/*- * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* needed for pcb definition in linux_set_thread_area */ #include "opt_posix.h" extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ struct l_descriptor { l_uint entry_number; l_ulong base_addr; l_uint limit; l_uint seg_32bit:1; l_uint contents:2; l_uint read_exec_only:1; l_uint limit_in_pages:1; l_uint seg_not_present:1; l_uint useable:1; }; struct l_old_select_argv { l_int nfds; l_fd_set *readfds; l_fd_set *writefds; l_fd_set *exceptfds; struct l_timeval *timeout; }; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } int linux_execve(struct thread *td, struct linux_execve_args *args) { int error; char *newpath; struct image_args eargs; LCONVPATHEXIST(td, args->path, &newpath); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), newpath); #endif error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, args->argp, args->envp); free(newpath, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); if (error == 0) /* linux process can exec fbsd one, dont attempt * to create emuldata for such process using * linux_proc_init, this leads to a panic on KASSERT * because such process has p->p_emuldata == NULL */ if (td->td_proc->p_sysent == &elf_linux_sysvec) error = linux_proc_init(td, 0, 0); return (error); } struct l_ipc_kludge { struct l_msgbuf *msgp; l_long msgtyp; }; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == NULL) return (EINVAL); error = copyin(args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = tmp.msgp; a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = (l_ulong *)args->arg3; return (linux_shmat(td, &a)); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) printf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = linux_args.readfds; newsel.writefds = linux_args.writefds; newsel.exceptfds = linux_args.exceptfds; newsel.timeout = linux_args.timeout; return (linux_select(td, &newsel)); } int linux_fork(struct thread *td, struct linux_fork_args *args) { int error; struct proc *p2; struct thread *td2; #ifdef DEBUG if (ldebug(fork)) printf(ARGS(fork, "")); #endif if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0) return (error); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; } if (td->td_retval[1] == 1) td->td_retval[0] = 0; error = linux_proc_init(td, td->td_retval[0], 0); if (error) return (error); td2 = FIRST_THREAD_IN_PROC(p2); /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); mtx_unlock_spin(&sched_lock); return (0); } int linux_vfork(struct thread *td, struct linux_vfork_args *args) { int error; struct proc *p2; struct thread *td2; #ifdef DEBUG if (ldebug(vfork)) printf(ARGS(vfork, "")); #endif /* exclude RFPPWAIT */ if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0) return (error); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; } /* Are we the child? */ if (td->td_retval[1] == 1) td->td_retval[0] = 0; error = linux_proc_init(td, td->td_retval[0], 0); if (error) return (error); PROC_LOCK(p2); p2->p_flag |= P_PPWAIT; PROC_UNLOCK(p2); td2 = FIRST_THREAD_IN_PROC(p2); /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); mtx_unlock_spin(&sched_lock); /* wait for the children to exit, ie. emulate vfork */ PROC_LOCK(p2); while (p2->p_flag & P_PPWAIT) msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0); PROC_UNLOCK(p2); return (0); } int linux_clone(struct thread *td, struct linux_clone_args *args) { int error, ff = RFPROC | RFSTOPPED; struct proc *p2; struct thread *td2; int exit_signal; struct linux_emuldata *em; #ifdef DEBUG if (ldebug(clone)) { printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"), (unsigned int)args->flags, (unsigned int)args->stack, (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr); } #endif exit_signal = args->flags & 0x000000ff; if (!LINUX_SIG_VALID(exit_signal) && exit_signal != 0) return (EINVAL); if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; /* * XXX: in linux sharing of fs info (chroot/cwd/umask) * and open files is independant. in fbsd its in one * structure but in reality it doesn't cause any problems * because both of these flags are usually set together. */ if (!(args->flags & (CLONE_FILES | CLONE_FS))) ff |= RFFDG; /* * Attempt to detect when linux_clone(2) is used for creating * kernel threads. Unfortunately despite the existence of the * CLONE_THREAD flag, version of linuxthreads package used in * most popular distros as of beginning of 2005 doesn't make * any use of it. Therefore, this detection relies on * empirical observation that linuxthreads sets certain * combination of flags, so that we can make more or less * precise detection and notify the FreeBSD kernel that several * processes are in fact part of the same threading group, so * that special treatment is necessary for signal delivery * between those processes and fd locking. */ if ((args->flags & 0xffffff00) == THREADING_FLAGS) ff |= RFTHREAD; if (args->flags & CLONE_PARENT_SETTID) if (args->parent_tidptr == NULL) return (EINVAL); error = fork1(td, ff, 0, &p2); if (error) return (error); if (args->flags & (CLONE_PARENT|CLONE_THREAD)) { sx_xlock(&proctree_lock); PROC_LOCK(p2); proc_reparent(p2, td->td_proc->p_pptr); PROC_UNLOCK(p2); sx_xunlock(&proctree_lock); } /* create the emuldata */ error = linux_proc_init(td, p2->p_pid, args->flags); /* reference it - no need to check this */ em = em_find(p2, EMUL_DOLOCK); KASSERT(em != NULL, ("clone: emuldata not found.\n")); /* and adjust it */ if (args->flags & CLONE_THREAD) { /* XXX: linux mangles pgrp and pptr somehow * I think it might be this but I am not sure. */ #ifdef notyet PROC_LOCK(p2); p2->p_pgrp = td->td_proc->p_pgrp; PROC_UNLOCK(p2); #endif exit_signal = 0; } if (args->flags & CLONE_CHILD_SETTID) em->child_set_tid = args->child_tidptr; else em->child_set_tid = NULL; if (args->flags & CLONE_CHILD_CLEARTID) em->child_clear_tid = args->child_tidptr; else em->child_clear_tid = NULL; EMUL_UNLOCK(&emul_lock); if (args->flags & CLONE_PARENT_SETTID) { error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid)); if (error) printf(LMSG("copyout failed!")); } PROC_LOCK(p2); p2->p_sigparent = exit_signal; PROC_UNLOCK(p2); td2 = FIRST_THREAD_IN_PROC(p2); /* * in a case of stack = NULL we are supposed to COW calling process stack * this is what normal fork() does so we just keep the tf_esp arg intact */ if (args->stack) td2->td_frame->tf_esp = (unsigned int)args->stack; if (args->flags & CLONE_SETTLS) { struct l_user_desc info; int idx; int a[2]; struct segment_descriptor sd; error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc)); if (error) { printf(LMSG("copyin failed!")); } else { idx = info.entry_number; /* * looks like we're getting the idx we returned * in the set_thread_area() syscall */ if (idx != 6 && idx != 3) { printf(LMSG("resetting idx!")); idx = 3; } /* this doesnt happen in practice */ if (idx == 6) { /* we might copy out the entry_number as 3 */ info.entry_number = 3; error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc)); if (error) printf(LMSG("copyout failed!")); } a[0] = LDT_entry_a(&info); a[1] = LDT_entry_b(&info); memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(clone)) printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_def32, sd.sd_gran); #endif /* set %gs */ td2->td_pcb->pcb_gsd = sd; td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); } } #ifdef DEBUG if (ldebug(clone)) printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"), (long)p2->p_pid, args->stack, exit_signal); #endif if (args->flags & CLONE_VFORK) { PROC_LOCK(p2); p2->p_flag |= P_PPWAIT; PROC_UNLOCK(p2); } /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); mtx_unlock_spin(&sched_lock); td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; if (args->flags & CLONE_VFORK) { /* wait for the children to exit, ie. emulate vfork */ PROC_LOCK(p2); while (p2->p_flag & P_PPWAIT) msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0); PROC_UNLOCK(p2); } return (0); } #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) static int linux_mmap_common(struct thread *, struct l_mmap_argv *); int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { struct l_mmap_argv linux_args; #ifdef DEBUG if (ldebug(mmap2)) printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), (void *)args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif linux_args.addr = args->addr; linux_args.len = args->len; linux_args.prot = args->prot; linux_args.flags = args->flags; linux_args.fd = args->fd; linux_args.pgoff = args->pgoff * PAGE_SIZE; return (linux_mmap_common(td, &linux_args)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), (void *)linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pgoff); #endif return (linux_mmap_common(td, &linux_args)); } static int linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args) { struct proc *p = td->td_proc; struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; struct file *fp; error = 0; bsd_args.flags = 0; fp = NULL; /* * Linux mmap(2): * You must specify exactly one of MAP_SHARED and MAP_PRIVATE */ if (! ((linux_args->flags & LINUX_MAP_SHARED) ^ (linux_args->flags & LINUX_MAP_PRIVATE))) return (EINVAL); if (linux_args->flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (linux_args->flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (linux_args->flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (linux_args->flags & LINUX_MAP_ANON) bsd_args.flags |= MAP_ANON; else bsd_args.flags |= MAP_NOSYNC; if (linux_args->flags & LINUX_MAP_GROWSDOWN) bsd_args.flags |= MAP_STACK; /* * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC * on Linux/i386. We do this to ensure maximum compatibility. * Linux/ia64 does the same in i386 emulation mode. */ bsd_args.prot = linux_args->prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : linux_args->fd; if (bsd_args.fd != -1) { /* * Linux follows Solaris mmap(2) description: * The file descriptor fildes is opened with * read permission, regardless of the * protection options specified. */ if ((error = fget(td, bsd_args.fd, &fp)) != 0) return (error); if (fp->f_type != DTYPE_VNODE) { fdrop(fp, td); return (EINVAL); } /* Linux mmap() just fails for O_WRONLY files */ if (!(fp->f_flag & FREAD)) { fdrop(fp, td); return (EACCES); } fdrop(fp, td); } if (linux_args->flags & LINUX_MAP_GROWSDOWN) { /* * The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and auto grows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ if ((caddr_t)PTRIN(linux_args->addr) + linux_args->len > p->p_vmspace->vm_maxsaddr) { /* * Some linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ PROC_LOCK(p); p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - lim_cur(p, RLIMIT_STACK); PROC_UNLOCK(p); } /* This gives us our maximum stack size */ if (linux_args->len > STACK_SIZE - GUARD_SIZE) bsd_args.len = linux_args->len; else bsd_args.len = STACK_SIZE - GUARD_SIZE; /* * This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) - bsd_args.len; } else { bsd_args.addr = (caddr_t)PTRIN(linux_args->addr); bsd_args.len = linux_args->len; } bsd_args.pos = linux_args->pgoff; bsd_args.pad = 0; #ifdef DEBUG if (ldebug(mmap)) printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", __func__, (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif error = mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf("-> %s() return: 0x%x (0x%08x)\n", __func__, error, (u_int)td->td_retval[0]); #endif return (error); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { struct mprotect_args bsd_args; bsd_args.addr = uap->addr; bsd_args.len = uap->len; bsd_args.prot = uap->prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; return (mprotect(td, &bsd_args)); } int linux_pipe(struct thread *td, struct linux_pipe_args *args) { int error; int reg_edx; #ifdef DEBUG if (ldebug(pipe)) printf(ARGS(pipe, "*")); #endif reg_edx = td->td_retval[1]; error = pipe(td, 0); if (error) { td->td_retval[1] = reg_edx; return (error); } error = copyout(td->td_retval, args->pipefds, 2*sizeof(int)); if (error) { td->td_retval[1] = reg_edx; return (error); } td->td_retval[1] = reg_edx; td->td_retval[0] = 0; return (0); } int linux_ioperm(struct thread *td, struct linux_ioperm_args *args) { int error; struct i386_ioperm_args iia; iia.start = args->start; iia.length = args->length; iia.enable = args->enable; mtx_lock(&Giant); error = i386_set_ioperm(td, &iia); mtx_unlock(&Giant); return (error); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) { int error; struct i386_ldt_args ldt; struct l_descriptor ld; union descriptor desc; if (uap->ptr == NULL) return (EINVAL); switch (uap->func) { case 0x00: /* read_ldt */ ldt.start = 0; ldt.descs = uap->ptr; ldt.num = uap->bytecount / sizeof(union descriptor); mtx_lock(&Giant); error = i386_get_ldt(td, &ldt); td->td_retval[0] *= sizeof(union descriptor); mtx_unlock(&Giant); break; case 0x01: /* write_ldt */ case 0x11: /* write_ldt */ if (uap->bytecount != sizeof(ld)) return (EINVAL); error = copyin(uap->ptr, &ld, sizeof(ld)); if (error) return (error); ldt.start = ld.entry_number; ldt.descs = &desc; ldt.num = 1; desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | (ld.contents << 2); desc.sd.sd_dpl = 3; desc.sd.sd_p = (ld.seg_not_present ^ 1); desc.sd.sd_xx = 0; desc.sd.sd_def32 = ld.seg_32bit; desc.sd.sd_gran = ld.limit_in_pages; mtx_lock(&Giant); error = i386_set_ldt(td, &ldt, &desc); mtx_unlock(&Giant); break; default: error = EINVAL; break; } if (error == EOPNOTSUPP) { printf("linux: modify_ldt needs kernel option USER_LDT\n"); error = ENOSYS; } return (error); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) printf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; #ifdef DEBUG if (ldebug(sigsuspend)) printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; #ifdef DEBUG if (ldebug(pause)) printf(ARGS(pause, "")); #endif PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = lss.ss_sp; ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = oss.ss_sp; lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) { struct ftruncate_args sa; #ifdef DEBUG if (ldebug(ftruncate64)) printf(ARGS(ftruncate64, "%u, %jd"), args->fd, (intmax_t)args->length); #endif sa.fd = args->fd; sa.pad = 0; sa.length = args->length; return ftruncate(td, &sa); } int linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) { struct l_user_desc info; int error; int idx; int a[2]; struct segment_descriptor sd; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); #ifdef DEBUG if (ldebug(set_thread_area)) printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"), info.entry_number, info.base_addr, info.limit, info.seg_32bit, info.contents, info.read_exec_only, info.limit_in_pages, info.seg_not_present, info.useable); #endif idx = info.entry_number; /* * Semantics of linux version: every thread in the system has array of * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This * syscall loads one of the selected tls decriptors with a value and * also loads GDT descriptors 6, 7 and 8 with the content of the * per-thread descriptors. * * Semantics of fbsd version: I think we can ignore that linux has 3 * per-thread descriptors and use just the 1st one. The tls_array[] * is used only in set/get-thread_area() syscalls and for loading the * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so * we will load just one. * * XXX: this doesn't work when a user space process tries to use more * than 1 TLS segment. Comment in the linux sources says wine might do * this. */ /* * we support just GLIBC TLS now * we should let 3 proceed as well because we use this segment so * if code does two subsequent calls it should succeed */ if (idx != 6 && idx != -1 && idx != 3) return (EINVAL); /* * we have to copy out the GDT entry we use * FreeBSD uses GDT entry #3 for storing %gs so load that * * XXX: what if a user space program doesn't check this value and tries * to use 6, 7 or 8? */ idx = info.entry_number = 3; error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (error); if (LDT_empty(&info)) { a[0] = 0; a[1] = 0; } else { a[0] = LDT_entry_a(&info); a[1] = LDT_entry_b(&info); } memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(set_thread_area)) printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_def32, sd.sd_gran); #endif /* this is taken from i386 version of cpu_set_user_tls() */ critical_enter(); /* set %gs */ td->td_pcb->pcb_gsd = sd; PCPU_GET(fsgs_gdt)[1] = sd; load_gs(GSEL(GUGS_SEL, SEL_UPL)); critical_exit(); return (0); } int linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) { struct l_user_desc info; int error; int idx; struct l_desc_struct desc; struct segment_descriptor sd; #ifdef DEBUG if (ldebug(get_thread_area)) printf(ARGS(get_thread_area, "%p"), args->desc); #endif error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); idx = info.entry_number; /* XXX: I am not sure if we want 3 to be allowed too. */ if (idx != 6 && idx != 3) return (EINVAL); idx = 3; memset(&info, 0, sizeof(info)); sd = PCPU_GET(fsgs_gdt)[1]; memcpy(&desc, &sd, sizeof(desc)); info.entry_number = idx; info.base_addr = GET_BASE(&desc); info.limit = GET_LIMIT(&desc); info.seg_32bit = GET_32BIT(&desc); info.contents = GET_CONTENTS(&desc); info.read_exec_only = !GET_WRITABLE(&desc); info.limit_in_pages = GET_LIMIT_PAGES(&desc); info.seg_not_present = !GET_PRESENT(&desc); info.useable = GET_USEABLE(&desc); error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (EFAULT); return (0); } /* copied from kern/kern_time.c */ int linux_timer_create(struct thread *td, struct linux_timer_create_args *args) { return ktimer_create(td, (struct ktimer_create_args *) args); } int linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args) { return ktimer_settime(td, (struct ktimer_settime_args *) args); } int linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args) { return ktimer_gettime(td, (struct ktimer_gettime_args *) args); } int linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args) { return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args); } int linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args) { return ktimer_delete(td, (struct ktimer_delete_args *) args); } /* XXX: this wont work with module - convert it */ int linux_mq_open(struct thread *td, struct linux_mq_open_args *args) { #ifdef P1003_1B_MQUEUE return kmq_open(td, (struct kmq_open_args *) args); #else return (ENOSYS); #endif } int linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) { #ifdef P1003_1B_MQUEUE return kmq_unlink(td, (struct kmq_unlink_args *) args); #else return (ENOSYS); #endif } int linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) { #ifdef P1003_1B_MQUEUE return kmq_timedsend(td, (struct kmq_timedsend_args *) args); #else return (ENOSYS); #endif } int linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) { #ifdef P1003_1B_MQUEUE return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args); #else return (ENOSYS); #endif } int linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) { #ifdef P1003_1B_MQUEUE return kmq_notify(td, (struct kmq_notify_args *) args); #else return (ENOSYS); #endif } int linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) { #ifdef P1003_1B_MQUEUE return kmq_setattr(td, (struct kmq_setattr_args *) args); #else return (ENOSYS); #endif }