1 /*- 2 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org> 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * 1. Redistributions of source code must retain the above copyright notice, 8 * this list of conditions and the following disclaimer. 9 * 10 * 2. Neither the name of Matthew Macy nor the names of its 11 * contributors may be used to endorse or promote products derived from 12 * this software without specific prior written permission. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 18 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 24 * POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/types.h> 32 #include <sys/systm.h> 33 #include <sys/counter.h> 34 #include <sys/epoch.h> 35 #include <sys/gtaskqueue.h> 36 #include <sys/kernel.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/sched.h> 43 #include <sys/smp.h> 44 #include <sys/sysctl.h> 45 #include <sys/turnstile.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 #include <vm/vm_kern.h> 49 50 #include <ck_epoch.h> 51 52 MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); 53 54 /* arbitrary --- needs benchmarking */ 55 #define MAX_ADAPTIVE_SPIN 5000 56 57 #define EPOCH_EXITING 0x1 58 #ifdef __amd64__ 59 #define EPOCH_ALIGN CACHE_LINE_SIZE*2 60 #else 61 #define EPOCH_ALIGN CACHE_LINE_SIZE 62 #endif 63 64 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); 65 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); 66 67 static int poll_intvl; 68 SYSCTL_INT(_kern_epoch, OID_AUTO, poll_intvl, CTLFLAG_RWTUN, 69 &poll_intvl, 0, "# of ticks to wait between garbage collecting deferred frees"); 70 /* Stats. */ 71 static counter_u64_t block_count; 72 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, 73 &block_count, "# of times a thread was in an epoch when epoch_wait was called"); 74 static counter_u64_t migrate_count; 75 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, 76 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); 77 static counter_u64_t turnstile_count; 78 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, 79 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); 80 static counter_u64_t switch_count; 81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, 82 &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); 83 84 typedef struct epoch_cb { 85 void (*ec_callback)(epoch_context_t); 86 STAILQ_ENTRY(epoch_cb) ec_link; 87 } *epoch_cb_t; 88 89 TAILQ_HEAD(threadlist, thread); 90 91 typedef struct epoch_record { 92 ck_epoch_record_t er_record; 93 volatile struct threadlist er_tdlist; 94 volatile uint32_t er_gen; 95 uint32_t er_cpuid; 96 } *epoch_record_t; 97 98 struct epoch_pcpu_state { 99 struct epoch_record eps_record; 100 STAILQ_HEAD(, epoch_cb) eps_cblist; 101 } __aligned(EPOCH_ALIGN); 102 103 struct epoch { 104 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); 105 struct grouptask e_gtask; 106 struct callout e_timer; 107 struct mtx e_lock; 108 int e_flags; 109 /* make sure that immutable data doesn't overlap with the gtask, callout, and mutex*/ 110 struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN); 111 counter_u64_t e_frees; 112 uint64_t e_free_last; 113 struct epoch_pcpu_state *e_pcpu[0]; 114 }; 115 116 static __read_mostly int domcount[MAXMEMDOM]; 117 static __read_mostly int domoffsets[MAXMEMDOM]; 118 static __read_mostly int inited; 119 120 static void epoch_call_task(void *context); 121 122 #if defined(__powerpc64__) || defined(__powerpc__) 123 static bool usedomains = false; 124 #else 125 static bool usedomains = true; 126 #endif 127 static void 128 epoch_init(void *arg __unused) 129 { 130 int domain, count; 131 132 if (poll_intvl == 0) 133 poll_intvl = hz; 134 135 block_count = counter_u64_alloc(M_WAITOK); 136 migrate_count = counter_u64_alloc(M_WAITOK); 137 turnstile_count = counter_u64_alloc(M_WAITOK); 138 switch_count = counter_u64_alloc(M_WAITOK); 139 if (usedomains == false) { 140 inited = 1; 141 return; 142 } 143 count = domain = 0; 144 domoffsets[0] = 0; 145 for (domain = 0; domain < vm_ndomains; domain++) { 146 domcount[domain] = CPU_COUNT(&cpuset_domain[domain]); 147 if (bootverbose) 148 printf("domcount[%d] %d\n", domain, domcount[domain]); 149 } 150 for (domain = 1; domain < vm_ndomains; domain++) 151 domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1]; 152 153 for (domain = 0; domain < vm_ndomains; domain++) { 154 if (domcount[domain] == 0) { 155 usedomains = false; 156 break; 157 } 158 } 159 inited = 1; 160 } 161 SYSINIT(epoch, SI_SUB_CPU + 1, SI_ORDER_FIRST, epoch_init, NULL); 162 163 static void 164 epoch_init_numa(epoch_t epoch) 165 { 166 int domain, cpu_offset; 167 struct epoch_pcpu_state *eps; 168 epoch_record_t er; 169 170 for (domain = 0; domain < vm_ndomains; domain++) { 171 eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH, 172 domain, M_ZERO|M_WAITOK); 173 epoch->e_pcpu_dom[domain] = eps; 174 cpu_offset = domoffsets[domain]; 175 for (int i = 0; i < domcount[domain]; i++, eps++) { 176 epoch->e_pcpu[cpu_offset + i] = eps; 177 er = &eps->eps_record; 178 STAILQ_INIT(&eps->eps_cblist); 179 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 180 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 181 er->er_cpuid = cpu_offset + i; 182 } 183 } 184 } 185 186 static void 187 epoch_init_legacy(epoch_t epoch) 188 { 189 struct epoch_pcpu_state *eps; 190 epoch_record_t er; 191 192 eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK); 193 epoch->e_pcpu_dom[0] = eps; 194 for (int i = 0; i < mp_ncpus; i++, eps++) { 195 epoch->e_pcpu[i] = eps; 196 er = &eps->eps_record; 197 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 198 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 199 STAILQ_INIT(&eps->eps_cblist); 200 er->er_cpuid = i; 201 } 202 } 203 204 static void 205 epoch_callout(void *arg) 206 { 207 epoch_t epoch; 208 uint64_t frees; 209 210 epoch = arg; 211 frees = counter_u64_fetch(epoch->e_frees); 212 /* pick some better value */ 213 if (frees - epoch->e_free_last > 10) { 214 GROUPTASK_ENQUEUE(&epoch->e_gtask); 215 epoch->e_free_last = frees; 216 } 217 if ((epoch->e_flags & EPOCH_EXITING) == 0) 218 callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch); 219 } 220 221 epoch_t 222 epoch_alloc(void) 223 { 224 epoch_t epoch; 225 226 if (__predict_false(!inited)) 227 panic("%s called too early in boot", __func__); 228 epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*), 229 M_EPOCH, M_ZERO|M_WAITOK); 230 ck_epoch_init(&epoch->e_epoch); 231 epoch->e_frees = counter_u64_alloc(M_WAITOK); 232 mtx_init(&epoch->e_lock, "epoch callout", NULL, MTX_DEF); 233 callout_init_mtx(&epoch->e_timer, &epoch->e_lock, 0); 234 taskqgroup_config_gtask_init(epoch, &epoch->e_gtask, epoch_call_task, "epoch call task"); 235 if (usedomains) 236 epoch_init_numa(epoch); 237 else 238 epoch_init_legacy(epoch); 239 callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch); 240 return (epoch); 241 } 242 243 void 244 epoch_free(epoch_t epoch) 245 { 246 int domain; 247 #ifdef INVARIANTS 248 struct epoch_pcpu_state *eps; 249 int cpu; 250 251 CPU_FOREACH(cpu) { 252 eps = epoch->e_pcpu[cpu]; 253 MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist)); 254 } 255 #endif 256 mtx_lock(&epoch->e_lock); 257 epoch->e_flags |= EPOCH_EXITING; 258 mtx_unlock(&epoch->e_lock); 259 /* 260 * Execute any lingering callbacks 261 */ 262 GROUPTASK_ENQUEUE(&epoch->e_gtask); 263 gtaskqueue_drain(epoch->e_gtask.gt_taskqueue, &epoch->e_gtask.gt_task); 264 callout_drain(&epoch->e_timer); 265 mtx_destroy(&epoch->e_lock); 266 counter_u64_free(epoch->e_frees); 267 taskqgroup_config_gtask_deinit(&epoch->e_gtask); 268 if (usedomains) 269 for (domain = 0; domain < vm_ndomains; domain++) 270 free_domain(epoch->e_pcpu_dom[domain], M_EPOCH); 271 else 272 free(epoch->e_pcpu_dom[0], M_EPOCH); 273 free(epoch, M_EPOCH); 274 } 275 276 #define INIT_CHECK(epoch) \ 277 do { \ 278 if (__predict_false((epoch) == NULL)) \ 279 return; \ 280 } while (0) 281 282 void 283 epoch_enter(epoch_t epoch) 284 { 285 struct epoch_pcpu_state *eps; 286 struct thread *td; 287 288 INIT_CHECK(epoch); 289 290 td = curthread; 291 critical_enter(); 292 eps = epoch->e_pcpu[curcpu]; 293 td->td_epochnest++; 294 MPASS(td->td_epochnest < UCHAR_MAX - 2); 295 if (td->td_epochnest == 1) 296 TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq); 297 #ifdef INVARIANTS 298 if (td->td_epochnest > 1) { 299 struct thread *curtd; 300 int found = 0; 301 302 TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq) 303 if (curtd == td) 304 found = 1; 305 KASSERT(found, ("recursing on a second epoch")); 306 } 307 #endif 308 sched_pin(); 309 ck_epoch_begin(&eps->eps_record.er_record, NULL); 310 critical_exit(); 311 } 312 313 void 314 epoch_enter_nopreempt(epoch_t epoch) 315 { 316 struct epoch_pcpu_state *eps; 317 318 INIT_CHECK(epoch); 319 critical_enter(); 320 eps = epoch->e_pcpu[curcpu]; 321 curthread->td_epochnest++; 322 MPASS(curthread->td_epochnest < UCHAR_MAX - 2); 323 ck_epoch_begin(&eps->eps_record.er_record, NULL); 324 } 325 326 void 327 epoch_exit(epoch_t epoch) 328 { 329 struct epoch_pcpu_state *eps; 330 struct thread *td; 331 332 td = curthread; 333 INIT_CHECK(epoch); 334 critical_enter(); 335 eps = epoch->e_pcpu[curcpu]; 336 sched_unpin(); 337 ck_epoch_end(&eps->eps_record.er_record, NULL); 338 td->td_epochnest--; 339 if (td->td_epochnest == 0) 340 TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq); 341 eps->eps_record.er_gen++; 342 critical_exit(); 343 } 344 345 void 346 epoch_exit_nopreempt(epoch_t epoch) 347 { 348 struct epoch_pcpu_state *eps; 349 350 INIT_CHECK(epoch); 351 MPASS(curthread->td_critnest); 352 eps = epoch->e_pcpu[curcpu]; 353 ck_epoch_end(&eps->eps_record.er_record, NULL); 354 curthread->td_epochnest--; 355 critical_exit(); 356 } 357 358 /* 359 * epoch_block_handler is a callback from the ck code when another thread is 360 * currently in an epoch section. 361 */ 362 static void 363 epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr, 364 void *arg __unused) 365 { 366 epoch_record_t record; 367 struct epoch_pcpu_state *eps; 368 struct thread *td, *tdwait, *owner; 369 struct turnstile *ts; 370 struct lock_object *lock; 371 int spincount, gen; 372 373 eps = arg; 374 record = __containerof(cr, struct epoch_record, er_record); 375 td = curthread; 376 spincount = 0; 377 counter_u64_add(block_count, 1); 378 if (record->er_cpuid != curcpu) { 379 /* 380 * If the head of the list is running, we can wait for it 381 * to remove itself from the list and thus save us the 382 * overhead of a migration 383 */ 384 if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL && 385 TD_IS_RUNNING(tdwait)) { 386 gen = record->er_gen; 387 thread_unlock(td); 388 do { 389 cpu_spinwait(); 390 } while (tdwait == TAILQ_FIRST(&record->er_tdlist) && 391 gen == record->er_gen && TD_IS_RUNNING(tdwait) && 392 spincount++ < MAX_ADAPTIVE_SPIN); 393 thread_lock(td); 394 return; 395 } 396 397 /* 398 * Being on the same CPU as that of the record on which 399 * we need to wait allows us access to the thread 400 * list associated with that CPU. We can then examine the 401 * oldest thread in the queue and wait on its turnstile 402 * until it resumes and so on until a grace period 403 * elapses. 404 * 405 */ 406 counter_u64_add(migrate_count, 1); 407 sched_bind(td, record->er_cpuid); 408 /* 409 * At this point we need to return to the ck code 410 * to scan to see if a grace period has elapsed. 411 * We can't move on to check the thread list, because 412 * in the meantime new threads may have arrived that 413 * in fact belong to a different epoch. 414 */ 415 return; 416 } 417 /* 418 * Try to find a thread in an epoch section on this CPU 419 * waiting on a turnstile. Otherwise find the lowest 420 * priority thread (highest prio value) and drop our priority 421 * to match to allow it to run. 422 */ 423 TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) { 424 /* 425 * Propagate our priority to any other waiters to prevent us 426 * from starving them. They will have their original priority 427 * restore on exit from epoch_wait(). 428 */ 429 if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) { 430 thread_lock(tdwait); 431 sched_prio(tdwait, td->td_priority); 432 thread_unlock(tdwait); 433 } 434 if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) && 435 ((ts = tdwait->td_blocked) != NULL)) { 436 /* 437 * We unlock td to allow turnstile_wait to reacquire the 438 * the thread lock. Before unlocking it we enter a critical 439 * section to prevent preemption after we reenable interrupts 440 * by dropping the thread lock in order to prevent tdwait 441 * from getting to run. 442 */ 443 critical_enter(); 444 thread_unlock(td); 445 owner = turnstile_lock(ts, &lock); 446 /* 447 * The owner pointer indicates that the lock succeeded. Only 448 * in case we hold the lock and the turnstile we locked is still 449 * the one that tdwait is blocked on can we continue. Otherwise 450 * The turnstile pointer has been changed out from underneath 451 * us, as in the case where the lock holder has signalled tdwait, 452 * and we need to continue. 453 */ 454 if (owner != NULL && ts == tdwait->td_blocked) { 455 MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait)); 456 critical_exit(); 457 turnstile_wait(ts, owner, tdwait->td_tsqueue); 458 counter_u64_add(turnstile_count, 1); 459 thread_lock(td); 460 return; 461 } else if (owner != NULL) 462 turnstile_unlock(ts, lock); 463 thread_lock(td); 464 critical_exit(); 465 KASSERT(td->td_locks == 0, 466 ("%d locks held", td->td_locks)); 467 } 468 } 469 /* 470 * We didn't find any threads actually blocked on a lock 471 * so we have nothing to do except context switch away. 472 */ 473 counter_u64_add(switch_count, 1); 474 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 475 476 /* 477 * Release the thread lock while yielding to 478 * allow other threads to acquire the lock 479 * pointed to by TDQ_LOCKPTR(td). Else a 480 * deadlock like situation might happen. (HPS) 481 */ 482 thread_unlock(td); 483 thread_lock(td); 484 } 485 486 void 487 epoch_wait(epoch_t epoch) 488 { 489 struct thread *td; 490 int was_bound; 491 int old_cpu; 492 int old_pinned; 493 u_char old_prio; 494 495 INIT_CHECK(epoch); 496 497 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 498 "epoch_wait() can sleep"); 499 500 td = curthread; 501 KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section")); 502 thread_lock(td); 503 504 DROP_GIANT(); 505 506 old_cpu = PCPU_GET(cpuid); 507 old_pinned = td->td_pinned; 508 old_prio = td->td_priority; 509 was_bound = sched_is_bound(td); 510 sched_unbind(td); 511 td->td_pinned = 0; 512 sched_bind(td, old_cpu); 513 514 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); 515 516 /* restore CPU binding, if any */ 517 if (was_bound != 0) { 518 sched_bind(td, old_cpu); 519 } else { 520 /* get thread back to initial CPU, if any */ 521 if (old_pinned != 0) 522 sched_bind(td, old_cpu); 523 sched_unbind(td); 524 } 525 /* restore pinned after bind */ 526 td->td_pinned = old_pinned; 527 528 /* restore thread priority */ 529 sched_prio(td, old_prio); 530 thread_unlock(td); 531 KASSERT(td->td_locks == 0, 532 ("%d locks held", td->td_locks)); 533 PICKUP_GIANT(); 534 } 535 536 void 537 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) 538 { 539 struct epoch_pcpu_state *eps; 540 epoch_cb_t cb; 541 542 cb = (void *)ctx; 543 544 MPASS(cb->ec_callback == NULL); 545 MPASS(cb->ec_link.stqe_next == NULL); 546 MPASS(epoch); 547 MPASS(callback); 548 cb->ec_callback = callback; 549 counter_u64_add(epoch->e_frees, 1); 550 critical_enter(); 551 eps = epoch->e_pcpu[curcpu]; 552 STAILQ_INSERT_HEAD(&eps->eps_cblist, cb, ec_link); 553 critical_exit(); 554 } 555 556 static void 557 epoch_call_task(void *context) 558 { 559 struct epoch_pcpu_state *eps; 560 epoch_t epoch; 561 epoch_cb_t cb; 562 struct thread *td; 563 int cpu; 564 STAILQ_HEAD(, epoch_cb) tmp_head; 565 566 epoch = context; 567 STAILQ_INIT(&tmp_head); 568 td = curthread; 569 thread_lock(td); 570 CPU_FOREACH(cpu) { 571 sched_bind(td, cpu); 572 eps = epoch->e_pcpu[cpu]; 573 if (!STAILQ_EMPTY(&eps->eps_cblist)) 574 STAILQ_CONCAT(&tmp_head, &eps->eps_cblist); 575 } 576 sched_unbind(td); 577 thread_unlock(td); 578 epoch_wait(epoch); 579 580 while ((cb = STAILQ_FIRST(&tmp_head)) != NULL) { 581 STAILQ_REMOVE_HEAD(&tmp_head, ec_link); 582 cb->ec_callback((void*)cb); 583 } 584 } 585 586 int 587 in_epoch(void) 588 { 589 return (curthread->td_epochnest != 0); 590 } 591