xref: /freebsd/sys/kern/subr_epoch.c (revision 47dd1d1b619cc035b82b49a91a25544309ff95ae)
1 /*-
2  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  *  1. Redistributions of source code must retain the above copyright notice,
8  *     this list of conditions and the following disclaimer.
9  *
10  *  2. Neither the name of Matthew Macy nor the names of its
11  *     contributors may be used to endorse or promote products derived from
12  *     this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/counter.h>
34 #include <sys/epoch.h>
35 #include <sys/gtaskqueue.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 #include <sys/turnstile.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 #include <vm/vm_kern.h>
49 
50 #include <ck_epoch.h>
51 
52 MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
53 
54 /* arbitrary --- needs benchmarking */
55 #define MAX_ADAPTIVE_SPIN 5000
56 
57 #define EPOCH_EXITING 0x1
58 #ifdef __amd64__
59 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
60 #else
61 #define EPOCH_ALIGN CACHE_LINE_SIZE
62 #endif
63 
64 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
65 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
66 
67 static int poll_intvl;
68 SYSCTL_INT(_kern_epoch, OID_AUTO, poll_intvl, CTLFLAG_RWTUN,
69 		   &poll_intvl, 0, "# of ticks to wait between garbage collecting deferred frees");
70 /* Stats. */
71 static counter_u64_t block_count;
72 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
73 				   &block_count, "# of times a thread was in an epoch when epoch_wait was called");
74 static counter_u64_t migrate_count;
75 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
76 				   &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
77 static counter_u64_t turnstile_count;
78 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
79 				   &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
80 static counter_u64_t switch_count;
81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
82 				   &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
83 
84 typedef struct epoch_cb {
85 	void (*ec_callback)(epoch_context_t);
86 	STAILQ_ENTRY(epoch_cb) ec_link;
87 } *epoch_cb_t;
88 
89 TAILQ_HEAD(threadlist, thread);
90 
91 typedef struct epoch_record {
92 	ck_epoch_record_t er_record;
93 	volatile struct threadlist er_tdlist;
94 	volatile uint32_t er_gen;
95 	uint32_t er_cpuid;
96 } *epoch_record_t;
97 
98 struct epoch_pcpu_state {
99 	struct epoch_record eps_record;
100 	STAILQ_HEAD(, epoch_cb) eps_cblist;
101 } __aligned(EPOCH_ALIGN);
102 
103 struct epoch {
104 	struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
105 	struct grouptask e_gtask;
106 	struct callout e_timer;
107 	struct mtx e_lock;
108 	int e_flags;
109 	/* make sure that immutable data doesn't overlap with the gtask, callout, and mutex*/
110 	struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN);
111 	counter_u64_t e_frees;
112 	uint64_t e_free_last;
113 	struct epoch_pcpu_state *e_pcpu[0];
114 };
115 
116 static __read_mostly int domcount[MAXMEMDOM];
117 static __read_mostly int domoffsets[MAXMEMDOM];
118 static __read_mostly int inited;
119 
120 static void epoch_call_task(void *context);
121 
122 #if defined(__powerpc64__) || defined(__powerpc__)
123 static bool usedomains = false;
124 #else
125 static bool usedomains = true;
126 #endif
127 static void
128 epoch_init(void *arg __unused)
129 {
130 	int domain, count;
131 
132 	if (poll_intvl == 0)
133 		poll_intvl = hz;
134 
135 	block_count = counter_u64_alloc(M_WAITOK);
136 	migrate_count = counter_u64_alloc(M_WAITOK);
137 	turnstile_count = counter_u64_alloc(M_WAITOK);
138 	switch_count = counter_u64_alloc(M_WAITOK);
139 	if (usedomains == false)
140 		return;
141 	count = domain = 0;
142 	domoffsets[0] = 0;
143 	for (domain = 0; domain < vm_ndomains; domain++) {
144 		domcount[domain] = CPU_COUNT(&cpuset_domain[domain]);
145 		if (bootverbose)
146 			printf("domcount[%d] %d\n", domain, domcount[domain]);
147 	}
148 	for (domain = 1; domain < vm_ndomains; domain++)
149 		domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1];
150 
151 	for (domain = 0; domain < vm_ndomains; domain++) {
152 		if (domcount[domain] == 0) {
153 			usedomains = false;
154 			break;
155 		}
156 	}
157 
158 	inited = 1;
159 }
160 SYSINIT(epoch, SI_SUB_CPU + 1, SI_ORDER_FIRST, epoch_init, NULL);
161 
162 static void
163 epoch_init_numa(epoch_t epoch)
164 {
165 	int domain, cpu_offset;
166 	struct epoch_pcpu_state *eps;
167 	epoch_record_t er;
168 
169 	for (domain = 0; domain < vm_ndomains; domain++) {
170 		eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH,
171 							domain, M_ZERO|M_WAITOK);
172 		epoch->e_pcpu_dom[domain] = eps;
173 		cpu_offset = domoffsets[domain];
174 		for (int i = 0; i < domcount[domain]; i++, eps++) {
175 			epoch->e_pcpu[cpu_offset + i] = eps;
176 			er = &eps->eps_record;
177 			STAILQ_INIT(&eps->eps_cblist);
178 			ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
179 			TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
180 			er->er_cpuid = cpu_offset + i;
181 		}
182 	}
183 }
184 
185 static void
186 epoch_init_legacy(epoch_t epoch)
187 {
188 	struct epoch_pcpu_state *eps;
189 	epoch_record_t er;
190 
191 	eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK);
192 	epoch->e_pcpu_dom[0] = eps;
193 	for (int i = 0; i < mp_ncpus; i++, eps++) {
194 		epoch->e_pcpu[i] = eps;
195 		er = &eps->eps_record;
196 		ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
197 		TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
198 		STAILQ_INIT(&eps->eps_cblist);
199 		er->er_cpuid = i;
200 	}
201 }
202 
203 static void
204 epoch_callout(void *arg)
205 {
206 	epoch_t epoch;
207 	uint64_t frees;
208 
209 	epoch = arg;
210 	frees = counter_u64_fetch(epoch->e_frees);
211 	/* pick some better value */
212 	if (frees - epoch->e_free_last > 10) {
213 		GROUPTASK_ENQUEUE(&epoch->e_gtask);
214 		epoch->e_free_last = frees;
215 	}
216 	if ((epoch->e_flags & EPOCH_EXITING) == 0)
217 		callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch);
218 }
219 
220 epoch_t
221 epoch_alloc(void)
222 {
223 	epoch_t epoch;
224 
225 	if (__predict_false(!inited))
226 		panic("%s called too early in boot", __func__);
227 	epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*),
228 				   M_EPOCH, M_ZERO|M_WAITOK);
229 	ck_epoch_init(&epoch->e_epoch);
230 	epoch->e_frees = counter_u64_alloc(M_WAITOK);
231 	mtx_init(&epoch->e_lock, "epoch callout", NULL, MTX_DEF);
232 	callout_init_mtx(&epoch->e_timer, &epoch->e_lock, 0);
233 	taskqgroup_config_gtask_init(epoch, &epoch->e_gtask, epoch_call_task, "epoch call task");
234 	if (usedomains)
235 		epoch_init_numa(epoch);
236 	else
237 		epoch_init_legacy(epoch);
238 	callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch);
239 	return (epoch);
240 }
241 
242 void
243 epoch_free(epoch_t epoch)
244 {
245 	int domain;
246 #ifdef INVARIANTS
247 	struct epoch_pcpu_state *eps;
248 	int cpu;
249 
250 	CPU_FOREACH(cpu) {
251 		eps = epoch->e_pcpu[cpu];
252 		MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
253 	}
254 #endif
255 	mtx_lock(&epoch->e_lock);
256 	epoch->e_flags |= EPOCH_EXITING;
257 	mtx_unlock(&epoch->e_lock);
258 	/*
259 	 * Execute any lingering callbacks
260 	 */
261 	GROUPTASK_ENQUEUE(&epoch->e_gtask);
262 	gtaskqueue_drain(epoch->e_gtask.gt_taskqueue, &epoch->e_gtask.gt_task);
263 	callout_drain(&epoch->e_timer);
264 	mtx_destroy(&epoch->e_lock);
265 	counter_u64_free(epoch->e_frees);
266 	taskqgroup_config_gtask_deinit(&epoch->e_gtask);
267 	if (usedomains)
268 		for (domain = 0; domain < vm_ndomains; domain++)
269 			free_domain(epoch->e_pcpu_dom[domain], M_EPOCH);
270 	else
271 		free(epoch->e_pcpu_dom[0], M_EPOCH);
272 	free(epoch, M_EPOCH);
273 }
274 
275 #define INIT_CHECK(epoch)								\
276 	do {											\
277 		if (__predict_false((epoch) == NULL))		\
278 			return;									\
279 	} while (0)
280 
281 void
282 epoch_enter(epoch_t epoch)
283 {
284 	struct epoch_pcpu_state *eps;
285 	struct thread *td;
286 
287 	INIT_CHECK(epoch);
288 
289 	td = curthread;
290 	critical_enter();
291 	eps = epoch->e_pcpu[curcpu];
292 	td->td_epochnest++;
293 	MPASS(td->td_epochnest < UCHAR_MAX - 2);
294 	if (td->td_epochnest == 1)
295 		TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq);
296 #ifdef INVARIANTS
297 	if (td->td_epochnest > 1) {
298 		struct thread *curtd;
299 		int found = 0;
300 
301 		TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq)
302 			if (curtd == td)
303 				found = 1;
304 		KASSERT(found, ("recursing on a second epoch"));
305 	}
306 #endif
307 	sched_pin();
308 	ck_epoch_begin(&eps->eps_record.er_record, NULL);
309 	critical_exit();
310 }
311 
312 void
313 epoch_enter_nopreempt(epoch_t epoch)
314 {
315 	struct epoch_pcpu_state *eps;
316 
317 	INIT_CHECK(epoch);
318 	critical_enter();
319 	eps = epoch->e_pcpu[curcpu];
320 	curthread->td_epochnest++;
321 	MPASS(curthread->td_epochnest < UCHAR_MAX - 2);
322 	ck_epoch_begin(&eps->eps_record.er_record, NULL);
323 }
324 
325 void
326 epoch_exit(epoch_t epoch)
327 {
328 	struct epoch_pcpu_state *eps;
329 	struct thread *td;
330 
331 	td = curthread;
332 	INIT_CHECK(epoch);
333 	critical_enter();
334 	eps = epoch->e_pcpu[curcpu];
335 	sched_unpin();
336 	ck_epoch_end(&eps->eps_record.er_record, NULL);
337 	td->td_epochnest--;
338 	if (td->td_epochnest == 0)
339 		TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
340 	eps->eps_record.er_gen++;
341 	critical_exit();
342 }
343 
344 void
345 epoch_exit_nopreempt(epoch_t epoch)
346 {
347 	struct epoch_pcpu_state *eps;
348 
349 	INIT_CHECK(epoch);
350 	MPASS(curthread->td_critnest);
351 	eps = epoch->e_pcpu[curcpu];
352 	ck_epoch_end(&eps->eps_record.er_record, NULL);
353 	curthread->td_epochnest--;
354 	critical_exit();
355 }
356 
357 /*
358  * epoch_block_handler is a callback from the ck code when another thread is
359  * currently in an epoch section.
360  */
361 static void
362 epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
363 					void *arg __unused)
364 {
365 	epoch_record_t record;
366 	struct epoch_pcpu_state *eps;
367 	struct thread *td, *tdwait, *owner;
368 	struct turnstile *ts;
369 	struct lock_object *lock;
370 	int spincount, gen;
371 
372 	eps = arg;
373 	record = __containerof(cr, struct epoch_record, er_record);
374 	td = curthread;
375 	spincount = 0;
376 	counter_u64_add(block_count, 1);
377 	if (record->er_cpuid != curcpu) {
378 		/*
379 		 * If the head of the list is running, we can wait for it
380 		 * to remove itself from the list and thus save us the
381 		 * overhead of a migration
382 		 */
383 		if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
384 			TD_IS_RUNNING(tdwait)) {
385 			gen = record->er_gen;
386 			thread_unlock(td);
387 			do {
388 				cpu_spinwait();
389 			} while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
390 					 gen == record->er_gen && TD_IS_RUNNING(tdwait) &&
391 					 spincount++ < MAX_ADAPTIVE_SPIN);
392 			thread_lock(td);
393 			return;
394 		}
395 
396 		/*
397 		 * Being on the same CPU as that of the record on which
398 		 * we need to wait allows us access to the thread
399 		 * list associated with that CPU. We can then examine the
400 		 * oldest thread in the queue and wait on its turnstile
401 		 * until it resumes and so on until a grace period
402 		 * elapses.
403 		 *
404 		 */
405 		counter_u64_add(migrate_count, 1);
406 		sched_bind(td, record->er_cpuid);
407 		/*
408 		 * At this point we need to return to the ck code
409 		 * to scan to see if a grace period has elapsed.
410 		 * We can't move on to check the thread list, because
411 		 * in the meantime new threads may have arrived that
412 		 * in fact belong to a different epoch.
413 		 */
414 		return;
415 	}
416 	/*
417 	 * Try to find a thread in an epoch section on this CPU
418 	 * waiting on a turnstile. Otherwise find the lowest
419 	 * priority thread (highest prio value) and drop our priority
420 	 * to match to allow it to run.
421 	 */
422 	TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
423 		/*
424 		 * Propagate our priority to any other waiters to prevent us
425 		 * from starving them. They will have their original priority
426 		 * restore on exit from epoch_wait().
427 		 */
428 		if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) {
429 			thread_lock(tdwait);
430 			sched_prio(tdwait, td->td_priority);
431 			thread_unlock(tdwait);
432 		}
433 		if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
434 			((ts = tdwait->td_blocked) != NULL)) {
435 			/*
436 			 * We unlock td to allow turnstile_wait to reacquire the
437 			 * the thread lock. Before unlocking it we enter a critical
438 			 * section to prevent preemption after we reenable interrupts
439 			 * by dropping the thread lock in order to prevent tdwait
440 			 * from getting to run.
441 			 */
442 			critical_enter();
443 			thread_unlock(td);
444 			owner = turnstile_lock(ts, &lock);
445 			/*
446 			 * The owner pointer indicates that the lock succeeded. Only
447 			 * in case we hold the lock and the turnstile we locked is still
448 			 * the one that tdwait is blocked on can we continue. Otherwise
449 			 * The turnstile pointer has been changed out from underneath
450 			 * us, as in the case where the lock holder has signalled tdwait,
451 			 * and we need to continue.
452 			 */
453 			if (owner != NULL && ts == tdwait->td_blocked) {
454 				MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait));
455 				critical_exit();
456 				turnstile_wait(ts, owner, tdwait->td_tsqueue);
457 				counter_u64_add(turnstile_count, 1);
458 				thread_lock(td);
459 				return;
460 			} else if (owner != NULL)
461 				turnstile_unlock(ts, lock);
462 			thread_lock(td);
463 			critical_exit();
464 			KASSERT(td->td_locks == 0,
465 					("%d locks held", td->td_locks));
466 		}
467 	}
468 	/*
469 	 * We didn't find any threads actually blocked on a lock
470 	 * so we have nothing to do except context switch away.
471 	 */
472 	counter_u64_add(switch_count, 1);
473 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
474 
475 	/*
476 	 * Release the thread lock while yielding to
477 	 * allow other threads to acquire the lock
478 	 * pointed to by TDQ_LOCKPTR(td). Else a
479 	 * deadlock like situation might happen. (HPS)
480 	 */
481 	thread_unlock(td);
482 	thread_lock(td);
483 }
484 
485 void
486 epoch_wait(epoch_t epoch)
487 {
488 	struct thread *td;
489 	int was_bound;
490 	int old_cpu;
491 	int old_pinned;
492 	u_char old_prio;
493 
494 	INIT_CHECK(epoch);
495 
496 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
497 	    "epoch_wait() can sleep");
498 
499 	td = curthread;
500 	KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section"));
501 	thread_lock(td);
502 
503 	DROP_GIANT();
504 
505 	old_cpu = PCPU_GET(cpuid);
506 	old_pinned = td->td_pinned;
507 	old_prio = td->td_priority;
508 	was_bound = sched_is_bound(td);
509 	sched_unbind(td);
510 	td->td_pinned = 0;
511 	sched_bind(td, old_cpu);
512 
513 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
514 
515 	/* restore CPU binding, if any */
516 	if (was_bound != 0) {
517 		sched_bind(td, old_cpu);
518 	} else {
519 		/* get thread back to initial CPU, if any */
520 		if (old_pinned != 0)
521 			sched_bind(td, old_cpu);
522 		sched_unbind(td);
523 	}
524 	/* restore pinned after bind */
525 	td->td_pinned = old_pinned;
526 
527 	/* restore thread priority */
528 	sched_prio(td, old_prio);
529 	thread_unlock(td);
530 	KASSERT(td->td_locks == 0,
531 			("%d locks held", td->td_locks));
532 	PICKUP_GIANT();
533 }
534 
535 void
536 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
537 {
538 	struct epoch_pcpu_state *eps;
539 	epoch_cb_t cb;
540 
541 	cb = (void *)ctx;
542 
543 	MPASS(cb->ec_callback == NULL);
544 	MPASS(cb->ec_link.stqe_next == NULL);
545 	MPASS(epoch);
546 	MPASS(callback);
547 	cb->ec_callback = callback;
548 	counter_u64_add(epoch->e_frees, 1);
549 	critical_enter();
550 	eps = epoch->e_pcpu[curcpu];
551 	STAILQ_INSERT_HEAD(&eps->eps_cblist, cb, ec_link);
552 	critical_exit();
553 }
554 
555 static void
556 epoch_call_task(void *context)
557 {
558 	struct epoch_pcpu_state *eps;
559 	epoch_t epoch;
560 	epoch_cb_t cb;
561 	struct thread *td;
562 	int cpu;
563 	STAILQ_HEAD(, epoch_cb) tmp_head;
564 
565 	epoch = context;
566 	STAILQ_INIT(&tmp_head);
567 	td = curthread;
568 	thread_lock(td);
569 	CPU_FOREACH(cpu) {
570 		sched_bind(td, cpu);
571 		eps = epoch->e_pcpu[cpu];
572 		if (!STAILQ_EMPTY(&eps->eps_cblist))
573 			STAILQ_CONCAT(&tmp_head, &eps->eps_cblist);
574 	}
575 	sched_unbind(td);
576 	thread_unlock(td);
577 	epoch_wait(epoch);
578 
579 	while ((cb = STAILQ_FIRST(&tmp_head)) != NULL) {
580 		STAILQ_REMOVE_HEAD(&tmp_head, ec_link);
581 		cb->ec_callback((void*)cb);
582 	}
583 }
584 
585 int
586 in_epoch(void)
587 {
588 	return (curthread->td_epochnest != 0);
589 }
590