xref: /freebsd/sys/i386/linux/linux_machdep.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 2000 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer
10  *    in this position and unchanged.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/file.h>
35 #include <sys/fcntl.h>
36 #include <sys/imgact.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mman.h>
40 #include <sys/mutex.h>
41 #include <sys/sx.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/queue.h>
45 #include <sys/resource.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysproto.h>
50 #include <sys/unistd.h>
51 #include <sys/wait.h>
52 #include <sys/sched.h>
53 
54 #include <machine/frame.h>
55 #include <machine/psl.h>
56 #include <machine/segments.h>
57 #include <machine/sysarch.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 
63 #include <i386/linux/linux.h>
64 #include <i386/linux/linux_proto.h>
65 #include <compat/linux/linux_ipc.h>
66 #include <compat/linux/linux_signal.h>
67 #include <compat/linux/linux_util.h>
68 #include <compat/linux/linux_emul.h>
69 
70 #include <i386/include/pcb.h>			/* needed for pcb definition in linux_set_thread_area */
71 
72 #include "opt_posix.h"
73 
74 extern struct sysentvec elf32_freebsd_sysvec;	/* defined in i386/i386/elf_machdep.c */
75 
76 struct l_descriptor {
77 	l_uint		entry_number;
78 	l_ulong		base_addr;
79 	l_uint		limit;
80 	l_uint		seg_32bit:1;
81 	l_uint		contents:2;
82 	l_uint		read_exec_only:1;
83 	l_uint		limit_in_pages:1;
84 	l_uint		seg_not_present:1;
85 	l_uint		useable:1;
86 };
87 
88 struct l_old_select_argv {
89 	l_int		nfds;
90 	l_fd_set	*readfds;
91 	l_fd_set	*writefds;
92 	l_fd_set	*exceptfds;
93 	struct l_timeval	*timeout;
94 };
95 
96 int
97 linux_to_bsd_sigaltstack(int lsa)
98 {
99 	int bsa = 0;
100 
101 	if (lsa & LINUX_SS_DISABLE)
102 		bsa |= SS_DISABLE;
103 	if (lsa & LINUX_SS_ONSTACK)
104 		bsa |= SS_ONSTACK;
105 	return (bsa);
106 }
107 
108 int
109 bsd_to_linux_sigaltstack(int bsa)
110 {
111 	int lsa = 0;
112 
113 	if (bsa & SS_DISABLE)
114 		lsa |= LINUX_SS_DISABLE;
115 	if (bsa & SS_ONSTACK)
116 		lsa |= LINUX_SS_ONSTACK;
117 	return (lsa);
118 }
119 
120 int
121 linux_execve(struct thread *td, struct linux_execve_args *args)
122 {
123 	int error;
124 	char *newpath;
125 	struct image_args eargs;
126 
127 	LCONVPATHEXIST(td, args->path, &newpath);
128 
129 #ifdef DEBUG
130 	if (ldebug(execve))
131 		printf(ARGS(execve, "%s"), newpath);
132 #endif
133 
134 	error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
135 	    args->argp, args->envp);
136 	free(newpath, M_TEMP);
137 	if (error == 0)
138 		error = kern_execve(td, &eargs, NULL);
139 	if (error == 0)
140 	   	/* linux process can exec fbsd one, dont attempt
141 		 * to create emuldata for such process using
142 		 * linux_proc_init, this leads to a panic on KASSERT
143 		 * because such process has p->p_emuldata == NULL
144 		 */
145 	   	if (td->td_proc->p_sysent == &elf_linux_sysvec)
146    		   	error = linux_proc_init(td, 0, 0);
147 	return (error);
148 }
149 
150 struct l_ipc_kludge {
151 	struct l_msgbuf *msgp;
152 	l_long msgtyp;
153 };
154 
155 int
156 linux_ipc(struct thread *td, struct linux_ipc_args *args)
157 {
158 
159 	switch (args->what & 0xFFFF) {
160 	case LINUX_SEMOP: {
161 		struct linux_semop_args a;
162 
163 		a.semid = args->arg1;
164 		a.tsops = args->ptr;
165 		a.nsops = args->arg2;
166 		return (linux_semop(td, &a));
167 	}
168 	case LINUX_SEMGET: {
169 		struct linux_semget_args a;
170 
171 		a.key = args->arg1;
172 		a.nsems = args->arg2;
173 		a.semflg = args->arg3;
174 		return (linux_semget(td, &a));
175 	}
176 	case LINUX_SEMCTL: {
177 		struct linux_semctl_args a;
178 		int error;
179 
180 		a.semid = args->arg1;
181 		a.semnum = args->arg2;
182 		a.cmd = args->arg3;
183 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
184 		if (error)
185 			return (error);
186 		return (linux_semctl(td, &a));
187 	}
188 	case LINUX_MSGSND: {
189 		struct linux_msgsnd_args a;
190 
191 		a.msqid = args->arg1;
192 		a.msgp = args->ptr;
193 		a.msgsz = args->arg2;
194 		a.msgflg = args->arg3;
195 		return (linux_msgsnd(td, &a));
196 	}
197 	case LINUX_MSGRCV: {
198 		struct linux_msgrcv_args a;
199 
200 		a.msqid = args->arg1;
201 		a.msgsz = args->arg2;
202 		a.msgflg = args->arg3;
203 		if ((args->what >> 16) == 0) {
204 			struct l_ipc_kludge tmp;
205 			int error;
206 
207 			if (args->ptr == NULL)
208 				return (EINVAL);
209 			error = copyin(args->ptr, &tmp, sizeof(tmp));
210 			if (error)
211 				return (error);
212 			a.msgp = tmp.msgp;
213 			a.msgtyp = tmp.msgtyp;
214 		} else {
215 			a.msgp = args->ptr;
216 			a.msgtyp = args->arg5;
217 		}
218 		return (linux_msgrcv(td, &a));
219 	}
220 	case LINUX_MSGGET: {
221 		struct linux_msgget_args a;
222 
223 		a.key = args->arg1;
224 		a.msgflg = args->arg2;
225 		return (linux_msgget(td, &a));
226 	}
227 	case LINUX_MSGCTL: {
228 		struct linux_msgctl_args a;
229 
230 		a.msqid = args->arg1;
231 		a.cmd = args->arg2;
232 		a.buf = args->ptr;
233 		return (linux_msgctl(td, &a));
234 	}
235 	case LINUX_SHMAT: {
236 		struct linux_shmat_args a;
237 
238 		a.shmid = args->arg1;
239 		a.shmaddr = args->ptr;
240 		a.shmflg = args->arg2;
241 		a.raddr = (l_ulong *)args->arg3;
242 		return (linux_shmat(td, &a));
243 	}
244 	case LINUX_SHMDT: {
245 		struct linux_shmdt_args a;
246 
247 		a.shmaddr = args->ptr;
248 		return (linux_shmdt(td, &a));
249 	}
250 	case LINUX_SHMGET: {
251 		struct linux_shmget_args a;
252 
253 		a.key = args->arg1;
254 		a.size = args->arg2;
255 		a.shmflg = args->arg3;
256 		return (linux_shmget(td, &a));
257 	}
258 	case LINUX_SHMCTL: {
259 		struct linux_shmctl_args a;
260 
261 		a.shmid = args->arg1;
262 		a.cmd = args->arg2;
263 		a.buf = args->ptr;
264 		return (linux_shmctl(td, &a));
265 	}
266 	default:
267 		break;
268 	}
269 
270 	return (EINVAL);
271 }
272 
273 int
274 linux_old_select(struct thread *td, struct linux_old_select_args *args)
275 {
276 	struct l_old_select_argv linux_args;
277 	struct linux_select_args newsel;
278 	int error;
279 
280 #ifdef DEBUG
281 	if (ldebug(old_select))
282 		printf(ARGS(old_select, "%p"), args->ptr);
283 #endif
284 
285 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
286 	if (error)
287 		return (error);
288 
289 	newsel.nfds = linux_args.nfds;
290 	newsel.readfds = linux_args.readfds;
291 	newsel.writefds = linux_args.writefds;
292 	newsel.exceptfds = linux_args.exceptfds;
293 	newsel.timeout = linux_args.timeout;
294 	return (linux_select(td, &newsel));
295 }
296 
297 int
298 linux_fork(struct thread *td, struct linux_fork_args *args)
299 {
300 	int error;
301 	struct proc *p2;
302 	struct thread *td2;
303 
304 #ifdef DEBUG
305 	if (ldebug(fork))
306 		printf(ARGS(fork, ""));
307 #endif
308 
309 	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
310 		return (error);
311 
312 	if (error == 0) {
313 		td->td_retval[0] = p2->p_pid;
314 		td->td_retval[1] = 0;
315 	}
316 
317 	if (td->td_retval[1] == 1)
318 		td->td_retval[0] = 0;
319 	error = linux_proc_init(td, td->td_retval[0], 0);
320 	if (error)
321 		return (error);
322 
323 	td2 = FIRST_THREAD_IN_PROC(p2);
324 
325 	/*
326 	 * Make this runnable after we are finished with it.
327 	 */
328 	mtx_lock_spin(&sched_lock);
329 	TD_SET_CAN_RUN(td2);
330 	sched_add(td2, SRQ_BORING);
331 	mtx_unlock_spin(&sched_lock);
332 
333 	return (0);
334 }
335 
336 int
337 linux_vfork(struct thread *td, struct linux_vfork_args *args)
338 {
339 	int error;
340 	struct proc *p2;
341 	struct thread *td2;
342 
343 #ifdef DEBUG
344 	if (ldebug(vfork))
345 		printf(ARGS(vfork, ""));
346 #endif
347 
348 	/* exclude RFPPWAIT */
349 	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
350 		return (error);
351 	if (error == 0) {
352 		td->td_retval[0] = p2->p_pid;
353 		td->td_retval[1] = 0;
354 	}
355 	/* Are we the child? */
356 	if (td->td_retval[1] == 1)
357 		td->td_retval[0] = 0;
358 	error = linux_proc_init(td, td->td_retval[0], 0);
359 	if (error)
360 		return (error);
361 
362 	PROC_LOCK(p2);
363 	p2->p_flag |= P_PPWAIT;
364 	PROC_UNLOCK(p2);
365 
366 	td2 = FIRST_THREAD_IN_PROC(p2);
367 
368 	/*
369 	 * Make this runnable after we are finished with it.
370 	 */
371 	mtx_lock_spin(&sched_lock);
372 	TD_SET_CAN_RUN(td2);
373 	sched_add(td2, SRQ_BORING);
374 	mtx_unlock_spin(&sched_lock);
375 
376 	/* wait for the children to exit, ie. emulate vfork */
377 	PROC_LOCK(p2);
378 	while (p2->p_flag & P_PPWAIT)
379 	   	msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
380 	PROC_UNLOCK(p2);
381 
382 	return (0);
383 }
384 
385 int
386 linux_clone(struct thread *td, struct linux_clone_args *args)
387 {
388 	int error, ff = RFPROC | RFSTOPPED;
389 	struct proc *p2;
390 	struct thread *td2;
391 	int exit_signal;
392 	struct linux_emuldata *em;
393 
394 #ifdef DEBUG
395 	if (ldebug(clone)) {
396    	   	printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"),
397 		    (unsigned int)args->flags, (unsigned int)args->stack,
398 		    (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr);
399 	}
400 #endif
401 
402 	exit_signal = args->flags & 0x000000ff;
403 	if (!LINUX_SIG_VALID(exit_signal) && exit_signal != 0)
404 		return (EINVAL);
405 
406 	if (exit_signal <= LINUX_SIGTBLSZ)
407 		exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
408 
409 	if (args->flags & CLONE_VM)
410 		ff |= RFMEM;
411 	if (args->flags & CLONE_SIGHAND)
412 		ff |= RFSIGSHARE;
413 	/*
414 	 * XXX: in linux sharing of fs info (chroot/cwd/umask)
415 	 * and open files is independant. in fbsd its in one
416 	 * structure but in reality it doesn't cause any problems
417 	 * because both of these flags are usually set together.
418 	 */
419 	if (!(args->flags & (CLONE_FILES | CLONE_FS)))
420 		ff |= RFFDG;
421 
422 	/*
423 	 * Attempt to detect when linux_clone(2) is used for creating
424 	 * kernel threads. Unfortunately despite the existence of the
425 	 * CLONE_THREAD flag, version of linuxthreads package used in
426 	 * most popular distros as of beginning of 2005 doesn't make
427 	 * any use of it. Therefore, this detection relies on
428 	 * empirical observation that linuxthreads sets certain
429 	 * combination of flags, so that we can make more or less
430 	 * precise detection and notify the FreeBSD kernel that several
431 	 * processes are in fact part of the same threading group, so
432 	 * that special treatment is necessary for signal delivery
433 	 * between those processes and fd locking.
434 	 */
435 	if ((args->flags & 0xffffff00) == THREADING_FLAGS)
436 		ff |= RFTHREAD;
437 
438 	if (args->flags & CLONE_PARENT_SETTID)
439 		if (args->parent_tidptr == NULL)
440 			return (EINVAL);
441 
442 	error = fork1(td, ff, 0, &p2);
443 	if (error)
444 		return (error);
445 
446 	if (args->flags & (CLONE_PARENT|CLONE_THREAD)) {
447 	   	sx_xlock(&proctree_lock);
448 		PROC_LOCK(p2);
449 		proc_reparent(p2, td->td_proc->p_pptr);
450 		PROC_UNLOCK(p2);
451 		sx_xunlock(&proctree_lock);
452 	}
453 
454 	/* create the emuldata */
455 	error = linux_proc_init(td, p2->p_pid, args->flags);
456 	/* reference it - no need to check this */
457 	em = em_find(p2, EMUL_DOLOCK);
458 	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
459 	/* and adjust it */
460 
461 	if (args->flags & CLONE_THREAD) {
462 	   	/* XXX: linux mangles pgrp and pptr somehow
463 		 * I think it might be this but I am not sure.
464 		 */
465 #ifdef notyet
466 	   	PROC_LOCK(p2);
467 	   	p2->p_pgrp = td->td_proc->p_pgrp;
468 	   	PROC_UNLOCK(p2);
469 #endif
470 	 	exit_signal = 0;
471 	}
472 
473 	if (args->flags & CLONE_CHILD_SETTID)
474 		em->child_set_tid = args->child_tidptr;
475 	else
476 	   	em->child_set_tid = NULL;
477 
478 	if (args->flags & CLONE_CHILD_CLEARTID)
479 		em->child_clear_tid = args->child_tidptr;
480 	else
481 	   	em->child_clear_tid = NULL;
482 
483 	EMUL_UNLOCK(&emul_lock);
484 
485 	if (args->flags & CLONE_PARENT_SETTID) {
486 		error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid));
487 		if (error)
488 			printf(LMSG("copyout failed!"));
489 	}
490 
491 	PROC_LOCK(p2);
492 	p2->p_sigparent = exit_signal;
493 	PROC_UNLOCK(p2);
494 	td2 = FIRST_THREAD_IN_PROC(p2);
495 	/*
496 	 * in a case of stack = NULL we are supposed to COW calling process stack
497 	 * this is what normal fork() does so we just keep the tf_esp arg intact
498 	 */
499 	if (args->stack)
500    	   	td2->td_frame->tf_esp = (unsigned int)args->stack;
501 
502 	if (args->flags & CLONE_SETTLS) {
503    	   	struct l_user_desc info;
504    	   	int idx;
505 	   	int a[2];
506 		struct segment_descriptor sd;
507 
508 	   	error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc));
509 		if (error) {
510 			printf(LMSG("copyin failed!"));
511 		} else {
512 
513 			idx = info.entry_number;
514 
515 			/*
516 			 * looks like we're getting the idx we returned
517 			 * in the set_thread_area() syscall
518 			 */
519 			if (idx != 6 && idx != 3) {
520 				printf(LMSG("resetting idx!"));
521 				idx = 3;
522 			}
523 
524 			/* this doesnt happen in practice */
525 			if (idx == 6) {
526 		   		/* we might copy out the entry_number as 3 */
527 			   	info.entry_number = 3;
528 				error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc));
529 				if (error)
530 					printf(LMSG("copyout failed!"));
531 			}
532 
533 			a[0] = LDT_entry_a(&info);
534 			a[1] = LDT_entry_b(&info);
535 
536 			memcpy(&sd, &a, sizeof(a));
537 #ifdef DEBUG
538 		if (ldebug(clone))
539 		   	printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
540 			sd.sd_hibase,
541 			sd.sd_lolimit,
542 			sd.sd_hilimit,
543 			sd.sd_type,
544 			sd.sd_dpl,
545 			sd.sd_p,
546 			sd.sd_xx,
547 			sd.sd_def32,
548 			sd.sd_gran);
549 #endif
550 
551 			/* set %gs */
552 			td2->td_pcb->pcb_gsd = sd;
553 			td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL);
554 		}
555 	}
556 
557 #ifdef DEBUG
558 	if (ldebug(clone))
559 		printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
560 		    (long)p2->p_pid, args->stack, exit_signal);
561 #endif
562 	if (args->flags & CLONE_VFORK) {
563 	   	PROC_LOCK(p2);
564 		p2->p_flag |= P_PPWAIT;
565 	   	PROC_UNLOCK(p2);
566 	}
567 
568 	/*
569 	 * Make this runnable after we are finished with it.
570 	 */
571 	mtx_lock_spin(&sched_lock);
572 	TD_SET_CAN_RUN(td2);
573 	sched_add(td2, SRQ_BORING);
574 	mtx_unlock_spin(&sched_lock);
575 
576 	td->td_retval[0] = p2->p_pid;
577 	td->td_retval[1] = 0;
578 
579 	if (args->flags & CLONE_VFORK) {
580    	   	/* wait for the children to exit, ie. emulate vfork */
581    	   	PROC_LOCK(p2);
582 		while (p2->p_flag & P_PPWAIT)
583    		   	msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
584 		PROC_UNLOCK(p2);
585 	}
586 
587 	return (0);
588 }
589 
590 #define STACK_SIZE  (2 * 1024 * 1024)
591 #define GUARD_SIZE  (4 * PAGE_SIZE)
592 
593 static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
594 
595 int
596 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
597 {
598 	struct l_mmap_argv linux_args;
599 
600 #ifdef DEBUG
601 	if (ldebug(mmap2))
602 		printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
603 		    (void *)args->addr, args->len, args->prot,
604 		    args->flags, args->fd, args->pgoff);
605 #endif
606 
607 	linux_args.addr = args->addr;
608 	linux_args.len = args->len;
609 	linux_args.prot = args->prot;
610 	linux_args.flags = args->flags;
611 	linux_args.fd = args->fd;
612 	linux_args.pgoff = args->pgoff * PAGE_SIZE;
613 
614 	return (linux_mmap_common(td, &linux_args));
615 }
616 
617 int
618 linux_mmap(struct thread *td, struct linux_mmap_args *args)
619 {
620 	int error;
621 	struct l_mmap_argv linux_args;
622 
623 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
624 	if (error)
625 		return (error);
626 
627 #ifdef DEBUG
628 	if (ldebug(mmap))
629 		printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
630 		    (void *)linux_args.addr, linux_args.len, linux_args.prot,
631 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
632 #endif
633 
634 	return (linux_mmap_common(td, &linux_args));
635 }
636 
637 static int
638 linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
639 {
640 	struct proc *p = td->td_proc;
641 	struct mmap_args /* {
642 		caddr_t addr;
643 		size_t len;
644 		int prot;
645 		int flags;
646 		int fd;
647 		long pad;
648 		off_t pos;
649 	} */ bsd_args;
650 	int error;
651 	struct file *fp;
652 
653 	error = 0;
654 	bsd_args.flags = 0;
655 	fp = NULL;
656 
657 	/*
658 	 * Linux mmap(2):
659 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
660 	 */
661 	if (! ((linux_args->flags & LINUX_MAP_SHARED) ^
662 	    (linux_args->flags & LINUX_MAP_PRIVATE)))
663 		return (EINVAL);
664 
665 	if (linux_args->flags & LINUX_MAP_SHARED)
666 		bsd_args.flags |= MAP_SHARED;
667 	if (linux_args->flags & LINUX_MAP_PRIVATE)
668 		bsd_args.flags |= MAP_PRIVATE;
669 	if (linux_args->flags & LINUX_MAP_FIXED)
670 		bsd_args.flags |= MAP_FIXED;
671 	if (linux_args->flags & LINUX_MAP_ANON)
672 		bsd_args.flags |= MAP_ANON;
673 	else
674 		bsd_args.flags |= MAP_NOSYNC;
675 	if (linux_args->flags & LINUX_MAP_GROWSDOWN)
676 		bsd_args.flags |= MAP_STACK;
677 
678 	/*
679 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
680 	 * on Linux/i386. We do this to ensure maximum compatibility.
681 	 * Linux/ia64 does the same in i386 emulation mode.
682 	 */
683 	bsd_args.prot = linux_args->prot;
684 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
685 		bsd_args.prot |= PROT_READ | PROT_EXEC;
686 
687 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
688 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : linux_args->fd;
689 	if (bsd_args.fd != -1) {
690 		/*
691 		 * Linux follows Solaris mmap(2) description:
692 		 * The file descriptor fildes is opened with
693 		 * read permission, regardless of the
694 		 * protection options specified.
695 		 */
696 
697 		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
698 			return (error);
699 		if (fp->f_type != DTYPE_VNODE) {
700 			fdrop(fp, td);
701 			return (EINVAL);
702 		}
703 
704 		/* Linux mmap() just fails for O_WRONLY files */
705 		if (!(fp->f_flag & FREAD)) {
706 			fdrop(fp, td);
707 			return (EACCES);
708 		}
709 
710 		fdrop(fp, td);
711 	}
712 
713 	if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
714 		/*
715 		 * The linux MAP_GROWSDOWN option does not limit auto
716 		 * growth of the region.  Linux mmap with this option
717 		 * takes as addr the inital BOS, and as len, the initial
718 		 * region size.  It can then grow down from addr without
719 		 * limit.  However, linux threads has an implicit internal
720 		 * limit to stack size of STACK_SIZE.  Its just not
721 		 * enforced explicitly in linux.  But, here we impose
722 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
723 		 * region, since we can do this with our mmap.
724 		 *
725 		 * Our mmap with MAP_STACK takes addr as the maximum
726 		 * downsize limit on BOS, and as len the max size of
727 		 * the region.  It them maps the top SGROWSIZ bytes,
728 		 * and auto grows the region down, up to the limit
729 		 * in addr.
730 		 *
731 		 * If we don't use the MAP_STACK option, the effect
732 		 * of this code is to allocate a stack region of a
733 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
734 		 */
735 
736 		if ((caddr_t)PTRIN(linux_args->addr) + linux_args->len >
737 		    p->p_vmspace->vm_maxsaddr) {
738 			/*
739 			 * Some linux apps will attempt to mmap
740 			 * thread stacks near the top of their
741 			 * address space.  If their TOS is greater
742 			 * than vm_maxsaddr, vm_map_growstack()
743 			 * will confuse the thread stack with the
744 			 * process stack and deliver a SEGV if they
745 			 * attempt to grow the thread stack past their
746 			 * current stacksize rlimit.  To avoid this,
747 			 * adjust vm_maxsaddr upwards to reflect
748 			 * the current stacksize rlimit rather
749 			 * than the maximum possible stacksize.
750 			 * It would be better to adjust the
751 			 * mmap'ed region, but some apps do not check
752 			 * mmap's return value.
753 			 */
754 			PROC_LOCK(p);
755 			p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
756 			    lim_cur(p, RLIMIT_STACK);
757 			PROC_UNLOCK(p);
758 		}
759 
760 		/* This gives us our maximum stack size */
761 		if (linux_args->len > STACK_SIZE - GUARD_SIZE)
762 			bsd_args.len = linux_args->len;
763 		else
764 			bsd_args.len  = STACK_SIZE - GUARD_SIZE;
765 
766 		/*
767 		 * This gives us a new BOS.  If we're using VM_STACK, then
768 		 * mmap will just map the top SGROWSIZ bytes, and let
769 		 * the stack grow down to the limit at BOS.  If we're
770 		 * not using VM_STACK we map the full stack, since we
771 		 * don't have a way to autogrow it.
772 		 */
773 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) -
774 		    bsd_args.len;
775 	} else {
776 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
777 		bsd_args.len  = linux_args->len;
778 	}
779 	bsd_args.pos = linux_args->pgoff;
780 	bsd_args.pad = 0;
781 
782 #ifdef DEBUG
783 	if (ldebug(mmap))
784 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
785 		    __func__,
786 		    (void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
787 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
788 #endif
789 	error = mmap(td, &bsd_args);
790 #ifdef DEBUG
791 	if (ldebug(mmap))
792 		printf("-> %s() return: 0x%x (0x%08x)\n",
793 			__func__, error, (u_int)td->td_retval[0]);
794 #endif
795 	return (error);
796 }
797 
798 int
799 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
800 {
801 	struct mprotect_args bsd_args;
802 
803 	bsd_args.addr = uap->addr;
804 	bsd_args.len = uap->len;
805 	bsd_args.prot = uap->prot;
806 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
807 		bsd_args.prot |= PROT_READ | PROT_EXEC;
808 	return (mprotect(td, &bsd_args));
809 }
810 
811 int
812 linux_pipe(struct thread *td, struct linux_pipe_args *args)
813 {
814 	int error;
815 	int reg_edx;
816 
817 #ifdef DEBUG
818 	if (ldebug(pipe))
819 		printf(ARGS(pipe, "*"));
820 #endif
821 
822 	reg_edx = td->td_retval[1];
823 	error = pipe(td, 0);
824 	if (error) {
825 		td->td_retval[1] = reg_edx;
826 		return (error);
827 	}
828 
829 	error = copyout(td->td_retval, args->pipefds, 2*sizeof(int));
830 	if (error) {
831 		td->td_retval[1] = reg_edx;
832 		return (error);
833 	}
834 
835 	td->td_retval[1] = reg_edx;
836 	td->td_retval[0] = 0;
837 	return (0);
838 }
839 
840 int
841 linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
842 {
843 	int error;
844 	struct i386_ioperm_args iia;
845 
846 	iia.start = args->start;
847 	iia.length = args->length;
848 	iia.enable = args->enable;
849 	mtx_lock(&Giant);
850 	error = i386_set_ioperm(td, &iia);
851 	mtx_unlock(&Giant);
852 	return (error);
853 }
854 
855 int
856 linux_iopl(struct thread *td, struct linux_iopl_args *args)
857 {
858 	int error;
859 
860 	if (args->level < 0 || args->level > 3)
861 		return (EINVAL);
862 	if ((error = priv_check(td, PRIV_IO)) != 0)
863 		return (error);
864 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
865 		return (error);
866 	td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
867 	    (args->level * (PSL_IOPL / 3));
868 	return (0);
869 }
870 
871 int
872 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
873 {
874 	int error;
875 	struct i386_ldt_args ldt;
876 	struct l_descriptor ld;
877 	union descriptor desc;
878 
879 	if (uap->ptr == NULL)
880 		return (EINVAL);
881 
882 	switch (uap->func) {
883 	case 0x00: /* read_ldt */
884 		ldt.start = 0;
885 		ldt.descs = uap->ptr;
886 		ldt.num = uap->bytecount / sizeof(union descriptor);
887 		mtx_lock(&Giant);
888 		error = i386_get_ldt(td, &ldt);
889 		td->td_retval[0] *= sizeof(union descriptor);
890 		mtx_unlock(&Giant);
891 		break;
892 	case 0x01: /* write_ldt */
893 	case 0x11: /* write_ldt */
894 		if (uap->bytecount != sizeof(ld))
895 			return (EINVAL);
896 
897 		error = copyin(uap->ptr, &ld, sizeof(ld));
898 		if (error)
899 			return (error);
900 
901 		ldt.start = ld.entry_number;
902 		ldt.descs = &desc;
903 		ldt.num = 1;
904 		desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
905 		desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
906 		desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
907 		desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
908 		desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
909 			(ld.contents << 2);
910 		desc.sd.sd_dpl = 3;
911 		desc.sd.sd_p = (ld.seg_not_present ^ 1);
912 		desc.sd.sd_xx = 0;
913 		desc.sd.sd_def32 = ld.seg_32bit;
914 		desc.sd.sd_gran = ld.limit_in_pages;
915 		mtx_lock(&Giant);
916 		error = i386_set_ldt(td, &ldt, &desc);
917 		mtx_unlock(&Giant);
918 		break;
919 	default:
920 		error = EINVAL;
921 		break;
922 	}
923 
924 	if (error == EOPNOTSUPP) {
925 		printf("linux: modify_ldt needs kernel option USER_LDT\n");
926 		error = ENOSYS;
927 	}
928 
929 	return (error);
930 }
931 
932 int
933 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
934 {
935 	l_osigaction_t osa;
936 	l_sigaction_t act, oact;
937 	int error;
938 
939 #ifdef DEBUG
940 	if (ldebug(sigaction))
941 		printf(ARGS(sigaction, "%d, %p, %p"),
942 		    args->sig, (void *)args->nsa, (void *)args->osa);
943 #endif
944 
945 	if (args->nsa != NULL) {
946 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
947 		if (error)
948 			return (error);
949 		act.lsa_handler = osa.lsa_handler;
950 		act.lsa_flags = osa.lsa_flags;
951 		act.lsa_restorer = osa.lsa_restorer;
952 		LINUX_SIGEMPTYSET(act.lsa_mask);
953 		act.lsa_mask.__bits[0] = osa.lsa_mask;
954 	}
955 
956 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
957 	    args->osa ? &oact : NULL);
958 
959 	if (args->osa != NULL && !error) {
960 		osa.lsa_handler = oact.lsa_handler;
961 		osa.lsa_flags = oact.lsa_flags;
962 		osa.lsa_restorer = oact.lsa_restorer;
963 		osa.lsa_mask = oact.lsa_mask.__bits[0];
964 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
965 	}
966 
967 	return (error);
968 }
969 
970 /*
971  * Linux has two extra args, restart and oldmask.  We dont use these,
972  * but it seems that "restart" is actually a context pointer that
973  * enables the signal to happen with a different register set.
974  */
975 int
976 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
977 {
978 	sigset_t sigmask;
979 	l_sigset_t mask;
980 
981 #ifdef DEBUG
982 	if (ldebug(sigsuspend))
983 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
984 #endif
985 
986 	LINUX_SIGEMPTYSET(mask);
987 	mask.__bits[0] = args->mask;
988 	linux_to_bsd_sigset(&mask, &sigmask);
989 	return (kern_sigsuspend(td, sigmask));
990 }
991 
992 int
993 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
994 {
995 	l_sigset_t lmask;
996 	sigset_t sigmask;
997 	int error;
998 
999 #ifdef DEBUG
1000 	if (ldebug(rt_sigsuspend))
1001 		printf(ARGS(rt_sigsuspend, "%p, %d"),
1002 		    (void *)uap->newset, uap->sigsetsize);
1003 #endif
1004 
1005 	if (uap->sigsetsize != sizeof(l_sigset_t))
1006 		return (EINVAL);
1007 
1008 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
1009 	if (error)
1010 		return (error);
1011 
1012 	linux_to_bsd_sigset(&lmask, &sigmask);
1013 	return (kern_sigsuspend(td, sigmask));
1014 }
1015 
1016 int
1017 linux_pause(struct thread *td, struct linux_pause_args *args)
1018 {
1019 	struct proc *p = td->td_proc;
1020 	sigset_t sigmask;
1021 
1022 #ifdef DEBUG
1023 	if (ldebug(pause))
1024 		printf(ARGS(pause, ""));
1025 #endif
1026 
1027 	PROC_LOCK(p);
1028 	sigmask = td->td_sigmask;
1029 	PROC_UNLOCK(p);
1030 	return (kern_sigsuspend(td, sigmask));
1031 }
1032 
1033 int
1034 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1035 {
1036 	stack_t ss, oss;
1037 	l_stack_t lss;
1038 	int error;
1039 
1040 #ifdef DEBUG
1041 	if (ldebug(sigaltstack))
1042 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1043 #endif
1044 
1045 	if (uap->uss != NULL) {
1046 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1047 		if (error)
1048 			return (error);
1049 
1050 		ss.ss_sp = lss.ss_sp;
1051 		ss.ss_size = lss.ss_size;
1052 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1053 	}
1054 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1055 	    (uap->uoss != NULL) ? &oss : NULL);
1056 	if (!error && uap->uoss != NULL) {
1057 		lss.ss_sp = oss.ss_sp;
1058 		lss.ss_size = oss.ss_size;
1059 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1060 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1061 	}
1062 
1063 	return (error);
1064 }
1065 
1066 int
1067 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1068 {
1069 	struct ftruncate_args sa;
1070 
1071 #ifdef DEBUG
1072 	if (ldebug(ftruncate64))
1073 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1074 		    (intmax_t)args->length);
1075 #endif
1076 
1077 	sa.fd = args->fd;
1078 	sa.pad = 0;
1079 	sa.length = args->length;
1080 	return ftruncate(td, &sa);
1081 }
1082 
1083 int
1084 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
1085 {
1086 	struct l_user_desc info;
1087 	int error;
1088 	int idx;
1089 	int a[2];
1090 	struct segment_descriptor sd;
1091 
1092 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1093 	if (error)
1094 		return (error);
1095 
1096 #ifdef DEBUG
1097 	if (ldebug(set_thread_area))
1098 	   	printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"),
1099 		      info.entry_number,
1100       		      info.base_addr,
1101       		      info.limit,
1102       		      info.seg_32bit,
1103 		      info.contents,
1104       		      info.read_exec_only,
1105       		      info.limit_in_pages,
1106       		      info.seg_not_present,
1107       		      info.useable);
1108 #endif
1109 
1110 	idx = info.entry_number;
1111 	/*
1112 	 * Semantics of linux version: every thread in the system has array of
1113 	 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This
1114 	 * syscall loads one of the selected tls decriptors with a value and
1115 	 * also loads GDT descriptors 6, 7 and 8 with the content of the
1116 	 * per-thread descriptors.
1117 	 *
1118 	 * Semantics of fbsd version: I think we can ignore that linux has 3
1119 	 * per-thread descriptors and use just the 1st one. The tls_array[]
1120 	 * is used only in set/get-thread_area() syscalls and for loading the
1121 	 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so
1122 	 * we will load just one.
1123 	 *
1124 	 * XXX: this doesn't work when a user space process tries to use more
1125 	 * than 1 TLS segment. Comment in the linux sources says wine might do
1126 	 * this.
1127 	 */
1128 
1129 	/*
1130 	 * we support just GLIBC TLS now
1131 	 * we should let 3 proceed as well because we use this segment so
1132 	 * if code does two subsequent calls it should succeed
1133 	 */
1134 	if (idx != 6 && idx != -1 && idx != 3)
1135 		return (EINVAL);
1136 
1137 	/*
1138 	 * we have to copy out the GDT entry we use
1139 	 * FreeBSD uses GDT entry #3 for storing %gs so load that
1140 	 *
1141 	 * XXX: what if a user space program doesn't check this value and tries
1142 	 * to use 6, 7 or 8?
1143 	 */
1144 	idx = info.entry_number = 3;
1145 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1146 	if (error)
1147 		return (error);
1148 
1149 	if (LDT_empty(&info)) {
1150 		a[0] = 0;
1151 		a[1] = 0;
1152 	} else {
1153 		a[0] = LDT_entry_a(&info);
1154 		a[1] = LDT_entry_b(&info);
1155 	}
1156 
1157 	memcpy(&sd, &a, sizeof(a));
1158 #ifdef DEBUG
1159 	if (ldebug(set_thread_area))
1160 	   	printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
1161 			sd.sd_hibase,
1162 			sd.sd_lolimit,
1163 			sd.sd_hilimit,
1164 			sd.sd_type,
1165 			sd.sd_dpl,
1166 			sd.sd_p,
1167 			sd.sd_xx,
1168 			sd.sd_def32,
1169 			sd.sd_gran);
1170 #endif
1171 
1172 	/* this is taken from i386 version of cpu_set_user_tls() */
1173 	critical_enter();
1174 	/* set %gs */
1175 	td->td_pcb->pcb_gsd = sd;
1176 	PCPU_GET(fsgs_gdt)[1] = sd;
1177 	load_gs(GSEL(GUGS_SEL, SEL_UPL));
1178 	critical_exit();
1179 
1180 	return (0);
1181 }
1182 
1183 int
1184 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args)
1185 {
1186 
1187 	struct l_user_desc info;
1188 	int error;
1189 	int idx;
1190 	struct l_desc_struct desc;
1191 	struct segment_descriptor sd;
1192 
1193 #ifdef DEBUG
1194 	if (ldebug(get_thread_area))
1195 		printf(ARGS(get_thread_area, "%p"), args->desc);
1196 #endif
1197 
1198 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1199 	if (error)
1200 		return (error);
1201 
1202 	idx = info.entry_number;
1203 	/* XXX: I am not sure if we want 3 to be allowed too. */
1204 	if (idx != 6 && idx != 3)
1205 		return (EINVAL);
1206 
1207 	idx = 3;
1208 
1209 	memset(&info, 0, sizeof(info));
1210 
1211 	sd = PCPU_GET(fsgs_gdt)[1];
1212 
1213 	memcpy(&desc, &sd, sizeof(desc));
1214 
1215 	info.entry_number = idx;
1216 	info.base_addr = GET_BASE(&desc);
1217 	info.limit = GET_LIMIT(&desc);
1218 	info.seg_32bit = GET_32BIT(&desc);
1219 	info.contents = GET_CONTENTS(&desc);
1220 	info.read_exec_only = !GET_WRITABLE(&desc);
1221 	info.limit_in_pages = GET_LIMIT_PAGES(&desc);
1222 	info.seg_not_present = !GET_PRESENT(&desc);
1223 	info.useable = GET_USEABLE(&desc);
1224 
1225 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1226 	if (error)
1227 	   	return (EFAULT);
1228 
1229 	return (0);
1230 }
1231 
1232 /* copied from kern/kern_time.c */
1233 int
1234 linux_timer_create(struct thread *td, struct linux_timer_create_args *args)
1235 {
1236    	return ktimer_create(td, (struct ktimer_create_args *) args);
1237 }
1238 
1239 int
1240 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args)
1241 {
1242    	return ktimer_settime(td, (struct ktimer_settime_args *) args);
1243 }
1244 
1245 int
1246 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args)
1247 {
1248    	return ktimer_gettime(td, (struct ktimer_gettime_args *) args);
1249 }
1250 
1251 int
1252 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args)
1253 {
1254    	return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args);
1255 }
1256 
1257 int
1258 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args)
1259 {
1260    	return ktimer_delete(td, (struct ktimer_delete_args *) args);
1261 }
1262 
1263 /* XXX: this wont work with module - convert it */
1264 int
1265 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
1266 {
1267 #ifdef P1003_1B_MQUEUE
1268    	return kmq_open(td, (struct kmq_open_args *) args);
1269 #else
1270 	return (ENOSYS);
1271 #endif
1272 }
1273 
1274 int
1275 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
1276 {
1277 #ifdef P1003_1B_MQUEUE
1278    	return kmq_unlink(td, (struct kmq_unlink_args *) args);
1279 #else
1280 	return (ENOSYS);
1281 #endif
1282 }
1283 
1284 int
1285 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
1286 {
1287 #ifdef P1003_1B_MQUEUE
1288    	return kmq_timedsend(td, (struct kmq_timedsend_args *) args);
1289 #else
1290 	return (ENOSYS);
1291 #endif
1292 }
1293 
1294 int
1295 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
1296 {
1297 #ifdef P1003_1B_MQUEUE
1298    	return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args);
1299 #else
1300 	return (ENOSYS);
1301 #endif
1302 }
1303 
1304 int
1305 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
1306 {
1307 #ifdef P1003_1B_MQUEUE
1308 	return kmq_notify(td, (struct kmq_notify_args *) args);
1309 #else
1310 	return (ENOSYS);
1311 #endif
1312 }
1313 
1314 int
1315 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
1316 {
1317 #ifdef P1003_1B_MQUEUE
1318    	return kmq_setattr(td, (struct kmq_setattr_args *) args);
1319 #else
1320 	return (ENOSYS);
1321 #endif
1322 }
1323 
1324