1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bus.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/sx.h> 42 #include <sys/syslog.h> 43 #include <sys/malloc.h> 44 #include <sys/systm.h> 45 #include <sys/proc.h> 46 #include <sys/kthread.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/uio.h> 50 #include <sys/unistd.h> 51 #include <sys/queue.h> 52 #include <sys/taskqueue.h> 53 54 #include <machine/stdarg.h> 55 56 #include <xen/xen-os.h> 57 #include <xen/hypervisor.h> 58 #include <xen/xen_intr.h> 59 60 #include <xen/interface/hvm/params.h> 61 #include <xen/hvm.h> 62 63 #include <xen/xenstore/xenstorevar.h> 64 #include <xen/xenstore/xenstore_internal.h> 65 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 69 /** 70 * \file xenstore.c 71 * \brief XenStore interface 72 * 73 * The XenStore interface is a simple storage system that is a means of 74 * communicating state and configuration data between the Xen Domain 0 75 * and the various guest domains. All configuration data other than 76 * a small amount of essential information required during the early 77 * boot process of launching a Xen aware guest, is managed using the 78 * XenStore. 79 * 80 * The XenStore is ASCII string based, and has a structure and semantics 81 * similar to a filesystem. There are files and directories, the directories 82 * able to contain files or other directories. The depth of the hierachy 83 * is only limited by the XenStore's maximum path length. 84 * 85 * The communication channel between the XenStore service and other 86 * domains is via two, guest specific, ring buffers in a shared memory 87 * area. One ring buffer is used for communicating in each direction. 88 * The grant table references for this shared memory are given to the 89 * guest either via the xen_start_info structure for a fully para- 90 * virtualized guest, or via HVM hypercalls for a hardware virtualized 91 * guest. 92 * 93 * The XenStore communication relies on an event channel and thus 94 * interrupts. For this reason, the attachment of the XenStore 95 * relies on an interrupt driven configuration hook to hold off 96 * boot processing until communication with the XenStore service 97 * can be established. 98 * 99 * Several Xen services depend on the XenStore, most notably the 100 * XenBus used to discover and manage Xen devices. These services 101 * are implemented as NewBus child attachments to a bus exported 102 * by this XenStore driver. 103 */ 104 105 static struct xs_watch *find_watch(const char *token); 106 107 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 108 109 /** 110 * Pointer to shared memory communication structures allowing us 111 * to communicate with the XenStore service. 112 * 113 * When operating in full PV mode, this pointer is set early in kernel 114 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 115 * to get the guest frame number for the shared page and then map it 116 * into kva. See xs_init() for details. 117 */ 118 struct xenstore_domain_interface *xen_store; 119 120 /*-------------------------- Private Data Structures ------------------------*/ 121 122 /** 123 * Structure capturing messages received from the XenStore service. 124 */ 125 struct xs_stored_msg { 126 TAILQ_ENTRY(xs_stored_msg) list; 127 128 struct xsd_sockmsg hdr; 129 130 union { 131 /* Queued replies. */ 132 struct { 133 char *body; 134 } reply; 135 136 /* Queued watch events. */ 137 struct { 138 struct xs_watch *handle; 139 const char **vec; 140 u_int vec_size; 141 } watch; 142 } u; 143 }; 144 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 145 146 /** 147 * Container for all XenStore related state. 148 */ 149 struct xs_softc { 150 /** Newbus device for the XenStore. */ 151 device_t xs_dev; 152 153 /** 154 * Lock serializing access to ring producer/consumer 155 * indexes. Use of this lock guarantees that wakeups 156 * of blocking readers/writers are not missed due to 157 * races with the XenStore service. 158 */ 159 struct mtx ring_lock; 160 161 /* 162 * Mutex used to insure exclusive access to the outgoing 163 * communication ring. We use a lock type that can be 164 * held while sleeping so that xs_write() can block waiting 165 * for space in the ring to free up, without allowing another 166 * writer to come in and corrupt a partial message write. 167 */ 168 struct sx request_mutex; 169 170 /** 171 * A list of replies to our requests. 172 * 173 * The reply list is filled by xs_rcv_thread(). It 174 * is consumed by the context that issued the request 175 * to which a reply is made. The requester blocks in 176 * xs_read_reply(). 177 * 178 * /note Only one requesting context can be active at a time. 179 * This is guaranteed by the request_mutex and insures 180 * that the requester sees replies matching the order 181 * of its requests. 182 */ 183 struct xs_stored_msg_list reply_list; 184 185 /** Lock protecting the reply list. */ 186 struct mtx reply_lock; 187 188 /** 189 * List of registered watches. 190 */ 191 struct xs_watch_list registered_watches; 192 193 /** Lock protecting the registered watches list. */ 194 struct mtx registered_watches_lock; 195 196 /** 197 * List of pending watch callback events. 198 */ 199 struct xs_stored_msg_list watch_events; 200 201 /** Lock protecting the watch calback list. */ 202 struct mtx watch_events_lock; 203 204 /** 205 * Sleepable lock used to prevent VM suspension while a 206 * xenstore transaction is outstanding. 207 * 208 * Each active transaction holds a shared lock on the 209 * suspend mutex. Our suspend method blocks waiting 210 * to acquire an exclusive lock. This guarantees that 211 * suspend processing will only proceed once all active 212 * transactions have been retired. 213 */ 214 struct sx suspend_mutex; 215 216 /** 217 * The processid of the xenwatch thread. 218 */ 219 pid_t xenwatch_pid; 220 221 /** 222 * Sleepable mutex used to gate the execution of XenStore 223 * watch event callbacks. 224 * 225 * xenwatch_thread holds an exclusive lock on this mutex 226 * while delivering event callbacks, and xenstore_unregister_watch() 227 * uses an exclusive lock of this mutex to guarantee that no 228 * callbacks of the just unregistered watch are pending 229 * before returning to its caller. 230 */ 231 struct sx xenwatch_mutex; 232 233 /** 234 * The HVM guest pseudo-physical frame number. This is Xen's mapping 235 * of the true machine frame number into our "physical address space". 236 */ 237 unsigned long gpfn; 238 239 /** 240 * The event channel for communicating with the 241 * XenStore service. 242 */ 243 int evtchn; 244 245 /** Handle for XenStore interrupts. */ 246 xen_intr_handle_t xen_intr_handle; 247 248 /** 249 * Interrupt driven config hook allowing us to defer 250 * attaching children until interrupts (and thus communication 251 * with the XenStore service) are available. 252 */ 253 struct intr_config_hook xs_attachcb; 254 255 /** 256 * Xenstore is a user-space process that usually runs in Dom0, 257 * so if this domain is booting as Dom0, xenstore wont we accessible, 258 * and we have to defer the initialization of xenstore related 259 * devices to later (when xenstore is started). 260 */ 261 bool initialized; 262 263 /** 264 * Task to run when xenstore is initialized (Dom0 only), will 265 * take care of attaching xenstore related devices. 266 */ 267 struct task xs_late_init; 268 }; 269 270 /*-------------------------------- Global Data ------------------------------*/ 271 static struct xs_softc xs; 272 273 /*------------------------- Private Utility Functions -----------------------*/ 274 275 /** 276 * Count and optionally record pointers to a number of NUL terminated 277 * strings in a buffer. 278 * 279 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 280 * \param dest An array to store pointers to each string found in strings. 281 * \param len The length of the buffer pointed to by strings. 282 * 283 * \return A count of the number of strings found. 284 */ 285 static u_int 286 extract_strings(const char *strings, const char **dest, u_int len) 287 { 288 u_int num; 289 const char *p; 290 291 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 292 if (dest != NULL) 293 *dest++ = p; 294 num++; 295 } 296 297 return (num); 298 } 299 300 /** 301 * Convert a contiguous buffer containing a series of NUL terminated 302 * strings into an array of pointers to strings. 303 * 304 * The returned pointer references the array of string pointers which 305 * is followed by the storage for the string data. It is the client's 306 * responsibility to free this storage. 307 * 308 * The storage addressed by strings is free'd prior to split returning. 309 * 310 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 311 * \param len The length of the buffer pointed to by strings. 312 * \param num The number of strings found and returned in the strings 313 * array. 314 * 315 * \return An array of pointers to the strings found in the input buffer. 316 */ 317 static const char ** 318 split(char *strings, u_int len, u_int *num) 319 { 320 const char **ret; 321 322 /* Protect against unterminated buffers. */ 323 if (len > 0) 324 strings[len - 1] = '\0'; 325 326 /* Count the strings. */ 327 *num = extract_strings(strings, /*dest*/NULL, len); 328 329 /* Transfer to one big alloc for easy freeing by the caller. */ 330 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 331 memcpy(&ret[*num], strings, len); 332 free(strings, M_XENSTORE); 333 334 /* Extract pointers to newly allocated array. */ 335 strings = (char *)&ret[*num]; 336 (void)extract_strings(strings, /*dest*/ret, len); 337 338 return (ret); 339 } 340 341 /*------------------------- Public Utility Functions -------------------------*/ 342 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 343 struct sbuf * 344 xs_join(const char *dir, const char *name) 345 { 346 struct sbuf *sb; 347 348 sb = sbuf_new_auto(); 349 sbuf_cat(sb, dir); 350 if (name[0] != '\0') { 351 sbuf_putc(sb, '/'); 352 sbuf_cat(sb, name); 353 } 354 sbuf_finish(sb); 355 356 return (sb); 357 } 358 359 /*-------------------- Low Level Communication Management --------------------*/ 360 /** 361 * Interrupt handler for the XenStore event channel. 362 * 363 * XenStore reads and writes block on "xen_store" for buffer 364 * space. Wakeup any blocking operations when the XenStore 365 * service has modified the queues. 366 */ 367 static void 368 xs_intr(void * arg __unused /*__attribute__((unused))*/) 369 { 370 371 /* If xenstore has not been initialized, initialize it now */ 372 if (!xs.initialized) { 373 xs.initialized = true; 374 /* 375 * Since this task is probing and attaching devices we 376 * have to hold the Giant lock. 377 */ 378 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 379 } 380 381 /* 382 * Hold ring lock across wakeup so that clients 383 * cannot miss a wakeup. 384 */ 385 mtx_lock(&xs.ring_lock); 386 wakeup(xen_store); 387 mtx_unlock(&xs.ring_lock); 388 } 389 390 /** 391 * Verify that the indexes for a ring are valid. 392 * 393 * The difference between the producer and consumer cannot 394 * exceed the size of the ring. 395 * 396 * \param cons The consumer index for the ring to test. 397 * \param prod The producer index for the ring to test. 398 * 399 * \retval 1 If indexes are in range. 400 * \retval 0 If the indexes are out of range. 401 */ 402 static int 403 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 404 { 405 406 return ((prod - cons) <= XENSTORE_RING_SIZE); 407 } 408 409 /** 410 * Return a pointer to, and the length of, the contiguous 411 * free region available for output in a ring buffer. 412 * 413 * \param cons The consumer index for the ring. 414 * \param prod The producer index for the ring. 415 * \param buf The base address of the ring's storage. 416 * \param len The amount of contiguous storage available. 417 * 418 * \return A pointer to the start location of the free region. 419 */ 420 static void * 421 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 422 char *buf, uint32_t *len) 423 { 424 425 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 426 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 427 *len = XENSTORE_RING_SIZE - (prod - cons); 428 return (buf + MASK_XENSTORE_IDX(prod)); 429 } 430 431 /** 432 * Return a pointer to, and the length of, the contiguous 433 * data available to read from a ring buffer. 434 * 435 * \param cons The consumer index for the ring. 436 * \param prod The producer index for the ring. 437 * \param buf The base address of the ring's storage. 438 * \param len The amount of contiguous data available to read. 439 * 440 * \return A pointer to the start location of the available data. 441 */ 442 static const void * 443 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 444 const char *buf, uint32_t *len) 445 { 446 447 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 448 if ((prod - cons) < *len) 449 *len = prod - cons; 450 return (buf + MASK_XENSTORE_IDX(cons)); 451 } 452 453 /** 454 * Transmit data to the XenStore service. 455 * 456 * \param tdata A pointer to the contiguous data to send. 457 * \param len The amount of data to send. 458 * 459 * \return On success 0, otherwise an errno value indicating the 460 * cause of failure. 461 * 462 * \invariant Called from thread context. 463 * \invariant The buffer pointed to by tdata is at least len bytes 464 * in length. 465 * \invariant xs.request_mutex exclusively locked. 466 */ 467 static int 468 xs_write_store(const void *tdata, unsigned len) 469 { 470 XENSTORE_RING_IDX cons, prod; 471 const char *data = (const char *)tdata; 472 int error; 473 474 sx_assert(&xs.request_mutex, SX_XLOCKED); 475 while (len != 0) { 476 void *dst; 477 u_int avail; 478 479 /* Hold lock so we can't miss wakeups should we block. */ 480 mtx_lock(&xs.ring_lock); 481 cons = xen_store->req_cons; 482 prod = xen_store->req_prod; 483 if ((prod - cons) == XENSTORE_RING_SIZE) { 484 /* 485 * Output ring is full. Wait for a ring event. 486 * 487 * Note that the events from both queues 488 * are combined, so being woken does not 489 * guarantee that data exist in the read 490 * ring. 491 * 492 * To simplify error recovery and the retry, 493 * we specify PDROP so our lock is *not* held 494 * when msleep returns. 495 */ 496 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 497 "xbwrite", /*timeout*/0); 498 if (error && error != EWOULDBLOCK) 499 return (error); 500 501 /* Try again. */ 502 continue; 503 } 504 mtx_unlock(&xs.ring_lock); 505 506 /* Verify queue sanity. */ 507 if (!xs_check_indexes(cons, prod)) { 508 xen_store->req_cons = xen_store->req_prod = 0; 509 return (EIO); 510 } 511 512 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 513 if (avail > len) 514 avail = len; 515 516 memcpy(dst, data, avail); 517 data += avail; 518 len -= avail; 519 520 /* 521 * The store to the producer index, which indicates 522 * to the other side that new data has arrived, must 523 * be visible only after our copy of the data into the 524 * ring has completed. 525 */ 526 wmb(); 527 xen_store->req_prod += avail; 528 529 /* 530 * xen_intr_signal() implies mb(). The other side will see 531 * the change to req_prod at the time of the interrupt. 532 */ 533 xen_intr_signal(xs.xen_intr_handle); 534 } 535 536 return (0); 537 } 538 539 /** 540 * Receive data from the XenStore service. 541 * 542 * \param tdata A pointer to the contiguous buffer to receive the data. 543 * \param len The amount of data to receive. 544 * 545 * \return On success 0, otherwise an errno value indicating the 546 * cause of failure. 547 * 548 * \invariant Called from thread context. 549 * \invariant The buffer pointed to by tdata is at least len bytes 550 * in length. 551 * 552 * \note xs_read does not perform any internal locking to guarantee 553 * serial access to the incoming ring buffer. However, there 554 * is only one context processing reads: xs_rcv_thread(). 555 */ 556 static int 557 xs_read_store(void *tdata, unsigned len) 558 { 559 XENSTORE_RING_IDX cons, prod; 560 char *data = (char *)tdata; 561 int error; 562 563 while (len != 0) { 564 u_int avail; 565 const char *src; 566 567 /* Hold lock so we can't miss wakeups should we block. */ 568 mtx_lock(&xs.ring_lock); 569 cons = xen_store->rsp_cons; 570 prod = xen_store->rsp_prod; 571 if (cons == prod) { 572 /* 573 * Nothing to read. Wait for a ring event. 574 * 575 * Note that the events from both queues 576 * are combined, so being woken does not 577 * guarantee that data exist in the read 578 * ring. 579 * 580 * To simplify error recovery and the retry, 581 * we specify PDROP so our lock is *not* held 582 * when msleep returns. 583 */ 584 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 585 "xbread", /*timeout*/0); 586 if (error && error != EWOULDBLOCK) 587 return (error); 588 continue; 589 } 590 mtx_unlock(&xs.ring_lock); 591 592 /* Verify queue sanity. */ 593 if (!xs_check_indexes(cons, prod)) { 594 xen_store->rsp_cons = xen_store->rsp_prod = 0; 595 return (EIO); 596 } 597 598 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 599 if (avail > len) 600 avail = len; 601 602 /* 603 * Insure the data we read is related to the indexes 604 * we read above. 605 */ 606 rmb(); 607 608 memcpy(data, src, avail); 609 data += avail; 610 len -= avail; 611 612 /* 613 * Insure that the producer of this ring does not see 614 * the ring space as free until after we have copied it 615 * out. 616 */ 617 mb(); 618 xen_store->rsp_cons += avail; 619 620 /* 621 * xen_intr_signal() implies mb(). The producer will see 622 * the updated consumer index when the event is delivered. 623 */ 624 xen_intr_signal(xs.xen_intr_handle); 625 } 626 627 return (0); 628 } 629 630 /*----------------------- Received Message Processing ------------------------*/ 631 /** 632 * Block reading the next message from the XenStore service and 633 * process the result. 634 * 635 * \param type The returned type of the XenStore message received. 636 * 637 * \return 0 on success. Otherwise an errno value indicating the 638 * type of failure encountered. 639 */ 640 static int 641 xs_process_msg(enum xsd_sockmsg_type *type) 642 { 643 struct xs_stored_msg *msg; 644 char *body; 645 int error; 646 647 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 648 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 649 if (error) { 650 free(msg, M_XENSTORE); 651 return (error); 652 } 653 654 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 655 error = xs_read_store(body, msg->hdr.len); 656 if (error) { 657 free(body, M_XENSTORE); 658 free(msg, M_XENSTORE); 659 return (error); 660 } 661 body[msg->hdr.len] = '\0'; 662 663 *type = msg->hdr.type; 664 if (msg->hdr.type == XS_WATCH_EVENT) { 665 msg->u.watch.vec = split(body, msg->hdr.len, 666 &msg->u.watch.vec_size); 667 668 mtx_lock(&xs.registered_watches_lock); 669 msg->u.watch.handle = find_watch( 670 msg->u.watch.vec[XS_WATCH_TOKEN]); 671 if (msg->u.watch.handle != NULL) { 672 mtx_lock(&xs.watch_events_lock); 673 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 674 wakeup(&xs.watch_events); 675 mtx_unlock(&xs.watch_events_lock); 676 } else { 677 free(msg->u.watch.vec, M_XENSTORE); 678 free(msg, M_XENSTORE); 679 } 680 mtx_unlock(&xs.registered_watches_lock); 681 } else { 682 msg->u.reply.body = body; 683 mtx_lock(&xs.reply_lock); 684 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 685 wakeup(&xs.reply_list); 686 mtx_unlock(&xs.reply_lock); 687 } 688 689 return (0); 690 } 691 692 /** 693 * Thread body of the XenStore receive thread. 694 * 695 * This thread blocks waiting for data from the XenStore service 696 * and processes and received messages. 697 */ 698 static void 699 xs_rcv_thread(void *arg __unused) 700 { 701 int error; 702 enum xsd_sockmsg_type type; 703 704 for (;;) { 705 error = xs_process_msg(&type); 706 if (error) 707 printf("XENSTORE error %d while reading message\n", 708 error); 709 } 710 } 711 712 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 713 /** 714 * Filter invoked before transmitting any message to the XenStore service. 715 * 716 * The role of the filter may expand, but currently serves to manage 717 * the interactions of messages with transaction state. 718 * 719 * \param request_msg_type The message type for the request. 720 */ 721 static inline void 722 xs_request_filter(uint32_t request_msg_type) 723 { 724 if (request_msg_type == XS_TRANSACTION_START) 725 sx_slock(&xs.suspend_mutex); 726 } 727 728 /** 729 * Filter invoked after transmitting any message to the XenStore service. 730 * 731 * The role of the filter may expand, but currently serves to manage 732 * the interactions of messages with transaction state. 733 * 734 * \param request_msg_type The message type for the original request. 735 * \param reply_msg_type The message type for any received reply. 736 * \param request_reply_error The error status from the attempt to send 737 * the request or retrieve the reply. 738 */ 739 static inline void 740 xs_reply_filter(uint32_t request_msg_type, 741 uint32_t reply_msg_type, int request_reply_error) 742 { 743 /* 744 * The count of transactions drops if we attempted 745 * to end a transaction (even if that attempt fails 746 * in error), we receive a transaction end acknowledgement, 747 * or if our attempt to begin a transaction fails. 748 */ 749 if (request_msg_type == XS_TRANSACTION_END 750 || (request_reply_error == 0 && reply_msg_type == XS_TRANSACTION_END) 751 || (request_msg_type == XS_TRANSACTION_START 752 && (request_reply_error != 0 || reply_msg_type == XS_ERROR))) 753 sx_sunlock(&xs.suspend_mutex); 754 755 } 756 757 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 758 759 /** 760 * Convert a XenStore error string into an errno number. 761 * 762 * \param errorstring The error string to convert. 763 * 764 * \return The errno best matching the input string. 765 * 766 * \note Unknown error strings are converted to EINVAL. 767 */ 768 static int 769 xs_get_error(const char *errorstring) 770 { 771 u_int i; 772 773 for (i = 0; i < xsd_error_count; i++) { 774 if (!strcmp(errorstring, xsd_errors[i].errstring)) 775 return (xsd_errors[i].errnum); 776 } 777 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 778 errorstring); 779 return (EINVAL); 780 } 781 782 /** 783 * Block waiting for a reply to a message request. 784 * 785 * \param type The returned type of the reply. 786 * \param len The returned body length of the reply. 787 * \param result The returned body of the reply. 788 * 789 * \return 0 on success. Otherwise an errno indicating the 790 * cause of failure. 791 */ 792 static int 793 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 794 { 795 struct xs_stored_msg *msg; 796 char *body; 797 int error; 798 799 mtx_lock(&xs.reply_lock); 800 while (TAILQ_EMPTY(&xs.reply_list)) { 801 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 802 PCATCH, "xswait", hz/10); 803 if (error && error != EWOULDBLOCK) { 804 mtx_unlock(&xs.reply_lock); 805 return (error); 806 } 807 } 808 msg = TAILQ_FIRST(&xs.reply_list); 809 TAILQ_REMOVE(&xs.reply_list, msg, list); 810 mtx_unlock(&xs.reply_lock); 811 812 *type = msg->hdr.type; 813 if (len) 814 *len = msg->hdr.len; 815 body = msg->u.reply.body; 816 817 free(msg, M_XENSTORE); 818 *result = body; 819 return (0); 820 } 821 822 /** 823 * Pass-thru interface for XenStore access by userland processes 824 * via the XenStore device. 825 * 826 * Reply type and length data are returned by overwriting these 827 * fields in the passed in request message. 828 * 829 * \param msg A properly formatted message to transmit to 830 * the XenStore service. 831 * \param result The returned body of the reply. 832 * 833 * \return 0 on success. Otherwise an errno indicating the cause 834 * of failure. 835 * 836 * \note The returned result is provided in malloced storage and thus 837 * must be free'd by the caller with 'free(result, M_XENSTORE); 838 */ 839 int 840 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 841 { 842 uint32_t request_type; 843 int error; 844 845 request_type = msg->type; 846 xs_request_filter(request_type); 847 848 sx_xlock(&xs.request_mutex); 849 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 850 error = xs_read_reply(&msg->type, &msg->len, result); 851 sx_xunlock(&xs.request_mutex); 852 853 xs_reply_filter(request_type, msg->type, error); 854 855 return (error); 856 } 857 858 /** 859 * Send a message with an optionally muti-part body to the XenStore service. 860 * 861 * \param t The transaction to use for this request. 862 * \param request_type The type of message to send. 863 * \param iovec Pointers to the body sections of the request. 864 * \param num_vecs The number of body sections in the request. 865 * \param len The returned length of the reply. 866 * \param result The returned body of the reply. 867 * 868 * \return 0 on success. Otherwise an errno indicating 869 * the cause of failure. 870 * 871 * \note The returned result is provided in malloced storage and thus 872 * must be free'd by the caller with 'free(*result, M_XENSTORE); 873 */ 874 static int 875 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 876 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 877 { 878 struct xsd_sockmsg msg; 879 void *ret = NULL; 880 u_int i; 881 int error; 882 883 msg.tx_id = t.id; 884 msg.req_id = 0; 885 msg.type = request_type; 886 msg.len = 0; 887 for (i = 0; i < num_vecs; i++) 888 msg.len += iovec[i].iov_len; 889 890 xs_request_filter(request_type); 891 892 sx_xlock(&xs.request_mutex); 893 error = xs_write_store(&msg, sizeof(msg)); 894 if (error) { 895 printf("xs_talkv failed %d\n", error); 896 goto error_lock_held; 897 } 898 899 for (i = 0; i < num_vecs; i++) { 900 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 901 if (error) { 902 printf("xs_talkv failed %d\n", error); 903 goto error_lock_held; 904 } 905 } 906 907 error = xs_read_reply(&msg.type, len, &ret); 908 909 error_lock_held: 910 sx_xunlock(&xs.request_mutex); 911 xs_reply_filter(request_type, msg.type, error); 912 if (error) 913 return (error); 914 915 if (msg.type == XS_ERROR) { 916 error = xs_get_error(ret); 917 free(ret, M_XENSTORE); 918 return (error); 919 } 920 921 /* Reply is either error or an echo of our request message type. */ 922 KASSERT(msg.type == request_type, ("bad xenstore message type")); 923 924 if (result) 925 *result = ret; 926 else 927 free(ret, M_XENSTORE); 928 929 return (0); 930 } 931 932 /** 933 * Wrapper for xs_talkv allowing easy transmission of a message with 934 * a single, contiguous, message body. 935 * 936 * \param t The transaction to use for this request. 937 * \param request_type The type of message to send. 938 * \param body The body of the request. 939 * \param len The returned length of the reply. 940 * \param result The returned body of the reply. 941 * 942 * \return 0 on success. Otherwise an errno indicating 943 * the cause of failure. 944 * 945 * \note The returned result is provided in malloced storage and thus 946 * must be free'd by the caller with 'free(*result, M_XENSTORE); 947 */ 948 static int 949 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 950 const char *body, u_int *len, void **result) 951 { 952 struct iovec iovec; 953 954 iovec.iov_base = (void *)(uintptr_t)body; 955 iovec.iov_len = strlen(body) + 1; 956 957 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 958 } 959 960 /*------------------------- XenStore Watch Support ---------------------------*/ 961 /** 962 * Transmit a watch request to the XenStore service. 963 * 964 * \param path The path in the XenStore to watch. 965 * \param tocken A unique identifier for this watch. 966 * 967 * \return 0 on success. Otherwise an errno indicating the 968 * cause of failure. 969 */ 970 static int 971 xs_watch(const char *path, const char *token) 972 { 973 struct iovec iov[2]; 974 975 iov[0].iov_base = (void *)(uintptr_t) path; 976 iov[0].iov_len = strlen(path) + 1; 977 iov[1].iov_base = (void *)(uintptr_t) token; 978 iov[1].iov_len = strlen(token) + 1; 979 980 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 981 } 982 983 /** 984 * Transmit an uwatch request to the XenStore service. 985 * 986 * \param path The path in the XenStore to watch. 987 * \param tocken A unique identifier for this watch. 988 * 989 * \return 0 on success. Otherwise an errno indicating the 990 * cause of failure. 991 */ 992 static int 993 xs_unwatch(const char *path, const char *token) 994 { 995 struct iovec iov[2]; 996 997 iov[0].iov_base = (void *)(uintptr_t) path; 998 iov[0].iov_len = strlen(path) + 1; 999 iov[1].iov_base = (void *)(uintptr_t) token; 1000 iov[1].iov_len = strlen(token) + 1; 1001 1002 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 1003 } 1004 1005 /** 1006 * Convert from watch token (unique identifier) to the associated 1007 * internal tracking structure for this watch. 1008 * 1009 * \param tocken The unique identifier for the watch to find. 1010 * 1011 * \return A pointer to the found watch structure or NULL. 1012 */ 1013 static struct xs_watch * 1014 find_watch(const char *token) 1015 { 1016 struct xs_watch *i, *cmp; 1017 1018 cmp = (void *)strtoul(token, NULL, 16); 1019 1020 LIST_FOREACH(i, &xs.registered_watches, list) 1021 if (i == cmp) 1022 return (i); 1023 1024 return (NULL); 1025 } 1026 1027 /** 1028 * Thread body of the XenStore watch event dispatch thread. 1029 */ 1030 static void 1031 xenwatch_thread(void *unused) 1032 { 1033 struct xs_stored_msg *msg; 1034 1035 for (;;) { 1036 1037 mtx_lock(&xs.watch_events_lock); 1038 while (TAILQ_EMPTY(&xs.watch_events)) 1039 mtx_sleep(&xs.watch_events, 1040 &xs.watch_events_lock, 1041 PWAIT | PCATCH, "waitev", hz/10); 1042 1043 mtx_unlock(&xs.watch_events_lock); 1044 sx_xlock(&xs.xenwatch_mutex); 1045 1046 mtx_lock(&xs.watch_events_lock); 1047 msg = TAILQ_FIRST(&xs.watch_events); 1048 if (msg) 1049 TAILQ_REMOVE(&xs.watch_events, msg, list); 1050 mtx_unlock(&xs.watch_events_lock); 1051 1052 if (msg != NULL) { 1053 /* 1054 * XXX There are messages coming in with a NULL 1055 * XXX callback. This deserves further investigation; 1056 * XXX the workaround here simply prevents the kernel 1057 * XXX from panic'ing on startup. 1058 */ 1059 if (msg->u.watch.handle->callback != NULL) 1060 msg->u.watch.handle->callback( 1061 msg->u.watch.handle, 1062 (const char **)msg->u.watch.vec, 1063 msg->u.watch.vec_size); 1064 free(msg->u.watch.vec, M_XENSTORE); 1065 free(msg, M_XENSTORE); 1066 } 1067 1068 sx_xunlock(&xs.xenwatch_mutex); 1069 } 1070 } 1071 1072 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1073 /** 1074 * Setup communication channels with the XenStore service. 1075 * 1076 * \return On success, 0. Otherwise an errno value indicating the 1077 * type of failure. 1078 */ 1079 static int 1080 xs_init_comms(void) 1081 { 1082 int error; 1083 1084 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1085 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1086 "(%08x:%08x): fixing up\n", 1087 xen_store->rsp_cons, xen_store->rsp_prod); 1088 xen_store->rsp_cons = xen_store->rsp_prod; 1089 } 1090 1091 xen_intr_unbind(&xs.xen_intr_handle); 1092 1093 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1094 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1095 &xs.xen_intr_handle); 1096 if (error) { 1097 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1098 return (error); 1099 } 1100 1101 return (0); 1102 } 1103 1104 /*------------------ Private Device Attachment Functions --------------------*/ 1105 static void 1106 xs_identify(driver_t *driver, device_t parent) 1107 { 1108 1109 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1110 } 1111 1112 /** 1113 * Probe for the existance of the XenStore. 1114 * 1115 * \param dev 1116 */ 1117 static int 1118 xs_probe(device_t dev) 1119 { 1120 /* 1121 * We are either operating within a PV kernel or being probed 1122 * as the child of the successfully attached xenpci device. 1123 * Thus we are in a Xen environment and there will be a XenStore. 1124 * Unconditionally return success. 1125 */ 1126 device_set_desc(dev, "XenStore"); 1127 return (0); 1128 } 1129 1130 static void 1131 xs_attach_deferred(void *arg) 1132 { 1133 1134 bus_generic_probe(xs.xs_dev); 1135 bus_generic_attach(xs.xs_dev); 1136 1137 config_intrhook_disestablish(&xs.xs_attachcb); 1138 } 1139 1140 static void 1141 xs_attach_late(void *arg, int pending) 1142 { 1143 1144 KASSERT((pending == 1), ("xs late attach queued several times")); 1145 bus_generic_probe(xs.xs_dev); 1146 bus_generic_attach(xs.xs_dev); 1147 } 1148 1149 /** 1150 * Attach to the XenStore. 1151 * 1152 * This routine also prepares for the probe/attach of drivers that rely 1153 * on the XenStore. 1154 */ 1155 static int 1156 xs_attach(device_t dev) 1157 { 1158 int error; 1159 1160 /* Allow us to get device_t from softc and vice-versa. */ 1161 xs.xs_dev = dev; 1162 device_set_softc(dev, &xs); 1163 1164 /* Initialize the interface to xenstore. */ 1165 struct proc *p; 1166 1167 xs.initialized = false; 1168 if (xen_hvm_domain()) { 1169 xs.evtchn = hvm_get_parameter(HVM_PARAM_STORE_EVTCHN); 1170 xs.gpfn = hvm_get_parameter(HVM_PARAM_STORE_PFN); 1171 xen_store = pmap_mapdev(xs.gpfn * PAGE_SIZE, PAGE_SIZE); 1172 xs.initialized = true; 1173 } else if (xen_pv_domain()) { 1174 if (HYPERVISOR_start_info->store_evtchn == 0) { 1175 struct evtchn_alloc_unbound alloc_unbound; 1176 1177 /* Allocate a local event channel for xenstore */ 1178 alloc_unbound.dom = DOMID_SELF; 1179 alloc_unbound.remote_dom = DOMID_SELF; 1180 error = HYPERVISOR_event_channel_op( 1181 EVTCHNOP_alloc_unbound, &alloc_unbound); 1182 if (error != 0) 1183 panic( 1184 "unable to alloc event channel for Dom0: %d", 1185 error); 1186 1187 HYPERVISOR_start_info->store_evtchn = 1188 alloc_unbound.port; 1189 xs.evtchn = alloc_unbound.port; 1190 1191 /* Allocate memory for the xs shared ring */ 1192 xen_store = malloc(PAGE_SIZE, M_XENSTORE, 1193 M_WAITOK | M_ZERO); 1194 } else { 1195 xs.evtchn = HYPERVISOR_start_info->store_evtchn; 1196 xs.initialized = true; 1197 } 1198 } else { 1199 panic("Unknown domain type, cannot initialize xenstore."); 1200 } 1201 1202 TAILQ_INIT(&xs.reply_list); 1203 TAILQ_INIT(&xs.watch_events); 1204 1205 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1206 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1207 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1208 sx_init(&xs.request_mutex, "xenstore request"); 1209 sx_init(&xs.suspend_mutex, "xenstore suspend"); 1210 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1211 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1212 1213 /* Initialize the shared memory rings to talk to xenstored */ 1214 error = xs_init_comms(); 1215 if (error) 1216 return (error); 1217 1218 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1219 0, "xenwatch"); 1220 if (error) 1221 return (error); 1222 xs.xenwatch_pid = p->p_pid; 1223 1224 error = kproc_create(xs_rcv_thread, NULL, NULL, 1225 RFHIGHPID, 0, "xenstore_rcv"); 1226 1227 xs.xs_attachcb.ich_func = xs_attach_deferred; 1228 xs.xs_attachcb.ich_arg = NULL; 1229 if (xs.initialized) { 1230 config_intrhook_establish(&xs.xs_attachcb); 1231 } else { 1232 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1233 } 1234 1235 return (error); 1236 } 1237 1238 /** 1239 * Prepare for suspension of this VM by halting XenStore access after 1240 * all transactions and individual requests have completed. 1241 */ 1242 static int 1243 xs_suspend(device_t dev) 1244 { 1245 int error; 1246 1247 /* Suspend child Xen devices. */ 1248 error = bus_generic_suspend(dev); 1249 if (error != 0) 1250 return (error); 1251 1252 sx_xlock(&xs.suspend_mutex); 1253 sx_xlock(&xs.request_mutex); 1254 1255 return (0); 1256 } 1257 1258 /** 1259 * Resume XenStore operations after this VM is resumed. 1260 */ 1261 static int 1262 xs_resume(device_t dev __unused) 1263 { 1264 struct xs_watch *watch; 1265 char token[sizeof(watch) * 2 + 1]; 1266 1267 xs_init_comms(); 1268 1269 sx_xunlock(&xs.request_mutex); 1270 1271 /* 1272 * No need for registered_watches_lock: the suspend_mutex 1273 * is sufficient. 1274 */ 1275 LIST_FOREACH(watch, &xs.registered_watches, list) { 1276 sprintf(token, "%lX", (long)watch); 1277 xs_watch(watch->node, token); 1278 } 1279 1280 sx_xunlock(&xs.suspend_mutex); 1281 1282 /* Resume child Xen devices. */ 1283 bus_generic_resume(dev); 1284 1285 return (0); 1286 } 1287 1288 /*-------------------- Private Device Attachment Data -----------------------*/ 1289 static device_method_t xenstore_methods[] = { 1290 /* Device interface */ 1291 DEVMETHOD(device_identify, xs_identify), 1292 DEVMETHOD(device_probe, xs_probe), 1293 DEVMETHOD(device_attach, xs_attach), 1294 DEVMETHOD(device_detach, bus_generic_detach), 1295 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1296 DEVMETHOD(device_suspend, xs_suspend), 1297 DEVMETHOD(device_resume, xs_resume), 1298 1299 /* Bus interface */ 1300 DEVMETHOD(bus_add_child, bus_generic_add_child), 1301 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1302 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1303 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1304 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1305 1306 DEVMETHOD_END 1307 }; 1308 1309 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1310 static devclass_t xenstore_devclass; 1311 1312 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0); 1313 1314 /*------------------------------- Sysctl Data --------------------------------*/ 1315 /* XXX Shouldn't the node be somewhere else? */ 1316 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD, NULL, "Xen"); 1317 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1318 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1319 1320 /*-------------------------------- Public API --------------------------------*/ 1321 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1322 int 1323 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1324 u_int *num, const char ***result) 1325 { 1326 struct sbuf *path; 1327 char *strings; 1328 u_int len = 0; 1329 int error; 1330 1331 path = xs_join(dir, node); 1332 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1333 (void **)&strings); 1334 sbuf_delete(path); 1335 if (error) 1336 return (error); 1337 1338 *result = split(strings, len, num); 1339 1340 return (0); 1341 } 1342 1343 int 1344 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1345 { 1346 const char **d; 1347 int error, dir_n; 1348 1349 error = xs_directory(t, dir, node, &dir_n, &d); 1350 if (error) 1351 return (0); 1352 free(d, M_XENSTORE); 1353 return (1); 1354 } 1355 1356 int 1357 xs_read(struct xs_transaction t, const char *dir, const char *node, 1358 u_int *len, void **result) 1359 { 1360 struct sbuf *path; 1361 void *ret; 1362 int error; 1363 1364 path = xs_join(dir, node); 1365 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1366 sbuf_delete(path); 1367 if (error) 1368 return (error); 1369 *result = ret; 1370 return (0); 1371 } 1372 1373 int 1374 xs_write(struct xs_transaction t, const char *dir, const char *node, 1375 const char *string) 1376 { 1377 struct sbuf *path; 1378 struct iovec iovec[2]; 1379 int error; 1380 1381 path = xs_join(dir, node); 1382 1383 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1384 iovec[0].iov_len = sbuf_len(path) + 1; 1385 iovec[1].iov_base = (void *)(uintptr_t) string; 1386 iovec[1].iov_len = strlen(string); 1387 1388 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1389 sbuf_delete(path); 1390 1391 return (error); 1392 } 1393 1394 int 1395 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1396 { 1397 struct sbuf *path; 1398 int ret; 1399 1400 path = xs_join(dir, node); 1401 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1402 sbuf_delete(path); 1403 1404 return (ret); 1405 } 1406 1407 int 1408 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1409 { 1410 struct sbuf *path; 1411 int ret; 1412 1413 path = xs_join(dir, node); 1414 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1415 sbuf_delete(path); 1416 1417 return (ret); 1418 } 1419 1420 int 1421 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1422 { 1423 struct xs_transaction local_xbt; 1424 struct sbuf *root_path_sbuf; 1425 struct sbuf *cur_path_sbuf; 1426 char *root_path; 1427 char *cur_path; 1428 const char **dir; 1429 int error; 1430 int empty; 1431 1432 retry: 1433 root_path_sbuf = xs_join(base, node); 1434 cur_path_sbuf = xs_join(base, node); 1435 root_path = sbuf_data(root_path_sbuf); 1436 cur_path = sbuf_data(cur_path_sbuf); 1437 dir = NULL; 1438 local_xbt.id = 0; 1439 1440 if (xbt.id == 0) { 1441 error = xs_transaction_start(&local_xbt); 1442 if (error != 0) 1443 goto out; 1444 xbt = local_xbt; 1445 } 1446 1447 empty = 0; 1448 while (1) { 1449 u_int count; 1450 u_int i; 1451 1452 error = xs_directory(xbt, cur_path, "", &count, &dir); 1453 if (error) 1454 goto out; 1455 1456 for (i = 0; i < count; i++) { 1457 error = xs_rm(xbt, cur_path, dir[i]); 1458 if (error == ENOTEMPTY) { 1459 struct sbuf *push_dir; 1460 1461 /* 1462 * Descend to clear out this sub directory. 1463 * We'll return to cur_dir once push_dir 1464 * is empty. 1465 */ 1466 push_dir = xs_join(cur_path, dir[i]); 1467 sbuf_delete(cur_path_sbuf); 1468 cur_path_sbuf = push_dir; 1469 cur_path = sbuf_data(cur_path_sbuf); 1470 break; 1471 } else if (error != 0) { 1472 goto out; 1473 } 1474 } 1475 1476 free(dir, M_XENSTORE); 1477 dir = NULL; 1478 1479 if (i == count) { 1480 char *last_slash; 1481 1482 /* Directory is empty. It is now safe to remove. */ 1483 error = xs_rm(xbt, cur_path, ""); 1484 if (error != 0) 1485 goto out; 1486 1487 if (!strcmp(cur_path, root_path)) 1488 break; 1489 1490 /* Return to processing the parent directory. */ 1491 last_slash = strrchr(cur_path, '/'); 1492 KASSERT(last_slash != NULL, 1493 ("xs_rm_tree: mangled path %s", cur_path)); 1494 *last_slash = '\0'; 1495 } 1496 } 1497 1498 out: 1499 sbuf_delete(cur_path_sbuf); 1500 sbuf_delete(root_path_sbuf); 1501 if (dir != NULL) 1502 free(dir, M_XENSTORE); 1503 1504 if (local_xbt.id != 0) { 1505 int terror; 1506 1507 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1508 xbt.id = 0; 1509 if (terror == EAGAIN && error == 0) 1510 goto retry; 1511 } 1512 return (error); 1513 } 1514 1515 int 1516 xs_transaction_start(struct xs_transaction *t) 1517 { 1518 char *id_str; 1519 int error; 1520 1521 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1522 (void **)&id_str); 1523 if (error == 0) { 1524 t->id = strtoul(id_str, NULL, 0); 1525 free(id_str, M_XENSTORE); 1526 } 1527 return (error); 1528 } 1529 1530 int 1531 xs_transaction_end(struct xs_transaction t, int abort) 1532 { 1533 char abortstr[2]; 1534 1535 if (abort) 1536 strcpy(abortstr, "F"); 1537 else 1538 strcpy(abortstr, "T"); 1539 1540 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1541 } 1542 1543 int 1544 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1545 int *scancountp, const char *fmt, ...) 1546 { 1547 va_list ap; 1548 int error, ns; 1549 char *val; 1550 1551 error = xs_read(t, dir, node, NULL, (void **) &val); 1552 if (error) 1553 return (error); 1554 1555 va_start(ap, fmt); 1556 ns = vsscanf(val, fmt, ap); 1557 va_end(ap); 1558 free(val, M_XENSTORE); 1559 /* Distinctive errno. */ 1560 if (ns == 0) 1561 return (ERANGE); 1562 if (scancountp) 1563 *scancountp = ns; 1564 return (0); 1565 } 1566 1567 int 1568 xs_vprintf(struct xs_transaction t, 1569 const char *dir, const char *node, const char *fmt, va_list ap) 1570 { 1571 struct sbuf *sb; 1572 int error; 1573 1574 sb = sbuf_new_auto(); 1575 sbuf_vprintf(sb, fmt, ap); 1576 sbuf_finish(sb); 1577 error = xs_write(t, dir, node, sbuf_data(sb)); 1578 sbuf_delete(sb); 1579 1580 return (error); 1581 } 1582 1583 int 1584 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1585 const char *fmt, ...) 1586 { 1587 va_list ap; 1588 int error; 1589 1590 va_start(ap, fmt); 1591 error = xs_vprintf(t, dir, node, fmt, ap); 1592 va_end(ap); 1593 1594 return (error); 1595 } 1596 1597 int 1598 xs_gather(struct xs_transaction t, const char *dir, ...) 1599 { 1600 va_list ap; 1601 const char *name; 1602 int error; 1603 1604 va_start(ap, dir); 1605 error = 0; 1606 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1607 const char *fmt = va_arg(ap, char *); 1608 void *result = va_arg(ap, void *); 1609 char *p; 1610 1611 error = xs_read(t, dir, name, NULL, (void **) &p); 1612 if (error) 1613 break; 1614 1615 if (fmt) { 1616 if (sscanf(p, fmt, result) == 0) 1617 error = EINVAL; 1618 free(p, M_XENSTORE); 1619 } else 1620 *(char **)result = p; 1621 } 1622 va_end(ap); 1623 1624 return (error); 1625 } 1626 1627 int 1628 xs_register_watch(struct xs_watch *watch) 1629 { 1630 /* Pointer in ascii is the token. */ 1631 char token[sizeof(watch) * 2 + 1]; 1632 int error; 1633 1634 sprintf(token, "%lX", (long)watch); 1635 1636 sx_slock(&xs.suspend_mutex); 1637 1638 mtx_lock(&xs.registered_watches_lock); 1639 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1640 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1641 mtx_unlock(&xs.registered_watches_lock); 1642 1643 error = xs_watch(watch->node, token); 1644 1645 /* Ignore errors due to multiple registration. */ 1646 if (error == EEXIST) 1647 error = 0; 1648 1649 if (error != 0) { 1650 mtx_lock(&xs.registered_watches_lock); 1651 LIST_REMOVE(watch, list); 1652 mtx_unlock(&xs.registered_watches_lock); 1653 } 1654 1655 sx_sunlock(&xs.suspend_mutex); 1656 1657 return (error); 1658 } 1659 1660 void 1661 xs_unregister_watch(struct xs_watch *watch) 1662 { 1663 struct xs_stored_msg *msg, *tmp; 1664 char token[sizeof(watch) * 2 + 1]; 1665 int error; 1666 1667 sprintf(token, "%lX", (long)watch); 1668 1669 sx_slock(&xs.suspend_mutex); 1670 1671 mtx_lock(&xs.registered_watches_lock); 1672 if (find_watch(token) == NULL) { 1673 mtx_unlock(&xs.registered_watches_lock); 1674 sx_sunlock(&xs.suspend_mutex); 1675 return; 1676 } 1677 LIST_REMOVE(watch, list); 1678 mtx_unlock(&xs.registered_watches_lock); 1679 1680 error = xs_unwatch(watch->node, token); 1681 if (error) 1682 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1683 watch->node, error); 1684 1685 sx_sunlock(&xs.suspend_mutex); 1686 1687 /* Cancel pending watch events. */ 1688 mtx_lock(&xs.watch_events_lock); 1689 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1690 if (msg->u.watch.handle != watch) 1691 continue; 1692 TAILQ_REMOVE(&xs.watch_events, msg, list); 1693 free(msg->u.watch.vec, M_XENSTORE); 1694 free(msg, M_XENSTORE); 1695 } 1696 mtx_unlock(&xs.watch_events_lock); 1697 1698 /* Flush any currently-executing callback, unless we are it. :-) */ 1699 if (curproc->p_pid != xs.xenwatch_pid) { 1700 sx_xlock(&xs.xenwatch_mutex); 1701 sx_xunlock(&xs.xenwatch_mutex); 1702 } 1703 } 1704