xref: /freebsd/sys/kern/subr_epoch.c (revision 2e620256bd76c449c835c604e404483437743011)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/counter.h>
33 #include <sys/epoch.h>
34 #include <sys/gtaskqueue.h>
35 #include <sys/kernel.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/pcpu.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/sx.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 #include <sys/turnstile.h>
47 #ifdef EPOCH_TRACE
48 #include <machine/stdarg.h>
49 #include <sys/stack.h>
50 #include <sys/tree.h>
51 #endif
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/uma.h>
56 
57 #include <machine/stack.h>
58 
59 #include <ck_epoch.h>
60 
61 #ifdef __amd64__
62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
63 #else
64 #define EPOCH_ALIGN CACHE_LINE_SIZE
65 #endif
66 
67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
68 typedef struct epoch_record {
69 	ck_epoch_record_t er_record;
70 	struct epoch_context er_drain_ctx;
71 	struct epoch *er_parent;
72 	volatile struct epoch_tdlist er_tdlist;
73 	volatile uint32_t er_gen;
74 	uint32_t er_cpuid;
75 #ifdef INVARIANTS
76 	/* Used to verify record ownership for non-preemptible epochs. */
77 	struct thread *er_td;
78 #endif
79 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
80 
81 struct epoch {
82 	struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
83 	epoch_record_t e_pcpu_record;
84 	int	e_in_use;
85 	int	e_flags;
86 	struct sx e_drain_sx;
87 	struct mtx e_drain_mtx;
88 	volatile int e_drain_count;
89 	const char *e_name;
90 };
91 
92 /* arbitrary --- needs benchmarking */
93 #define MAX_ADAPTIVE_SPIN 100
94 #define MAX_EPOCHS 64
95 
96 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
97 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
98     "epoch information");
99 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
100     "epoch stats");
101 
102 /* Stats. */
103 static counter_u64_t block_count;
104 
105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
106     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
107 static counter_u64_t migrate_count;
108 
109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
110     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
111 static counter_u64_t turnstile_count;
112 
113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
114     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
115 static counter_u64_t switch_count;
116 
117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
118     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
119 static counter_u64_t epoch_call_count;
120 
121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
122     &epoch_call_count, "# of times a callback was deferred");
123 static counter_u64_t epoch_call_task_count;
124 
125 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
126     &epoch_call_task_count, "# of times a callback task was run");
127 
128 TAILQ_HEAD (threadlist, thread);
129 
130 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
131     ck_epoch_entry_container)
132 
133 static struct epoch epoch_array[MAX_EPOCHS];
134 
135 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
136 DPCPU_DEFINE(int, epoch_cb_count);
137 
138 static __read_mostly int inited;
139 __read_mostly epoch_t global_epoch;
140 __read_mostly epoch_t global_epoch_preempt;
141 
142 static void epoch_call_task(void *context __unused);
143 static 	uma_zone_t pcpu_zone_record;
144 
145 static struct sx epoch_sx;
146 
147 #define	EPOCH_LOCK() sx_xlock(&epoch_sx)
148 #define	EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
149 
150 static epoch_record_t
151 epoch_currecord(epoch_t epoch)
152 {
153 
154 	return (zpcpu_get(epoch->e_pcpu_record));
155 }
156 
157 #ifdef EPOCH_TRACE
158 struct stackentry {
159 	RB_ENTRY(stackentry) se_node;
160 	struct stack se_stack;
161 };
162 
163 static int
164 stackentry_compare(struct stackentry *a, struct stackentry *b)
165 {
166 
167 	if (a->se_stack.depth > b->se_stack.depth)
168 		return (1);
169 	if (a->se_stack.depth < b->se_stack.depth)
170 		return (-1);
171 	for (int i = 0; i < a->se_stack.depth; i++) {
172 		if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
173 			return (1);
174 		if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
175 			return (-1);
176 	}
177 
178 	return (0);
179 }
180 
181 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
182 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
183 
184 static struct mtx epoch_stacks_lock;
185 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
186 
187 static bool epoch_trace_stack_print = true;
188 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
189     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
190 
191 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
192 static inline void
193 epoch_trace_report(const char *fmt, ...)
194 {
195 	va_list ap;
196 	struct stackentry se, *new;
197 
198 	stack_save(&se.se_stack);
199 
200 	/* Tree is never reduced - go lockless. */
201 	if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
202 		return;
203 
204 	new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
205 	if (new != NULL) {
206 		bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
207 
208 		mtx_lock(&epoch_stacks_lock);
209 		new = RB_INSERT(stacktree, &epoch_stacks, new);
210 		mtx_unlock(&epoch_stacks_lock);
211 		if (new != NULL)
212 			free(new, M_STACK);
213 	}
214 
215 	va_start(ap, fmt);
216 	(void)vprintf(fmt, ap);
217 	va_end(ap);
218 	if (epoch_trace_stack_print)
219 		stack_print_ddb(&se.se_stack);
220 }
221 
222 static inline void
223 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
224     const char *file, int line)
225 {
226 	epoch_tracker_t iet;
227 
228 	SLIST_FOREACH(iet, &td->td_epochs, et_tlink) {
229 		if (iet->et_epoch != epoch)
230 			continue;
231 		epoch_trace_report("Recursively entering epoch %s "
232 		    "at %s:%d, previously entered at %s:%d\n",
233 		    epoch->e_name, file, line,
234 		    iet->et_file, iet->et_line);
235 	}
236 	et->et_epoch = epoch;
237 	et->et_file = file;
238 	et->et_line = line;
239 	et->et_flags = 0;
240 	SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
241 }
242 
243 static inline void
244 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
245     const char *file, int line)
246 {
247 
248 	if (SLIST_FIRST(&td->td_epochs) != et) {
249 		epoch_trace_report("Exiting epoch %s in a not nested order "
250 		    "at %s:%d. Most recently entered %s at %s:%d\n",
251 		    epoch->e_name,
252 		    file, line,
253 		    SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
254 		    SLIST_FIRST(&td->td_epochs)->et_file,
255 		    SLIST_FIRST(&td->td_epochs)->et_line);
256 		/* This will panic if et is not anywhere on td_epochs. */
257 		SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
258 	} else
259 		SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
260 	if (et->et_flags & ET_REPORT_EXIT)
261 		printf("Td %p exiting epoch %s at %s:%d\n", td, epoch->e_name,
262 		    file, line);
263 }
264 
265 /* Used by assertions that check thread state before going to sleep. */
266 void
267 epoch_trace_list(struct thread *td)
268 {
269 	epoch_tracker_t iet;
270 
271 	SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
272 		printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
273 		    iet->et_file, iet->et_line);
274 }
275 
276 void
277 epoch_where_report(epoch_t epoch)
278 {
279 	epoch_record_t er;
280 	struct epoch_tracker *tdwait;
281 
282 	MPASS(epoch != NULL);
283 	MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
284 	MPASS(!THREAD_CAN_SLEEP());
285 	critical_enter();
286 	er = epoch_currecord(epoch);
287 	TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
288 		if (tdwait->et_td == curthread)
289 			break;
290 	critical_exit();
291 	if (tdwait != NULL) {
292 		tdwait->et_flags |= ET_REPORT_EXIT;
293 		printf("Td %p entered epoch %s at %s:%d\n", curthread,
294 		    epoch->e_name, tdwait->et_file, tdwait->et_line);
295 	}
296 }
297 #endif /* EPOCH_TRACE */
298 
299 static void
300 epoch_init(void *arg __unused)
301 {
302 	int cpu;
303 
304 	block_count = counter_u64_alloc(M_WAITOK);
305 	migrate_count = counter_u64_alloc(M_WAITOK);
306 	turnstile_count = counter_u64_alloc(M_WAITOK);
307 	switch_count = counter_u64_alloc(M_WAITOK);
308 	epoch_call_count = counter_u64_alloc(M_WAITOK);
309 	epoch_call_task_count = counter_u64_alloc(M_WAITOK);
310 
311 	pcpu_zone_record = uma_zcreate("epoch_record pcpu",
312 	    sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
313 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
314 	CPU_FOREACH(cpu) {
315 		GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
316 		    epoch_call_task, NULL);
317 		taskqgroup_attach_cpu(qgroup_softirq,
318 		    DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
319 		    "epoch call task");
320 	}
321 #ifdef EPOCH_TRACE
322 	SLIST_INIT(&thread0.td_epochs);
323 #endif
324 	sx_init(&epoch_sx, "epoch-sx");
325 	inited = 1;
326 	global_epoch = epoch_alloc("Global", 0);
327 	global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
328 }
329 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
330 
331 #if !defined(EARLY_AP_STARTUP)
332 static void
333 epoch_init_smp(void *dummy __unused)
334 {
335 	inited = 2;
336 }
337 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
338 #endif
339 
340 static void
341 epoch_ctor(epoch_t epoch)
342 {
343 	epoch_record_t er;
344 	int cpu;
345 
346 	epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
347 	CPU_FOREACH(cpu) {
348 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
349 		bzero(er, sizeof(*er));
350 		ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
351 		TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
352 		er->er_cpuid = cpu;
353 		er->er_parent = epoch;
354 	}
355 }
356 
357 static void
358 epoch_adjust_prio(struct thread *td, u_char prio)
359 {
360 
361 	thread_lock(td);
362 	sched_prio(td, prio);
363 	thread_unlock(td);
364 }
365 
366 epoch_t
367 epoch_alloc(const char *name, int flags)
368 {
369 	epoch_t epoch;
370 	int i;
371 
372 	MPASS(name != NULL);
373 
374 	if (__predict_false(!inited))
375 		panic("%s called too early in boot", __func__);
376 
377 	EPOCH_LOCK();
378 
379 	/*
380 	 * Find a free index in the epoch array. If no free index is
381 	 * found, try to use the index after the last one.
382 	 */
383 	for (i = 0;; i++) {
384 		/*
385 		 * If too many epochs are currently allocated,
386 		 * return NULL.
387 		 */
388 		if (i == MAX_EPOCHS) {
389 			epoch = NULL;
390 			goto done;
391 		}
392 		if (epoch_array[i].e_in_use == 0)
393 			break;
394 	}
395 
396 	epoch = epoch_array + i;
397 	ck_epoch_init(&epoch->e_epoch);
398 	epoch_ctor(epoch);
399 	epoch->e_flags = flags;
400 	epoch->e_name = name;
401 	sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
402 	mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
403 
404 	/*
405 	 * Set e_in_use last, because when this field is set the
406 	 * epoch_call_task() function will start scanning this epoch
407 	 * structure.
408 	 */
409 	atomic_store_rel_int(&epoch->e_in_use, 1);
410 done:
411 	EPOCH_UNLOCK();
412 	return (epoch);
413 }
414 
415 void
416 epoch_free(epoch_t epoch)
417 {
418 #ifdef INVARIANTS
419 	int cpu;
420 #endif
421 
422 	EPOCH_LOCK();
423 
424 	MPASS(epoch->e_in_use != 0);
425 
426 	epoch_drain_callbacks(epoch);
427 
428 	atomic_store_rel_int(&epoch->e_in_use, 0);
429 	/*
430 	 * Make sure the epoch_call_task() function see e_in_use equal
431 	 * to zero, by calling epoch_wait() on the global_epoch:
432 	 */
433 	epoch_wait(global_epoch);
434 #ifdef INVARIANTS
435 	CPU_FOREACH(cpu) {
436 		epoch_record_t er;
437 
438 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
439 
440 		/*
441 		 * Sanity check: none of the records should be in use anymore.
442 		 * We drained callbacks above and freeing the pcpu records is
443 		 * imminent.
444 		 */
445 		MPASS(er->er_td == NULL);
446 		MPASS(TAILQ_EMPTY(&er->er_tdlist));
447 	}
448 #endif
449 	uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
450 	mtx_destroy(&epoch->e_drain_mtx);
451 	sx_destroy(&epoch->e_drain_sx);
452 	memset(epoch, 0, sizeof(*epoch));
453 
454 	EPOCH_UNLOCK();
455 }
456 
457 #define INIT_CHECK(epoch)					\
458 	do {							\
459 		if (__predict_false((epoch) == NULL))		\
460 			return;					\
461 	} while (0)
462 
463 void
464 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
465 {
466 	struct epoch_record *er;
467 	struct thread *td;
468 
469 	MPASS(cold || epoch != NULL);
470 	td = curthread;
471 	MPASS(kstack_contains(td, (vm_offset_t)et, sizeof(*et)));
472 
473 	INIT_CHECK(epoch);
474 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
475 
476 #ifdef EPOCH_TRACE
477 	epoch_trace_enter(td, epoch, et, file, line);
478 #endif
479 	et->et_td = td;
480 	THREAD_NO_SLEEPING();
481 	critical_enter();
482 	sched_pin();
483 	et->et_old_priority = td->td_priority;
484 	er = epoch_currecord(epoch);
485 	/* Record-level tracking is reserved for non-preemptible epochs. */
486 	MPASS(er->er_td == NULL);
487 	TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
488 	ck_epoch_begin(&er->er_record, &et->et_section);
489 	critical_exit();
490 }
491 
492 void
493 epoch_enter(epoch_t epoch)
494 {
495 	epoch_record_t er;
496 
497 	MPASS(cold || epoch != NULL);
498 	INIT_CHECK(epoch);
499 	critical_enter();
500 	er = epoch_currecord(epoch);
501 #ifdef INVARIANTS
502 	if (er->er_record.active == 0) {
503 		MPASS(er->er_td == NULL);
504 		er->er_td = curthread;
505 	} else {
506 		/* We've recursed, just make sure our accounting isn't wrong. */
507 		MPASS(er->er_td == curthread);
508 	}
509 #endif
510 	ck_epoch_begin(&er->er_record, NULL);
511 }
512 
513 void
514 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
515 {
516 	struct epoch_record *er;
517 	struct thread *td;
518 
519 	INIT_CHECK(epoch);
520 	td = curthread;
521 	critical_enter();
522 	sched_unpin();
523 	THREAD_SLEEPING_OK();
524 	er = epoch_currecord(epoch);
525 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
526 	MPASS(et != NULL);
527 	MPASS(et->et_td == td);
528 #ifdef INVARIANTS
529 	et->et_td = (void*)0xDEADBEEF;
530 	/* Record-level tracking is reserved for non-preemptible epochs. */
531 	MPASS(er->er_td == NULL);
532 #endif
533 	ck_epoch_end(&er->er_record, &et->et_section);
534 	TAILQ_REMOVE(&er->er_tdlist, et, et_link);
535 	er->er_gen++;
536 	if (__predict_false(et->et_old_priority != td->td_priority))
537 		epoch_adjust_prio(td, et->et_old_priority);
538 	critical_exit();
539 #ifdef EPOCH_TRACE
540 	epoch_trace_exit(td, epoch, et, file, line);
541 #endif
542 }
543 
544 void
545 epoch_exit(epoch_t epoch)
546 {
547 	epoch_record_t er;
548 
549 	INIT_CHECK(epoch);
550 	er = epoch_currecord(epoch);
551 	ck_epoch_end(&er->er_record, NULL);
552 #ifdef INVARIANTS
553 	MPASS(er->er_td == curthread);
554 	if (er->er_record.active == 0)
555 		er->er_td = NULL;
556 #endif
557 	critical_exit();
558 }
559 
560 /*
561  * epoch_block_handler_preempt() is a callback from the CK code when another
562  * thread is currently in an epoch section.
563  */
564 static void
565 epoch_block_handler_preempt(struct ck_epoch *global __unused,
566     ck_epoch_record_t *cr, void *arg __unused)
567 {
568 	epoch_record_t record;
569 	struct thread *td, *owner, *curwaittd;
570 	struct epoch_tracker *tdwait;
571 	struct turnstile *ts;
572 	struct lock_object *lock;
573 	int spincount, gen;
574 	int locksheld __unused;
575 
576 	record = __containerof(cr, struct epoch_record, er_record);
577 	td = curthread;
578 	locksheld = td->td_locks;
579 	spincount = 0;
580 	counter_u64_add(block_count, 1);
581 	/*
582 	 * We lost a race and there's no longer any threads
583 	 * on the CPU in an epoch section.
584 	 */
585 	if (TAILQ_EMPTY(&record->er_tdlist))
586 		return;
587 
588 	if (record->er_cpuid != curcpu) {
589 		/*
590 		 * If the head of the list is running, we can wait for it
591 		 * to remove itself from the list and thus save us the
592 		 * overhead of a migration
593 		 */
594 		gen = record->er_gen;
595 		thread_unlock(td);
596 		/*
597 		 * We can't actually check if the waiting thread is running
598 		 * so we simply poll for it to exit before giving up and
599 		 * migrating.
600 		 */
601 		do {
602 			cpu_spinwait();
603 		} while (!TAILQ_EMPTY(&record->er_tdlist) &&
604 				 gen == record->er_gen &&
605 				 spincount++ < MAX_ADAPTIVE_SPIN);
606 		thread_lock(td);
607 		/*
608 		 * If the generation has changed we can poll again
609 		 * otherwise we need to migrate.
610 		 */
611 		if (gen != record->er_gen)
612 			return;
613 		/*
614 		 * Being on the same CPU as that of the record on which
615 		 * we need to wait allows us access to the thread
616 		 * list associated with that CPU. We can then examine the
617 		 * oldest thread in the queue and wait on its turnstile
618 		 * until it resumes and so on until a grace period
619 		 * elapses.
620 		 *
621 		 */
622 		counter_u64_add(migrate_count, 1);
623 		sched_bind(td, record->er_cpuid);
624 		/*
625 		 * At this point we need to return to the ck code
626 		 * to scan to see if a grace period has elapsed.
627 		 * We can't move on to check the thread list, because
628 		 * in the meantime new threads may have arrived that
629 		 * in fact belong to a different epoch.
630 		 */
631 		return;
632 	}
633 	/*
634 	 * Try to find a thread in an epoch section on this CPU
635 	 * waiting on a turnstile. Otherwise find the lowest
636 	 * priority thread (highest prio value) and drop our priority
637 	 * to match to allow it to run.
638 	 */
639 	TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
640 		/*
641 		 * Propagate our priority to any other waiters to prevent us
642 		 * from starving them. They will have their original priority
643 		 * restore on exit from epoch_wait().
644 		 */
645 		curwaittd = tdwait->et_td;
646 		if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
647 			critical_enter();
648 			thread_unlock(td);
649 			thread_lock(curwaittd);
650 			sched_prio(curwaittd, td->td_priority);
651 			thread_unlock(curwaittd);
652 			thread_lock(td);
653 			critical_exit();
654 		}
655 		if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
656 		    ((ts = curwaittd->td_blocked) != NULL)) {
657 			/*
658 			 * We unlock td to allow turnstile_wait to reacquire
659 			 * the thread lock. Before unlocking it we enter a
660 			 * critical section to prevent preemption after we
661 			 * reenable interrupts by dropping the thread lock in
662 			 * order to prevent curwaittd from getting to run.
663 			 */
664 			critical_enter();
665 			thread_unlock(td);
666 
667 			if (turnstile_lock(ts, &lock, &owner)) {
668 				if (ts == curwaittd->td_blocked) {
669 					MPASS(TD_IS_INHIBITED(curwaittd) &&
670 					    TD_ON_LOCK(curwaittd));
671 					critical_exit();
672 					turnstile_wait(ts, owner,
673 					    curwaittd->td_tsqueue);
674 					counter_u64_add(turnstile_count, 1);
675 					thread_lock(td);
676 					return;
677 				}
678 				turnstile_unlock(ts, lock);
679 			}
680 			thread_lock(td);
681 			critical_exit();
682 			KASSERT(td->td_locks == locksheld,
683 			    ("%d extra locks held", td->td_locks - locksheld));
684 		}
685 	}
686 	/*
687 	 * We didn't find any threads actually blocked on a lock
688 	 * so we have nothing to do except context switch away.
689 	 */
690 	counter_u64_add(switch_count, 1);
691 	mi_switch(SW_VOL | SWT_RELINQUISH);
692 	/*
693 	 * It is important the thread lock is dropped while yielding
694 	 * to allow other threads to acquire the lock pointed to by
695 	 * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
696 	 * thread lock before returning. Else a deadlock like
697 	 * situation might happen.
698 	 */
699 	thread_lock(td);
700 }
701 
702 void
703 epoch_wait_preempt(epoch_t epoch)
704 {
705 	struct thread *td;
706 	int was_bound;
707 	int old_cpu;
708 	int old_pinned;
709 	u_char old_prio;
710 	int locks __unused;
711 
712 	MPASS(cold || epoch != NULL);
713 	INIT_CHECK(epoch);
714 	td = curthread;
715 #ifdef INVARIANTS
716 	locks = curthread->td_locks;
717 	MPASS(epoch->e_flags & EPOCH_PREEMPT);
718 	if ((epoch->e_flags & EPOCH_LOCKED) == 0)
719 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
720 		    "epoch_wait() can be long running");
721 	KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
722 	    "of an epoch section of the same epoch"));
723 #endif
724 	DROP_GIANT();
725 	thread_lock(td);
726 
727 	old_cpu = PCPU_GET(cpuid);
728 	old_pinned = td->td_pinned;
729 	old_prio = td->td_priority;
730 	was_bound = sched_is_bound(td);
731 	sched_unbind(td);
732 	td->td_pinned = 0;
733 	sched_bind(td, old_cpu);
734 
735 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
736 	    NULL);
737 
738 	/* restore CPU binding, if any */
739 	if (was_bound != 0) {
740 		sched_bind(td, old_cpu);
741 	} else {
742 		/* get thread back to initial CPU, if any */
743 		if (old_pinned != 0)
744 			sched_bind(td, old_cpu);
745 		sched_unbind(td);
746 	}
747 	/* restore pinned after bind */
748 	td->td_pinned = old_pinned;
749 
750 	/* restore thread priority */
751 	sched_prio(td, old_prio);
752 	thread_unlock(td);
753 	PICKUP_GIANT();
754 	KASSERT(td->td_locks == locks,
755 	    ("%d residual locks held", td->td_locks - locks));
756 }
757 
758 static void
759 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
760     void *arg __unused)
761 {
762 	cpu_spinwait();
763 }
764 
765 void
766 epoch_wait(epoch_t epoch)
767 {
768 
769 	MPASS(cold || epoch != NULL);
770 	INIT_CHECK(epoch);
771 	MPASS(epoch->e_flags == 0);
772 	critical_enter();
773 	ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
774 	critical_exit();
775 }
776 
777 void
778 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
779 {
780 	epoch_record_t er;
781 	ck_epoch_entry_t *cb;
782 
783 	cb = (void *)ctx;
784 
785 	MPASS(callback);
786 	/* too early in boot to have epoch set up */
787 	if (__predict_false(epoch == NULL))
788 		goto boottime;
789 #if !defined(EARLY_AP_STARTUP)
790 	if (__predict_false(inited < 2))
791 		goto boottime;
792 #endif
793 
794 	critical_enter();
795 	*DPCPU_PTR(epoch_cb_count) += 1;
796 	er = epoch_currecord(epoch);
797 	ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
798 	critical_exit();
799 	return;
800 boottime:
801 	callback(ctx);
802 }
803 
804 static void
805 epoch_call_task(void *arg __unused)
806 {
807 	ck_stack_entry_t *cursor, *head, *next;
808 	ck_epoch_record_t *record;
809 	epoch_record_t er;
810 	epoch_t epoch;
811 	ck_stack_t cb_stack;
812 	int i, npending, total;
813 
814 	ck_stack_init(&cb_stack);
815 	critical_enter();
816 	epoch_enter(global_epoch);
817 	for (total = i = 0; i != MAX_EPOCHS; i++) {
818 		epoch = epoch_array + i;
819 		if (__predict_false(
820 		    atomic_load_acq_int(&epoch->e_in_use) == 0))
821 			continue;
822 		er = epoch_currecord(epoch);
823 		record = &er->er_record;
824 		if ((npending = record->n_pending) == 0)
825 			continue;
826 		ck_epoch_poll_deferred(record, &cb_stack);
827 		total += npending - record->n_pending;
828 	}
829 	epoch_exit(global_epoch);
830 	*DPCPU_PTR(epoch_cb_count) -= total;
831 	critical_exit();
832 
833 	counter_u64_add(epoch_call_count, total);
834 	counter_u64_add(epoch_call_task_count, 1);
835 
836 	head = ck_stack_batch_pop_npsc(&cb_stack);
837 	for (cursor = head; cursor != NULL; cursor = next) {
838 		struct ck_epoch_entry *entry =
839 		    ck_epoch_entry_container(cursor);
840 
841 		next = CK_STACK_NEXT(cursor);
842 		entry->function(entry);
843 	}
844 }
845 
846 static int
847 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
848 {
849 	epoch_record_t er;
850 	struct epoch_tracker *tdwait;
851 	struct thread *td;
852 
853 	MPASS(epoch != NULL);
854 	MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
855 	td = curthread;
856 	if (THREAD_CAN_SLEEP())
857 		return (0);
858 	critical_enter();
859 	er = epoch_currecord(epoch);
860 	TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
861 		if (tdwait->et_td == td) {
862 			critical_exit();
863 			return (1);
864 		}
865 #ifdef INVARIANTS
866 	if (dump_onfail) {
867 		MPASS(td->td_pinned);
868 		printf("cpu: %d id: %d\n", curcpu, td->td_tid);
869 		TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
870 			printf("td_tid: %d ", tdwait->et_td->td_tid);
871 		printf("\n");
872 	}
873 #endif
874 	critical_exit();
875 	return (0);
876 }
877 
878 #ifdef INVARIANTS
879 static void
880 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
881 {
882 	epoch_record_t er;
883 	int cpu;
884 	bool crit;
885 
886 	crit = td->td_critnest > 0;
887 
888 	/* Check for a critical section mishap. */
889 	CPU_FOREACH(cpu) {
890 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
891 		KASSERT(er->er_td != td,
892 		    ("%s critical section in epoch '%s', from cpu %d",
893 		    (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
894 	}
895 }
896 #else
897 #define	epoch_assert_nocpu(e, td) do {} while (0)
898 #endif
899 
900 int
901 in_epoch_verbose(epoch_t epoch, int dump_onfail)
902 {
903 	epoch_record_t er;
904 	struct thread *td;
905 
906 	if (__predict_false((epoch) == NULL))
907 		return (0);
908 	if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
909 		return (in_epoch_verbose_preempt(epoch, dump_onfail));
910 
911 	/*
912 	 * The thread being in a critical section is a necessary
913 	 * condition to be correctly inside a non-preemptible epoch,
914 	 * so it's definitely not in this epoch.
915 	 */
916 	td = curthread;
917 	if (td->td_critnest == 0) {
918 		epoch_assert_nocpu(epoch, td);
919 		return (0);
920 	}
921 
922 	/*
923 	 * The current cpu is in a critical section, so the epoch record will be
924 	 * stable for the rest of this function.  Knowing that the record is not
925 	 * active is sufficient for knowing whether we're in this epoch or not,
926 	 * since it's a pcpu record.
927 	 */
928 	er = epoch_currecord(epoch);
929 	if (er->er_record.active == 0) {
930 		epoch_assert_nocpu(epoch, td);
931 		return (0);
932 	}
933 
934 	MPASS(er->er_td == td);
935 	return (1);
936 }
937 
938 int
939 in_epoch(epoch_t epoch)
940 {
941 	return (in_epoch_verbose(epoch, 0));
942 }
943 
944 static void
945 epoch_drain_cb(struct epoch_context *ctx)
946 {
947 	struct epoch *epoch =
948 	    __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
949 
950 	if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
951 		mtx_lock(&epoch->e_drain_mtx);
952 		wakeup(epoch);
953 		mtx_unlock(&epoch->e_drain_mtx);
954 	}
955 }
956 
957 void
958 epoch_drain_callbacks(epoch_t epoch)
959 {
960 	epoch_record_t er;
961 	struct thread *td;
962 	int was_bound;
963 	int old_pinned;
964 	int old_cpu;
965 	int cpu;
966 
967 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
968 	    "epoch_drain_callbacks() may sleep!");
969 
970 	/* too early in boot to have epoch set up */
971 	if (__predict_false(epoch == NULL))
972 		return;
973 #if !defined(EARLY_AP_STARTUP)
974 	if (__predict_false(inited < 2))
975 		return;
976 #endif
977 	DROP_GIANT();
978 
979 	sx_xlock(&epoch->e_drain_sx);
980 	mtx_lock(&epoch->e_drain_mtx);
981 
982 	td = curthread;
983 	thread_lock(td);
984 	old_cpu = PCPU_GET(cpuid);
985 	old_pinned = td->td_pinned;
986 	was_bound = sched_is_bound(td);
987 	sched_unbind(td);
988 	td->td_pinned = 0;
989 
990 	CPU_FOREACH(cpu)
991 		epoch->e_drain_count++;
992 	CPU_FOREACH(cpu) {
993 		er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
994 		sched_bind(td, cpu);
995 		epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
996 	}
997 
998 	/* restore CPU binding, if any */
999 	if (was_bound != 0) {
1000 		sched_bind(td, old_cpu);
1001 	} else {
1002 		/* get thread back to initial CPU, if any */
1003 		if (old_pinned != 0)
1004 			sched_bind(td, old_cpu);
1005 		sched_unbind(td);
1006 	}
1007 	/* restore pinned after bind */
1008 	td->td_pinned = old_pinned;
1009 
1010 	thread_unlock(td);
1011 
1012 	while (epoch->e_drain_count != 0)
1013 		msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
1014 
1015 	mtx_unlock(&epoch->e_drain_mtx);
1016 	sx_xunlock(&epoch->e_drain_sx);
1017 
1018 	PICKUP_GIANT();
1019 }
1020