1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/counter.h> 36 #include <sys/epoch.h> 37 #include <sys/gtaskqueue.h> 38 #include <sys/kernel.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/sched.h> 45 #include <sys/smp.h> 46 #include <sys/sysctl.h> 47 #include <sys/turnstile.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 #include <vm/vm_kern.h> 51 52 #include <ck_epoch.h> 53 54 static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); 55 56 /* arbitrary --- needs benchmarking */ 57 #define MAX_ADAPTIVE_SPIN 1000 58 59 #define EPOCH_EXITING 0x1 60 #ifdef __amd64__ 61 #define EPOCH_ALIGN CACHE_LINE_SIZE*2 62 #else 63 #define EPOCH_ALIGN CACHE_LINE_SIZE 64 #endif 65 66 CTASSERT(sizeof(epoch_section_t) == sizeof(ck_epoch_section_t)); 67 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); 68 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); 69 70 static int poll_intvl; 71 SYSCTL_INT(_kern_epoch, OID_AUTO, poll_intvl, CTLFLAG_RWTUN, 72 &poll_intvl, 0, "# of ticks to wait between garbage collecting deferred frees"); 73 /* Stats. */ 74 static counter_u64_t block_count; 75 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, 76 &block_count, "# of times a thread was in an epoch when epoch_wait was called"); 77 static counter_u64_t migrate_count; 78 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, 79 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); 80 static counter_u64_t turnstile_count; 81 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, 82 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); 83 static counter_u64_t switch_count; 84 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, 85 &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); 86 87 typedef struct epoch_cb { 88 void (*ec_callback)(epoch_context_t); 89 STAILQ_ENTRY(epoch_cb) ec_link; 90 } *epoch_cb_t; 91 92 TAILQ_HEAD(threadlist, thread); 93 94 typedef struct epoch_record { 95 ck_epoch_record_t er_record; 96 volatile struct threadlist er_tdlist; 97 volatile uint32_t er_gen; 98 uint32_t er_cpuid; 99 } *epoch_record_t; 100 101 struct epoch_pcpu_state { 102 struct epoch_record eps_record; 103 STAILQ_HEAD(, epoch_cb) eps_cblist; 104 } __aligned(EPOCH_ALIGN); 105 106 struct epoch { 107 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); 108 struct grouptask e_gtask; 109 struct callout e_timer; 110 struct mtx e_lock; 111 int e_flags; 112 /* make sure that immutable data doesn't overlap with the gtask, callout, and mutex*/ 113 struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN); 114 counter_u64_t e_frees; 115 uint64_t e_free_last; 116 struct epoch_pcpu_state *e_pcpu[0]; 117 }; 118 119 static __read_mostly int domcount[MAXMEMDOM]; 120 static __read_mostly int domoffsets[MAXMEMDOM]; 121 static __read_mostly int inited; 122 __read_mostly epoch_t global_epoch; 123 124 static void epoch_call_task(void *context); 125 126 #if defined(__powerpc64__) || defined(__powerpc__) || !defined(NUMA) 127 static bool usedomains = false; 128 #else 129 static bool usedomains = true; 130 #endif 131 static void 132 epoch_init(void *arg __unused) 133 { 134 int domain, count; 135 136 if (poll_intvl == 0) 137 poll_intvl = hz; 138 139 block_count = counter_u64_alloc(M_WAITOK); 140 migrate_count = counter_u64_alloc(M_WAITOK); 141 turnstile_count = counter_u64_alloc(M_WAITOK); 142 switch_count = counter_u64_alloc(M_WAITOK); 143 if (usedomains == false) 144 goto done; 145 count = domain = 0; 146 domoffsets[0] = 0; 147 for (domain = 0; domain < vm_ndomains; domain++) { 148 domcount[domain] = CPU_COUNT(&cpuset_domain[domain]); 149 if (bootverbose) 150 printf("domcount[%d] %d\n", domain, domcount[domain]); 151 } 152 for (domain = 1; domain < vm_ndomains; domain++) 153 domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1]; 154 155 for (domain = 0; domain < vm_ndomains; domain++) { 156 if (domcount[domain] == 0) { 157 usedomains = false; 158 break; 159 } 160 } 161 done: 162 inited = 1; 163 global_epoch = epoch_alloc(); 164 } 165 SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL); 166 167 static void 168 epoch_init_numa(epoch_t epoch) 169 { 170 int domain, cpu_offset; 171 struct epoch_pcpu_state *eps; 172 epoch_record_t er; 173 174 for (domain = 0; domain < vm_ndomains; domain++) { 175 eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH, 176 domain, M_ZERO|M_WAITOK); 177 epoch->e_pcpu_dom[domain] = eps; 178 cpu_offset = domoffsets[domain]; 179 for (int i = 0; i < domcount[domain]; i++, eps++) { 180 epoch->e_pcpu[cpu_offset + i] = eps; 181 er = &eps->eps_record; 182 STAILQ_INIT(&eps->eps_cblist); 183 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 184 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 185 er->er_cpuid = cpu_offset + i; 186 } 187 } 188 } 189 190 static void 191 epoch_init_legacy(epoch_t epoch) 192 { 193 struct epoch_pcpu_state *eps; 194 epoch_record_t er; 195 196 eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK); 197 epoch->e_pcpu_dom[0] = eps; 198 for (int i = 0; i < mp_ncpus; i++, eps++) { 199 epoch->e_pcpu[i] = eps; 200 er = &eps->eps_record; 201 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); 202 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); 203 STAILQ_INIT(&eps->eps_cblist); 204 er->er_cpuid = i; 205 } 206 } 207 208 static void 209 epoch_callout(void *arg) 210 { 211 epoch_t epoch; 212 uint64_t frees; 213 214 epoch = arg; 215 frees = counter_u64_fetch(epoch->e_frees); 216 /* pick some better value */ 217 if (frees - epoch->e_free_last > 10) { 218 GROUPTASK_ENQUEUE(&epoch->e_gtask); 219 epoch->e_free_last = frees; 220 } 221 if ((epoch->e_flags & EPOCH_EXITING) == 0) 222 callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch); 223 } 224 225 epoch_t 226 epoch_alloc(void) 227 { 228 epoch_t epoch; 229 230 if (__predict_false(!inited)) 231 panic("%s called too early in boot", __func__); 232 epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*), 233 M_EPOCH, M_ZERO|M_WAITOK); 234 ck_epoch_init(&epoch->e_epoch); 235 epoch->e_frees = counter_u64_alloc(M_WAITOK); 236 mtx_init(&epoch->e_lock, "epoch callout", NULL, MTX_DEF); 237 callout_init_mtx(&epoch->e_timer, &epoch->e_lock, 0); 238 taskqgroup_config_gtask_init(epoch, &epoch->e_gtask, epoch_call_task, "epoch call task"); 239 if (usedomains) 240 epoch_init_numa(epoch); 241 else 242 epoch_init_legacy(epoch); 243 callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch); 244 return (epoch); 245 } 246 247 void 248 epoch_free(epoch_t epoch) 249 { 250 int domain; 251 #ifdef INVARIANTS 252 struct epoch_pcpu_state *eps; 253 int cpu; 254 255 CPU_FOREACH(cpu) { 256 eps = epoch->e_pcpu[cpu]; 257 MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist)); 258 } 259 #endif 260 mtx_lock(&epoch->e_lock); 261 epoch->e_flags |= EPOCH_EXITING; 262 mtx_unlock(&epoch->e_lock); 263 /* 264 * Execute any lingering callbacks 265 */ 266 GROUPTASK_ENQUEUE(&epoch->e_gtask); 267 gtaskqueue_drain(epoch->e_gtask.gt_taskqueue, &epoch->e_gtask.gt_task); 268 callout_drain(&epoch->e_timer); 269 mtx_destroy(&epoch->e_lock); 270 counter_u64_free(epoch->e_frees); 271 taskqgroup_config_gtask_deinit(&epoch->e_gtask); 272 if (usedomains) 273 for (domain = 0; domain < vm_ndomains; domain++) 274 free_domain(epoch->e_pcpu_dom[domain], M_EPOCH); 275 else 276 free(epoch->e_pcpu_dom[0], M_EPOCH); 277 free(epoch, M_EPOCH); 278 } 279 280 #define INIT_CHECK(epoch) \ 281 do { \ 282 if (__predict_false((epoch) == NULL)) \ 283 return; \ 284 } while (0) 285 286 void 287 epoch_enter_internal(epoch_t epoch, struct thread *td) 288 { 289 struct epoch_pcpu_state *eps; 290 291 INIT_CHECK(epoch); 292 critical_enter(); 293 eps = epoch->e_pcpu[curcpu]; 294 #ifdef INVARIANTS 295 MPASS(td->td_epochnest < UCHAR_MAX - 2); 296 if (td->td_epochnest > 1) { 297 struct thread *curtd; 298 int found = 0; 299 300 TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq) 301 if (curtd == td) 302 found = 1; 303 KASSERT(found, ("recursing on a second epoch")); 304 critical_exit(); 305 return; 306 } 307 #endif 308 TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq); 309 sched_pin(); 310 ck_epoch_begin(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section); 311 critical_exit(); 312 } 313 314 void 315 epoch_exit_internal(epoch_t epoch, struct thread *td) 316 { 317 struct epoch_pcpu_state *eps; 318 319 td = curthread; 320 MPASS(td->td_epochnest == 0); 321 INIT_CHECK(epoch); 322 critical_enter(); 323 eps = epoch->e_pcpu[curcpu]; 324 325 ck_epoch_end(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section); 326 TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq); 327 eps->eps_record.er_gen++; 328 sched_unpin(); 329 critical_exit(); 330 } 331 332 /* 333 * epoch_block_handler is a callback from the ck code when another thread is 334 * currently in an epoch section. 335 */ 336 static void 337 epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr, 338 void *arg __unused) 339 { 340 epoch_record_t record; 341 struct epoch_pcpu_state *eps; 342 struct thread *td, *tdwait, *owner; 343 struct turnstile *ts; 344 struct lock_object *lock; 345 int spincount, gen; 346 347 eps = arg; 348 record = __containerof(cr, struct epoch_record, er_record); 349 td = curthread; 350 spincount = 0; 351 counter_u64_add(block_count, 1); 352 if (record->er_cpuid != curcpu) { 353 /* 354 * If the head of the list is running, we can wait for it 355 * to remove itself from the list and thus save us the 356 * overhead of a migration 357 */ 358 if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL && 359 TD_IS_RUNNING(tdwait)) { 360 gen = record->er_gen; 361 thread_unlock(td); 362 do { 363 cpu_spinwait(); 364 } while (tdwait == TAILQ_FIRST(&record->er_tdlist) && 365 gen == record->er_gen && TD_IS_RUNNING(tdwait) && 366 spincount++ < MAX_ADAPTIVE_SPIN); 367 thread_lock(td); 368 return; 369 } 370 371 /* 372 * Being on the same CPU as that of the record on which 373 * we need to wait allows us access to the thread 374 * list associated with that CPU. We can then examine the 375 * oldest thread in the queue and wait on its turnstile 376 * until it resumes and so on until a grace period 377 * elapses. 378 * 379 */ 380 counter_u64_add(migrate_count, 1); 381 sched_bind(td, record->er_cpuid); 382 /* 383 * At this point we need to return to the ck code 384 * to scan to see if a grace period has elapsed. 385 * We can't move on to check the thread list, because 386 * in the meantime new threads may have arrived that 387 * in fact belong to a different epoch. 388 */ 389 return; 390 } 391 /* 392 * Try to find a thread in an epoch section on this CPU 393 * waiting on a turnstile. Otherwise find the lowest 394 * priority thread (highest prio value) and drop our priority 395 * to match to allow it to run. 396 */ 397 TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) { 398 /* 399 * Propagate our priority to any other waiters to prevent us 400 * from starving them. They will have their original priority 401 * restore on exit from epoch_wait(). 402 */ 403 if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) { 404 thread_lock(tdwait); 405 sched_prio(tdwait, td->td_priority); 406 thread_unlock(tdwait); 407 } 408 if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) && 409 ((ts = tdwait->td_blocked) != NULL)) { 410 /* 411 * We unlock td to allow turnstile_wait to reacquire the 412 * the thread lock. Before unlocking it we enter a critical 413 * section to prevent preemption after we reenable interrupts 414 * by dropping the thread lock in order to prevent tdwait 415 * from getting to run. 416 */ 417 critical_enter(); 418 thread_unlock(td); 419 owner = turnstile_lock(ts, &lock); 420 /* 421 * The owner pointer indicates that the lock succeeded. Only 422 * in case we hold the lock and the turnstile we locked is still 423 * the one that tdwait is blocked on can we continue. Otherwise 424 * The turnstile pointer has been changed out from underneath 425 * us, as in the case where the lock holder has signalled tdwait, 426 * and we need to continue. 427 */ 428 if (owner != NULL && ts == tdwait->td_blocked) { 429 MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait)); 430 critical_exit(); 431 turnstile_wait(ts, owner, tdwait->td_tsqueue); 432 counter_u64_add(turnstile_count, 1); 433 thread_lock(td); 434 return; 435 } else if (owner != NULL) 436 turnstile_unlock(ts, lock); 437 thread_lock(td); 438 critical_exit(); 439 KASSERT(td->td_locks == 0, 440 ("%d locks held", td->td_locks)); 441 } 442 } 443 /* 444 * We didn't find any threads actually blocked on a lock 445 * so we have nothing to do except context switch away. 446 */ 447 counter_u64_add(switch_count, 1); 448 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 449 450 /* 451 * Release the thread lock while yielding to 452 * allow other threads to acquire the lock 453 * pointed to by TDQ_LOCKPTR(td). Else a 454 * deadlock like situation might happen. (HPS) 455 */ 456 thread_unlock(td); 457 thread_lock(td); 458 } 459 460 void 461 epoch_wait(epoch_t epoch) 462 { 463 struct thread *td; 464 int was_bound; 465 int old_cpu; 466 int old_pinned; 467 u_char old_prio; 468 #ifdef INVARIANTS 469 int locks; 470 471 locks = curthread->td_locks; 472 #endif 473 INIT_CHECK(epoch); 474 475 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 476 "epoch_wait() can sleep"); 477 478 td = curthread; 479 KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section")); 480 thread_lock(td); 481 482 DROP_GIANT(); 483 484 old_cpu = PCPU_GET(cpuid); 485 old_pinned = td->td_pinned; 486 old_prio = td->td_priority; 487 was_bound = sched_is_bound(td); 488 sched_unbind(td); 489 td->td_pinned = 0; 490 sched_bind(td, old_cpu); 491 492 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); 493 494 /* restore CPU binding, if any */ 495 if (was_bound != 0) { 496 sched_bind(td, old_cpu); 497 } else { 498 /* get thread back to initial CPU, if any */ 499 if (old_pinned != 0) 500 sched_bind(td, old_cpu); 501 sched_unbind(td); 502 } 503 /* restore pinned after bind */ 504 td->td_pinned = old_pinned; 505 506 /* restore thread priority */ 507 sched_prio(td, old_prio); 508 thread_unlock(td); 509 PICKUP_GIANT(); 510 KASSERT(td->td_locks == locks, 511 ("%d residual locks held", td->td_locks - locks)); 512 } 513 514 void 515 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) 516 { 517 struct epoch_pcpu_state *eps; 518 epoch_cb_t cb; 519 520 cb = (void *)ctx; 521 522 MPASS(callback); 523 /* too early in boot to have epoch set up */ 524 if (__predict_false(epoch == NULL)) { 525 callback(ctx); 526 return; 527 } 528 MPASS(cb->ec_callback == NULL); 529 MPASS(cb->ec_link.stqe_next == NULL); 530 cb->ec_callback = callback; 531 counter_u64_add(epoch->e_frees, 1); 532 533 critical_enter(); 534 eps = epoch->e_pcpu[curcpu]; 535 STAILQ_INSERT_HEAD(&eps->eps_cblist, cb, ec_link); 536 critical_exit(); 537 } 538 539 static void 540 epoch_call_task(void *context) 541 { 542 struct epoch_pcpu_state *eps; 543 epoch_t epoch; 544 epoch_cb_t cb; 545 struct thread *td; 546 int cpu; 547 STAILQ_HEAD(, epoch_cb) tmp_head; 548 549 epoch = context; 550 STAILQ_INIT(&tmp_head); 551 td = curthread; 552 thread_lock(td); 553 CPU_FOREACH(cpu) { 554 sched_bind(td, cpu); 555 eps = epoch->e_pcpu[cpu]; 556 if (!STAILQ_EMPTY(&eps->eps_cblist)) 557 STAILQ_CONCAT(&tmp_head, &eps->eps_cblist); 558 } 559 sched_unbind(td); 560 thread_unlock(td); 561 epoch_wait(epoch); 562 563 while ((cb = STAILQ_FIRST(&tmp_head)) != NULL) { 564 STAILQ_REMOVE_HEAD(&tmp_head, ec_link); 565 cb->ec_callback((void*)cb); 566 } 567 } 568 569 int 570 in_epoch(void) 571 { 572 return (curthread->td_epochnest != 0); 573 } 574