et_td = td;
432 	THREAD_NO_SLEEPING();
433 	critical_enter();
434 	sched_pin();
435 	td->td_pre_epoch_prio = td->td_priority;
436 	er = epoch_currecord(epoch);
437 	TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
438 	ck_epoch_begin(&er->er_record, &et->et_section);
439 	critical_exit();
440 }
441 
442 void
443 epoch_enter(epoch_t epoch)
444 {
445 	epoch_record_t er;
446 
447 	MPASS(cold || epoch != NULL);
448 	INIT_CHECK(epoch);
449 	critical_enter();
450 	er = epoch_currecord(epoch);
451 	ck_epoch_begin(&er->er_record, NULL);
452 }
453 
454 void
455 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
456 {
457 	struct epoch_record *er;
458 	struct thread *td;
459 
460 	INIT_CHECK(epoch);
461 	td = curthread;
462 	critical_enter();
463 	sched_unpin();
464 	THREAD_SLEEPING_OK();
465 	er = epoch_currecord(epoch);
466 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
467 	MPASS(et != NULL);
468 	MPASS(et->et_td == td);
469 #ifdef INVARIANTS
470 	et->et_td = (void*)0xDEADBEEF;
471 #endif
472 	ck_epoch_end(&er->er_record, &et->et_section);
473 	TAILQ_REMOVE(&er->er_tdlist, et, et_link);
474 	er->er_gen++;
475 	if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
476 		epoch_adjust_prio(td, td->td_pre_epoch_prio);
477 	critical_exit();
478 #ifdef EPOCH_TRACE
479 	epoch_trace_exit(td, epoch, et, file, line);
480 #endif
481 }
482 
483 void
484 epoch_exit(epoch_t epoch)
485 {
486 	epoch_record_t er;
487 
488 	INIT_CHECK(epoch);
489 	er = epoch_currecord(epoch);
490 	ck_epoch_end(&er->er_record, NULL);
491 	critical_exit();
492 }
493 
494 /*
495  * epoch_block_handler_preempt() is a callback from the CK code when another
496  * thread is currently in an epoch section.
497  */
498 static void
499 epoch_block_handler_preempt(struct ck_epoch *global __unused,
500     ck_epoch_record_t *cr, void *arg __unused)
501 {
502 	epoch_record_t record;
503 	struct thread *td, *owner, *curwaittd;
504 	struct epoch_tracker *tdwait;
505 	struct turnstile *ts;
506 	struct lock_object *lock;
507 	int spincount, gen;
508 	int locksheld __unused;
509 
510 	record = __containerof(cr, struct epoch_record, er_record);
511 	td = curthread;
512 	locksheld = td->td_locks;
513 	spincount = 0;
514 	counter_u64_add(block_count, 1);
515 	/*
516 	 * We lost a race and there's no longer any threads
517 	 * on the CPU in an epoch section.
518 	 */
519 	if (TAILQ_EMPTY(&record->er_tdlist))
520 		return;
521 
522 	if (record->er_cpuid != curcpu) {
523 		/*
524 		 * If the head of the list is running, we can wait for it
525 		 * to remove itself from the list and thus save us the
526 		 * overhead of a migration
527 		 */
528 		gen = record->er_gen;
529 		thread_unlock(td);
530 		/*
531 		 * We can't actually check if the waiting thread is running
532 		 * so we simply poll for it to exit before giving up and
533 		 * migrating.
534 		 */
535 		do {
536 			cpu_spinwait();
537 		} while (!TAILQ_EMPTY(&record->er_tdlist) &&
538 				 gen == record->er_gen &&
539 				 spincount++ < MAX_ADAPTIVE_SPIN);
540 		thread_lock(td);
541 		/*
542 		 * If the generation has changed we can poll again
543 		 * otherwise we need to migrate.
544 		 */
545 		if (gen != record->er_gen)
546 			return;
547 		/*
548 		 * Being on the same CPU as that of the record on which
549 		 * we need to wait allows us access to the thread
550 		 * list associated with that CPU. We can then examine the
551 		 * oldest thread in the queue and wait on its turnstile
552 		 * until it resumes and so on until a grace period
553 		 * elapses.
554 		 *
555 		 */
556 		counter_u64_add(migrate_count, 1);
557 		sched_bind(td, record->er_cpuid);
558 		/*
559 		 * At this point we need to return to the ck code
560 		 * to scan to see if a grace period has elapsed.
561 		 * We can't move on to check the thread list, because
562 		 * in the meantime new threads may have arrived that
563 		 * in fact belong to a different epoch.
564 		 */
565 		return;
566 	}
567 	/*
568 	 * Try to find a thread in an epoch section on this CPU
569 	 * waiting on a turnstile. Otherwise find the lowest
570 	 * priority thread (highest prio value) and drop our priority
571 	 * to match to allow it to run.
572 	 */
573 	TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
574 		/*
575 		 * Propagate our priority to any other waiters to prevent us
576 		 * from starving them. They will have their original priority
577 		 * restore on exit from epoch_wait().
578 		 */
579 		curwaittd = tdwait->et_td;
580 		if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
581 			critical_enter();
582 			thread_unlock(td);
583 			thread_lock(curwaittd);
584 			sched_prio(curwaittd, td->td_priority);
585 			thread_unlock(curwaittd);
586 			thread_lock(td);
587 			critical_exit();
588 		}
589 		if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
590 		    ((ts = curwaittd->td_blocked) != NULL)) {
591 			/*
592 			 * We unlock td to allow turnstile_wait to reacquire
593 			 * the thread lock. Before unlocking it we enter a
594 			 * critical section to prevent preemption after we
595 			 * reenable interrupts by dropping the thread lock in
596 			 * order to prevent curwaittd from getting to run.
597 			 */
598 			critical_enter();
599 			thread_unlock(td);
600 
601 			if (turnstile_lock(ts, &lock, &owner)) {
602 				if (ts == curwaittd->td_blocked) {
603 					MPASS(TD_IS_INHIBITED(curwaittd) &&
604 					    TD_ON_LOCK(curwaittd));
605 					critical_exit();
606 					turnstile_wait(ts, owner,
607 					    curwaittd->td_tsqueue);
608 					counter_u64_add(turnstile_count, 1);
609 					thread_lock(td);
610 					return;
611 				}
612 				turnstile_unlock(ts, lock);
613 			}
614 			thread_lock(td);
615 			critical_exit();
616 			KASSERT(td->td_locks == locksheld,
617 			    ("%d extra locks held", td->td_locks - locksheld));
618 		}
619 	}
620 	/*
621 	 * We didn't find any threads actually blocked on a lock
622 	 * so we have nothing to do except context switch away.
623 	 */
624 	counter_u64_add(switch_count, 1);
625 	mi_switch(SW_VOL | SWT_RELINQUISH);
626 	/*
627 	 * It is important the thread lock is dropped while yielding
628 	 * to allow other threads to acquire the lock pointed to by
629 	 * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
630 	 * thread lock before returning. Else a deadlock like
631 	 * situation might happen.
632 	 */
633 	thread_lock(td);
634 }
635 
636 void
637 epoch_wait_preempt(epoch_t epoch)
638 {
639 	struct thread *td;
640 	int was_bound;
641 	int old_cpu;
642 	int old_pinned;
643 	u_char old_prio;
644 	int locks __unused;
645 
646 	MPASS(cold || epoch != NULL);
647 	INIT_CHECK(epoch);
648 	td = curthread;
649 #ifdef INVARIANTS
650 	locks = curthread->td_locks;
651 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
652 	if ((epoch->e_flags & EPOCH_LOCKED) == 0)
653 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
654 		    "epoch_wait() can be long running");
655 	KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
656 	    "of an epoch section of the same epoch"));
657 #endif
658 	DROP_GIANT();
659 	thread_lock(td);
660 
661 	old_cpu = PCPU_GET(cpuid);
662 	old_pinned = td->td_pinned;
663 	old_prio = td->td_priority;
664 	was_bound = sched_is_bound(td);
665 	sched_unbind(td);
666 	td->td_pinned = 0;
667 	sched_bind(td, old_cpu);
668 
669 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
670 	    NULL);
671 
672 	/* restore CPU binding, if any */
673 	if (was_bound != 0) {
674 		sched_bind(td, old_cpu);
675 	} else {
676 		/* get thread back to initial CPU, if any */
677 		if (old_pinned != 0)
678 			sched_bind(td, old_cpu);
679 		sched_unbind(td);
680 	}
681 	/* restore pinned after bind */
682 	td->td_pinned = old_pinned;
683 
684 	/* restore thread priority */
685 	sched_prio(td, old_prio);
686 	thread_unlock(td);
687 	PICKUP_GIANT();
688 	KASSERT(td->td_locks == locks,
689 	    ("%d residual locks held", td->td_locks - locks));
690 }
691 
692 static void
693 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
694     void *arg __unused)
695 {
696 	cpu_spinwait();
697 }
698 
699 void
700 epoch_wait(epoch_t epoch)
701 {
702 
703 	MPASS(cold || epoch != NULL);
704 	INIT_CHECK(epoch);
705 	MPASS(epoch->e_flags == 0);
706 	critical_enter();
707 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
708 	critical_exit();
709 }
710 
711 void
712 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
713 {
714 	epoch_record_t er;
715 	ck_epoch_entry_t *cb;
716 
717 	cb = (void *)ctx;
718 
719 	MPASS(callback);
720 	/* too early in boot to have epoch set up */
721 	if (__predict_false(epoch == NULL))
722 		goto boottime;
723 #if !defined(EARLY_AP_STARTUP)
724 	if (__predict_false(inited < 2))
725 		goto boottime;
726 #endif
727 
728 	critical_enter();
729 	*DPCPU_PTR(epoch_cb_count) += 1;
730 	er = epoch_currecord(epoch);
731 	ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
732 	critical_exit();
733 	return;
734 boottime:
735 	callback(ctx);
736 }
737 
738 static void
739 epoch_call_task(void *arg __unused)
740 {
741 	ck_stack_entry_t *cursor, *head, *next;
742 	ck_epoch_record_t *record;
743 	epoch_record_t er;
744 	epoch_t epoch;
745 	ck_stack_t cb_stack;
746 	int i, npending, total;
747 
748 	ck_stack_init(&cb_stack);
749 	critical_enter();
750 	epoch_enter(global_epoch);
751 	for (total = i = 0; i != MAX_EPOCHS; i++) {
752 		epoch = epoch_array + i;
753 		if (__predict_false(
754 		    atomic_load_acq_int(&epoch->e_in_use) == 0))
755 			continue;
756 		er = epoch_currecord(epoch);
757 		record = &er->er_record;
758 		if ((npending = record->n_pending) == 0)
759 			continue;
760 		ck_epoch_poll_deferred(record, &cb_stack);
761 		total += npending - record->n_pending;
762 	}
763 	epoch_exit(global_epoch);
764 	*DPCPU_PTR(epoch_cb_count) -= total;
765 	critical_exit();
766 
767 	counter_u64_add(epoch_call_count, total);
768 	counter_u64_add(epoch_call_task_count, 1);
769 
770 	head = ck_stack_batch_pop_npsc(&cb_stack);
771 	for (cursor = head; cursor != NULL; cursor = next) {
772 		struct ck_epoch_entry *entry =
773 		    ck_epoch_entry_container(cursor);
774 
775 		next = CK_STACK_NEXT(cursor);
776 		entry->function(entry);
777 	}
778 }
779 
780 int
781 in_epoch_verbose(epoch_t epoch, int dump_onfail)
782 {
783 	struct epoch_tracker *tdwait;
784 	struct thread *td;
785 	epoch_record_t er;
786 
787 	td = curthread;
788 	if (THREAD_CAN_SLEEP())
789 		return (0);
790 	if (__predict_false((epoch) == NULL))
791 		return (0);
792 	critical_enter();
793 	er = epoch_currecord(epoch);
794 	TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
795 		if (tdwait->et_td == td) {
796 			critical_exit();
797 			return (1);
798 		}
799 #ifdef INVARIANTS
800 	if (dump_onfail) {
801 		MPASS(td->td_pinned);
802 		printf("cpu: %d id: %d\n", curcpu, td->td_tid);
803 		TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
804 			printf("td_tid: %d ", tdwait->et_td->td_tid);
805 		printf("\n");
806 	}
807 #endif
808 	critical_exit();
809 	return (0);
810 }
811 
812 int
813 in_epoch(epoch_t epoch)
814 {
815 	return (in_epoch_verbose(epoch, 0));
816 }
817 
818 static void
819 epoch_drain_cb(struct epoch_context *ctx)
820 {
821 	struct epoch *epoch =
822 	    __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
823 
824 	if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
825 		mtx_lock(&epoch->e_drain_mtx);
826 		wakeup(epoch);
827 		mtx_unlock(&epoch->e_drain_mtx);
828 	}
829 }
830 
831 void
832 epoch_drain_callbacks(epoch_t epoch)
833 {
834 	epoch_record_t er;
835 	struct thread *td;
836 	int was_bound;
837 	int old_pinned;
838 	int old_cpu;
839 	int cpu;
840 
841 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
842 	    "epoch_drain_callbacks() may sleep!");
843 
844 	/* too early in boot to have epoch set up */
845 	if (__predict_false(epoch == NULL))
846 		return;
847 #if !defined(EARLY_AP_STARTUP)
848 	if (__predict_false(inited < 2))
849 		return;
850 #endif
851 	DROP_GIANT();
852 
853 	sx_xlock(&epoch->e_drain_sx);
854 	mtx_lock(&epoch->e_drain_mtx);
855 
856 	td = curthread;
857 	thread_lock(td);
858 	old_cpu = PCPU_GET(cpuid);
859 	old_pinned = td->td_pinned;
860 	was_bound = sched_is_bound(td);
861 	sched_unbind(td);
862 	td->td_pinned = 0;
863 
864 	CPU_FOREACH(cpu)
865 		epoch->e_drain_count++;
866 	CPU_FOREACH(cpu) {
867 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
868 		sched_bind(td, cpu);
869 		epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
870 	}
871 
872 	/* restore CPU binding, if any */
873 	if (was_bound != 0) {
874 		sched_bind(td, old_cpu);
875 	} else {
876 		/* get thread back to initial CPU, if any */
877 		if (old_pinned != 0)
878 			sched_bind(td, old_cpu);
879 		sched_unbind(td);
880 	}
881 	/* restore pinned after bind */
882 	td->td_pinned = old_pinned;
883 
884 	thread_unlock(td);
885 
886 	while (epoch->e_drain_count != 0)
887 		msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
888 
889 	mtx_unlock(&epoch->e_drain_mtx);
890 	sx_xunlock(&epoch->e_drain_sx);
891 
892 	PICKUP_GIANT();
893 }
894