1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/module.h> 39 #include <sys/mutex.h> 40 #include <sys/sx.h> 41 #include <sys/syslog.h> 42 #include <sys/malloc.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sbuf.h> 47 #include <sys/sysctl.h> 48 #include <sys/uio.h> 49 #include <sys/unistd.h> 50 #include <sys/queue.h> 51 #include <sys/taskqueue.h> 52 53 #include <machine/stdarg.h> 54 55 #include <xen/xen-os.h> 56 #include <xen/hypervisor.h> 57 #include <xen/xen_intr.h> 58 59 #include <contrib/xen/hvm/params.h> 60 #include <xen/hvm.h> 61 62 #include <xen/xenstore/xenstorevar.h> 63 #include <xen/xenstore/xenstore_internal.h> 64 65 #include <vm/vm.h> 66 #include <vm/pmap.h> 67 68 /** 69 * \file xenstore.c 70 * \brief XenStore interface 71 * 72 * The XenStore interface is a simple storage system that is a means of 73 * communicating state and configuration data between the Xen Domain 0 74 * and the various guest domains. All configuration data other than 75 * a small amount of essential information required during the early 76 * boot process of launching a Xen aware guest, is managed using the 77 * XenStore. 78 * 79 * The XenStore is ASCII string based, and has a structure and semantics 80 * similar to a filesystem. There are files and directories, the directories 81 * able to contain files or other directories. The depth of the hierarchy 82 * is only limited by the XenStore's maximum path length. 83 * 84 * The communication channel between the XenStore service and other 85 * domains is via two, guest specific, ring buffers in a shared memory 86 * area. One ring buffer is used for communicating in each direction. 87 * The grant table references for this shared memory are given to the 88 * guest either via the xen_start_info structure for a fully para- 89 * virtualized guest, or via HVM hypercalls for a hardware virtualized 90 * guest. 91 * 92 * The XenStore communication relies on an event channel and thus 93 * interrupts. For this reason, the attachment of the XenStore 94 * relies on an interrupt driven configuration hook to hold off 95 * boot processing until communication with the XenStore service 96 * can be established. 97 * 98 * Several Xen services depend on the XenStore, most notably the 99 * XenBus used to discover and manage Xen devices. These services 100 * are implemented as NewBus child attachments to a bus exported 101 * by this XenStore driver. 102 */ 103 104 static struct xs_watch *find_watch(const char *token); 105 106 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 107 108 /** 109 * Pointer to shared memory communication structures allowing us 110 * to communicate with the XenStore service. 111 * 112 * When operating in full PV mode, this pointer is set early in kernel 113 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 114 * to get the guest frame number for the shared page and then map it 115 * into kva. See xs_init() for details. 116 */ 117 static struct xenstore_domain_interface *xen_store; 118 119 /*-------------------------- Private Data Structures ------------------------*/ 120 121 /** 122 * Structure capturing messages received from the XenStore service. 123 */ 124 struct xs_stored_msg { 125 TAILQ_ENTRY(xs_stored_msg) list; 126 127 struct xsd_sockmsg hdr; 128 129 union { 130 /* Queued replies. */ 131 struct { 132 char *body; 133 } reply; 134 135 /* Queued watch events. */ 136 struct { 137 struct xs_watch *handle; 138 const char **vec; 139 u_int vec_size; 140 } watch; 141 } u; 142 }; 143 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 144 145 /** 146 * Container for all XenStore related state. 147 */ 148 struct xs_softc { 149 /** Newbus device for the XenStore. */ 150 device_t xs_dev; 151 152 /** 153 * Lock serializing access to ring producer/consumer 154 * indexes. Use of this lock guarantees that wakeups 155 * of blocking readers/writers are not missed due to 156 * races with the XenStore service. 157 */ 158 struct mtx ring_lock; 159 160 /* 161 * Mutex used to insure exclusive access to the outgoing 162 * communication ring. We use a lock type that can be 163 * held while sleeping so that xs_write() can block waiting 164 * for space in the ring to free up, without allowing another 165 * writer to come in and corrupt a partial message write. 166 */ 167 struct sx request_mutex; 168 169 /** 170 * A list of replies to our requests. 171 * 172 * The reply list is filled by xs_rcv_thread(). It 173 * is consumed by the context that issued the request 174 * to which a reply is made. The requester blocks in 175 * xs_read_reply(). 176 * 177 * /note Only one requesting context can be active at a time. 178 * This is guaranteed by the request_mutex and insures 179 * that the requester sees replies matching the order 180 * of its requests. 181 */ 182 struct xs_stored_msg_list reply_list; 183 184 /** Lock protecting the reply list. */ 185 struct mtx reply_lock; 186 187 /** 188 * List of registered watches. 189 */ 190 struct xs_watch_list registered_watches; 191 192 /** Lock protecting the registered watches list. */ 193 struct mtx registered_watches_lock; 194 195 /** 196 * List of pending watch callback events. 197 */ 198 struct xs_stored_msg_list watch_events; 199 200 /** Lock protecting the watch calback list. */ 201 struct mtx watch_events_lock; 202 203 /** 204 * The processid of the xenwatch thread. 205 */ 206 pid_t xenwatch_pid; 207 208 /** 209 * Sleepable mutex used to gate the execution of XenStore 210 * watch event callbacks. 211 * 212 * xenwatch_thread holds an exclusive lock on this mutex 213 * while delivering event callbacks, and xenstore_unregister_watch() 214 * uses an exclusive lock of this mutex to guarantee that no 215 * callbacks of the just unregistered watch are pending 216 * before returning to its caller. 217 */ 218 struct sx xenwatch_mutex; 219 220 /** 221 * The HVM guest pseudo-physical frame number. This is Xen's mapping 222 * of the true machine frame number into our "physical address space". 223 */ 224 unsigned long gpfn; 225 226 /** 227 * The event channel for communicating with the 228 * XenStore service. 229 */ 230 int evtchn; 231 232 /** Handle for XenStore interrupts. */ 233 xen_intr_handle_t xen_intr_handle; 234 235 /** 236 * Interrupt driven config hook allowing us to defer 237 * attaching children until interrupts (and thus communication 238 * with the XenStore service) are available. 239 */ 240 struct intr_config_hook xs_attachcb; 241 242 /** 243 * Xenstore is a user-space process that usually runs in Dom0, 244 * so if this domain is booting as Dom0, xenstore wont we accessible, 245 * and we have to defer the initialization of xenstore related 246 * devices to later (when xenstore is started). 247 */ 248 bool initialized; 249 250 /** 251 * Task to run when xenstore is initialized (Dom0 only), will 252 * take care of attaching xenstore related devices. 253 */ 254 struct task xs_late_init; 255 }; 256 257 /*-------------------------------- Global Data ------------------------------*/ 258 static struct xs_softc xs; 259 260 /*------------------------- Private Utility Functions -----------------------*/ 261 262 /** 263 * Count and optionally record pointers to a number of NUL terminated 264 * strings in a buffer. 265 * 266 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 267 * \param dest An array to store pointers to each string found in strings. 268 * \param len The length of the buffer pointed to by strings. 269 * 270 * \return A count of the number of strings found. 271 */ 272 static u_int 273 extract_strings(const char *strings, const char **dest, u_int len) 274 { 275 u_int num; 276 const char *p; 277 278 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 279 if (dest != NULL) 280 *dest++ = p; 281 num++; 282 } 283 284 return (num); 285 } 286 287 /** 288 * Convert a contiguous buffer containing a series of NUL terminated 289 * strings into an array of pointers to strings. 290 * 291 * The returned pointer references the array of string pointers which 292 * is followed by the storage for the string data. It is the client's 293 * responsibility to free this storage. 294 * 295 * The storage addressed by strings is free'd prior to split returning. 296 * 297 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 298 * \param len The length of the buffer pointed to by strings. 299 * \param num The number of strings found and returned in the strings 300 * array. 301 * 302 * \return An array of pointers to the strings found in the input buffer. 303 */ 304 static const char ** 305 split(char *strings, u_int len, u_int *num) 306 { 307 const char **ret; 308 309 /* Protect against unterminated buffers. */ 310 if (len > 0) 311 strings[len - 1] = '\0'; 312 313 /* Count the strings. */ 314 *num = extract_strings(strings, /*dest*/NULL, len); 315 316 /* Transfer to one big alloc for easy freeing by the caller. */ 317 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 318 memcpy(&ret[*num], strings, len); 319 free(strings, M_XENSTORE); 320 321 /* Extract pointers to newly allocated array. */ 322 strings = (char *)&ret[*num]; 323 (void)extract_strings(strings, /*dest*/ret, len); 324 325 return (ret); 326 } 327 328 /*------------------------- Public Utility Functions -------------------------*/ 329 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 330 struct sbuf * 331 xs_join(const char *dir, const char *name) 332 { 333 struct sbuf *sb; 334 335 sb = sbuf_new_auto(); 336 sbuf_cat(sb, dir); 337 if (name[0] != '\0') { 338 sbuf_putc(sb, '/'); 339 sbuf_cat(sb, name); 340 } 341 sbuf_finish(sb); 342 343 return (sb); 344 } 345 346 /*-------------------- Low Level Communication Management --------------------*/ 347 /** 348 * Interrupt handler for the XenStore event channel. 349 * 350 * XenStore reads and writes block on "xen_store" for buffer 351 * space. Wakeup any blocking operations when the XenStore 352 * service has modified the queues. 353 */ 354 static void 355 xs_intr(void * arg __unused /*__attribute__((unused))*/) 356 { 357 358 /* If xenstore has not been initialized, initialize it now */ 359 if (!xs.initialized) { 360 xs.initialized = true; 361 /* 362 * Since this task is probing and attaching devices we 363 * have to hold the Giant lock. 364 */ 365 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 366 } 367 368 /* 369 * Hold ring lock across wakeup so that clients 370 * cannot miss a wakeup. 371 */ 372 mtx_lock(&xs.ring_lock); 373 wakeup(xen_store); 374 mtx_unlock(&xs.ring_lock); 375 } 376 377 /** 378 * Verify that the indexes for a ring are valid. 379 * 380 * The difference between the producer and consumer cannot 381 * exceed the size of the ring. 382 * 383 * \param cons The consumer index for the ring to test. 384 * \param prod The producer index for the ring to test. 385 * 386 * \retval 1 If indexes are in range. 387 * \retval 0 If the indexes are out of range. 388 */ 389 static int 390 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 391 { 392 393 return ((prod - cons) <= XENSTORE_RING_SIZE); 394 } 395 396 /** 397 * Return a pointer to, and the length of, the contiguous 398 * free region available for output in a ring buffer. 399 * 400 * \param cons The consumer index for the ring. 401 * \param prod The producer index for the ring. 402 * \param buf The base address of the ring's storage. 403 * \param len The amount of contiguous storage available. 404 * 405 * \return A pointer to the start location of the free region. 406 */ 407 static void * 408 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 409 char *buf, uint32_t *len) 410 { 411 412 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 413 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 414 *len = XENSTORE_RING_SIZE - (prod - cons); 415 return (buf + MASK_XENSTORE_IDX(prod)); 416 } 417 418 /** 419 * Return a pointer to, and the length of, the contiguous 420 * data available to read from a ring buffer. 421 * 422 * \param cons The consumer index for the ring. 423 * \param prod The producer index for the ring. 424 * \param buf The base address of the ring's storage. 425 * \param len The amount of contiguous data available to read. 426 * 427 * \return A pointer to the start location of the available data. 428 */ 429 static const void * 430 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 431 const char *buf, uint32_t *len) 432 { 433 434 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 435 if ((prod - cons) < *len) 436 *len = prod - cons; 437 return (buf + MASK_XENSTORE_IDX(cons)); 438 } 439 440 /** 441 * Transmit data to the XenStore service. 442 * 443 * \param tdata A pointer to the contiguous data to send. 444 * \param len The amount of data to send. 445 * 446 * \return On success 0, otherwise an errno value indicating the 447 * cause of failure. 448 * 449 * \invariant Called from thread context. 450 * \invariant The buffer pointed to by tdata is at least len bytes 451 * in length. 452 * \invariant xs.request_mutex exclusively locked. 453 */ 454 static int 455 xs_write_store(const void *tdata, unsigned len) 456 { 457 XENSTORE_RING_IDX cons, prod; 458 const char *data = (const char *)tdata; 459 int error; 460 461 sx_assert(&xs.request_mutex, SX_XLOCKED); 462 while (len != 0) { 463 void *dst; 464 u_int avail; 465 466 /* Hold lock so we can't miss wakeups should we block. */ 467 mtx_lock(&xs.ring_lock); 468 cons = xen_store->req_cons; 469 prod = xen_store->req_prod; 470 if ((prod - cons) == XENSTORE_RING_SIZE) { 471 /* 472 * Output ring is full. Wait for a ring event. 473 * 474 * Note that the events from both queues 475 * are combined, so being woken does not 476 * guarantee that data exist in the read 477 * ring. 478 * 479 * To simplify error recovery and the retry, 480 * we specify PDROP so our lock is *not* held 481 * when msleep returns. 482 */ 483 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 484 "xbwrite", /*timeout*/0); 485 if (error && error != EWOULDBLOCK) 486 return (error); 487 488 /* Try again. */ 489 continue; 490 } 491 mtx_unlock(&xs.ring_lock); 492 493 /* Verify queue sanity. */ 494 if (!xs_check_indexes(cons, prod)) { 495 xen_store->req_cons = xen_store->req_prod = 0; 496 return (EIO); 497 } 498 499 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 500 if (avail > len) 501 avail = len; 502 503 memcpy(dst, data, avail); 504 data += avail; 505 len -= avail; 506 507 /* 508 * The store to the producer index, which indicates 509 * to the other side that new data has arrived, must 510 * be visible only after our copy of the data into the 511 * ring has completed. 512 */ 513 wmb(); 514 xen_store->req_prod += avail; 515 516 /* 517 * xen_intr_signal() implies mb(). The other side will see 518 * the change to req_prod at the time of the interrupt. 519 */ 520 xen_intr_signal(xs.xen_intr_handle); 521 } 522 523 return (0); 524 } 525 526 /** 527 * Receive data from the XenStore service. 528 * 529 * \param tdata A pointer to the contiguous buffer to receive the data. 530 * \param len The amount of data to receive. 531 * 532 * \return On success 0, otherwise an errno value indicating the 533 * cause of failure. 534 * 535 * \invariant Called from thread context. 536 * \invariant The buffer pointed to by tdata is at least len bytes 537 * in length. 538 * 539 * \note xs_read does not perform any internal locking to guarantee 540 * serial access to the incoming ring buffer. However, there 541 * is only one context processing reads: xs_rcv_thread(). 542 */ 543 static int 544 xs_read_store(void *tdata, unsigned len) 545 { 546 XENSTORE_RING_IDX cons, prod; 547 char *data = (char *)tdata; 548 int error; 549 550 while (len != 0) { 551 u_int avail; 552 const char *src; 553 554 /* Hold lock so we can't miss wakeups should we block. */ 555 mtx_lock(&xs.ring_lock); 556 cons = xen_store->rsp_cons; 557 prod = xen_store->rsp_prod; 558 if (cons == prod) { 559 /* 560 * Nothing to read. Wait for a ring event. 561 * 562 * Note that the events from both queues 563 * are combined, so being woken does not 564 * guarantee that data exist in the read 565 * ring. 566 * 567 * To simplify error recovery and the retry, 568 * we specify PDROP so our lock is *not* held 569 * when msleep returns. 570 */ 571 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 572 "xbread", /*timeout*/0); 573 if (error && error != EWOULDBLOCK) 574 return (error); 575 continue; 576 } 577 mtx_unlock(&xs.ring_lock); 578 579 /* Verify queue sanity. */ 580 if (!xs_check_indexes(cons, prod)) { 581 xen_store->rsp_cons = xen_store->rsp_prod = 0; 582 return (EIO); 583 } 584 585 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 586 if (avail > len) 587 avail = len; 588 589 /* 590 * Insure the data we read is related to the indexes 591 * we read above. 592 */ 593 rmb(); 594 595 memcpy(data, src, avail); 596 data += avail; 597 len -= avail; 598 599 /* 600 * Insure that the producer of this ring does not see 601 * the ring space as free until after we have copied it 602 * out. 603 */ 604 mb(); 605 xen_store->rsp_cons += avail; 606 607 /* 608 * xen_intr_signal() implies mb(). The producer will see 609 * the updated consumer index when the event is delivered. 610 */ 611 xen_intr_signal(xs.xen_intr_handle); 612 } 613 614 return (0); 615 } 616 617 /*----------------------- Received Message Processing ------------------------*/ 618 /** 619 * Block reading the next message from the XenStore service and 620 * process the result. 621 * 622 * \param type The returned type of the XenStore message received. 623 * 624 * \return 0 on success. Otherwise an errno value indicating the 625 * type of failure encountered. 626 */ 627 static int 628 xs_process_msg(enum xsd_sockmsg_type *type) 629 { 630 struct xs_stored_msg *msg; 631 char *body; 632 int error; 633 634 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 635 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 636 if (error) { 637 free(msg, M_XENSTORE); 638 return (error); 639 } 640 641 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 642 error = xs_read_store(body, msg->hdr.len); 643 if (error) { 644 free(body, M_XENSTORE); 645 free(msg, M_XENSTORE); 646 return (error); 647 } 648 body[msg->hdr.len] = '\0'; 649 650 *type = msg->hdr.type; 651 if (msg->hdr.type == XS_WATCH_EVENT) { 652 msg->u.watch.vec = split(body, msg->hdr.len, 653 &msg->u.watch.vec_size); 654 655 mtx_lock(&xs.registered_watches_lock); 656 msg->u.watch.handle = find_watch( 657 msg->u.watch.vec[XS_WATCH_TOKEN]); 658 mtx_lock(&xs.watch_events_lock); 659 if (msg->u.watch.handle != NULL && 660 (!msg->u.watch.handle->max_pending || 661 msg->u.watch.handle->pending < 662 msg->u.watch.handle->max_pending)) { 663 msg->u.watch.handle->pending++; 664 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 665 wakeup(&xs.watch_events); 666 mtx_unlock(&xs.watch_events_lock); 667 } else { 668 mtx_unlock(&xs.watch_events_lock); 669 free(msg->u.watch.vec, M_XENSTORE); 670 free(msg, M_XENSTORE); 671 } 672 mtx_unlock(&xs.registered_watches_lock); 673 } else { 674 msg->u.reply.body = body; 675 mtx_lock(&xs.reply_lock); 676 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 677 wakeup(&xs.reply_list); 678 mtx_unlock(&xs.reply_lock); 679 } 680 681 return (0); 682 } 683 684 /** 685 * Thread body of the XenStore receive thread. 686 * 687 * This thread blocks waiting for data from the XenStore service 688 * and processes and received messages. 689 */ 690 static void 691 xs_rcv_thread(void *arg __unused) 692 { 693 int error; 694 enum xsd_sockmsg_type type; 695 696 for (;;) { 697 error = xs_process_msg(&type); 698 if (error) 699 printf("XENSTORE error %d while reading message\n", 700 error); 701 } 702 } 703 704 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 705 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 706 707 /** 708 * Convert a XenStore error string into an errno number. 709 * 710 * \param errorstring The error string to convert. 711 * 712 * \return The errno best matching the input string. 713 * 714 * \note Unknown error strings are converted to EINVAL. 715 */ 716 static int 717 xs_get_error(const char *errorstring) 718 { 719 u_int i; 720 721 for (i = 0; i < xsd_error_count; i++) { 722 if (!strcmp(errorstring, xsd_errors[i].errstring)) 723 return (xsd_errors[i].errnum); 724 } 725 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 726 errorstring); 727 return (EINVAL); 728 } 729 730 /** 731 * Block waiting for a reply to a message request. 732 * 733 * \param type The returned type of the reply. 734 * \param len The returned body length of the reply. 735 * \param result The returned body of the reply. 736 * 737 * \return 0 on success. Otherwise an errno indicating the 738 * cause of failure. 739 */ 740 static int 741 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 742 { 743 struct xs_stored_msg *msg; 744 char *body; 745 int error; 746 747 mtx_lock(&xs.reply_lock); 748 while (TAILQ_EMPTY(&xs.reply_list)) { 749 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait", 750 hz/10); 751 if (error && error != EWOULDBLOCK) { 752 mtx_unlock(&xs.reply_lock); 753 return (error); 754 } 755 } 756 msg = TAILQ_FIRST(&xs.reply_list); 757 TAILQ_REMOVE(&xs.reply_list, msg, list); 758 mtx_unlock(&xs.reply_lock); 759 760 *type = msg->hdr.type; 761 if (len) 762 *len = msg->hdr.len; 763 body = msg->u.reply.body; 764 765 free(msg, M_XENSTORE); 766 *result = body; 767 return (0); 768 } 769 770 /** 771 * Pass-thru interface for XenStore access by userland processes 772 * via the XenStore device. 773 * 774 * Reply type and length data are returned by overwriting these 775 * fields in the passed in request message. 776 * 777 * \param msg A properly formatted message to transmit to 778 * the XenStore service. 779 * \param result The returned body of the reply. 780 * 781 * \return 0 on success. Otherwise an errno indicating the cause 782 * of failure. 783 * 784 * \note The returned result is provided in malloced storage and thus 785 * must be free'd by the caller with 'free(result, M_XENSTORE); 786 */ 787 int 788 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 789 { 790 int error; 791 792 sx_xlock(&xs.request_mutex); 793 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 794 error = xs_read_reply(&msg->type, &msg->len, result); 795 sx_xunlock(&xs.request_mutex); 796 797 return (error); 798 } 799 800 /** 801 * Send a message with an optionally muti-part body to the XenStore service. 802 * 803 * \param t The transaction to use for this request. 804 * \param request_type The type of message to send. 805 * \param iovec Pointers to the body sections of the request. 806 * \param num_vecs The number of body sections in the request. 807 * \param len The returned length of the reply. 808 * \param result The returned body of the reply. 809 * 810 * \return 0 on success. Otherwise an errno indicating 811 * the cause of failure. 812 * 813 * \note The returned result is provided in malloced storage and thus 814 * must be free'd by the caller with 'free(*result, M_XENSTORE); 815 */ 816 static int 817 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 818 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 819 { 820 struct xsd_sockmsg msg; 821 void *ret = NULL; 822 u_int i; 823 int error; 824 825 msg.tx_id = t.id; 826 msg.req_id = 0; 827 msg.type = request_type; 828 msg.len = 0; 829 for (i = 0; i < num_vecs; i++) 830 msg.len += iovec[i].iov_len; 831 832 sx_xlock(&xs.request_mutex); 833 error = xs_write_store(&msg, sizeof(msg)); 834 if (error) { 835 printf("xs_talkv failed %d\n", error); 836 goto error_lock_held; 837 } 838 839 for (i = 0; i < num_vecs; i++) { 840 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 841 if (error) { 842 printf("xs_talkv failed %d\n", error); 843 goto error_lock_held; 844 } 845 } 846 847 error = xs_read_reply(&msg.type, len, &ret); 848 849 error_lock_held: 850 sx_xunlock(&xs.request_mutex); 851 if (error) 852 return (error); 853 854 if (msg.type == XS_ERROR) { 855 error = xs_get_error(ret); 856 free(ret, M_XENSTORE); 857 return (error); 858 } 859 860 /* Reply is either error or an echo of our request message type. */ 861 KASSERT(msg.type == request_type, ("bad xenstore message type")); 862 863 if (result) 864 *result = ret; 865 else 866 free(ret, M_XENSTORE); 867 868 return (0); 869 } 870 871 /** 872 * Wrapper for xs_talkv allowing easy transmission of a message with 873 * a single, contiguous, message body. 874 * 875 * \param t The transaction to use for this request. 876 * \param request_type The type of message to send. 877 * \param body The body of the request. 878 * \param len The returned length of the reply. 879 * \param result The returned body of the reply. 880 * 881 * \return 0 on success. Otherwise an errno indicating 882 * the cause of failure. 883 * 884 * \note The returned result is provided in malloced storage and thus 885 * must be free'd by the caller with 'free(*result, M_XENSTORE); 886 */ 887 static int 888 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 889 const char *body, u_int *len, void **result) 890 { 891 struct iovec iovec; 892 893 iovec.iov_base = (void *)(uintptr_t)body; 894 iovec.iov_len = strlen(body) + 1; 895 896 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 897 } 898 899 /*------------------------- XenStore Watch Support ---------------------------*/ 900 /** 901 * Transmit a watch request to the XenStore service. 902 * 903 * \param path The path in the XenStore to watch. 904 * \param tocken A unique identifier for this watch. 905 * 906 * \return 0 on success. Otherwise an errno indicating the 907 * cause of failure. 908 */ 909 static int 910 xs_watch(const char *path, const char *token) 911 { 912 struct iovec iov[2]; 913 914 iov[0].iov_base = (void *)(uintptr_t) path; 915 iov[0].iov_len = strlen(path) + 1; 916 iov[1].iov_base = (void *)(uintptr_t) token; 917 iov[1].iov_len = strlen(token) + 1; 918 919 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 920 } 921 922 /** 923 * Transmit an uwatch request to the XenStore service. 924 * 925 * \param path The path in the XenStore to watch. 926 * \param tocken A unique identifier for this watch. 927 * 928 * \return 0 on success. Otherwise an errno indicating the 929 * cause of failure. 930 */ 931 static int 932 xs_unwatch(const char *path, const char *token) 933 { 934 struct iovec iov[2]; 935 936 iov[0].iov_base = (void *)(uintptr_t) path; 937 iov[0].iov_len = strlen(path) + 1; 938 iov[1].iov_base = (void *)(uintptr_t) token; 939 iov[1].iov_len = strlen(token) + 1; 940 941 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 942 } 943 944 /** 945 * Convert from watch token (unique identifier) to the associated 946 * internal tracking structure for this watch. 947 * 948 * \param tocken The unique identifier for the watch to find. 949 * 950 * \return A pointer to the found watch structure or NULL. 951 */ 952 static struct xs_watch * 953 find_watch(const char *token) 954 { 955 struct xs_watch *i, *cmp; 956 957 cmp = (void *)strtoul(token, NULL, 16); 958 959 LIST_FOREACH(i, &xs.registered_watches, list) 960 if (i == cmp) 961 return (i); 962 963 return (NULL); 964 } 965 966 /** 967 * Thread body of the XenStore watch event dispatch thread. 968 */ 969 static void 970 xenwatch_thread(void *unused) 971 { 972 struct xs_stored_msg *msg; 973 974 for (;;) { 975 mtx_lock(&xs.watch_events_lock); 976 while (TAILQ_EMPTY(&xs.watch_events)) 977 mtx_sleep(&xs.watch_events, 978 &xs.watch_events_lock, 979 PWAIT | PCATCH, "waitev", hz/10); 980 981 mtx_unlock(&xs.watch_events_lock); 982 sx_xlock(&xs.xenwatch_mutex); 983 984 mtx_lock(&xs.watch_events_lock); 985 msg = TAILQ_FIRST(&xs.watch_events); 986 if (msg) { 987 TAILQ_REMOVE(&xs.watch_events, msg, list); 988 msg->u.watch.handle->pending--; 989 } 990 mtx_unlock(&xs.watch_events_lock); 991 992 if (msg != NULL) { 993 /* 994 * XXX There are messages coming in with a NULL 995 * XXX callback. This deserves further investigation; 996 * XXX the workaround here simply prevents the kernel 997 * XXX from panic'ing on startup. 998 */ 999 if (msg->u.watch.handle->callback != NULL) 1000 msg->u.watch.handle->callback( 1001 msg->u.watch.handle, 1002 (const char **)msg->u.watch.vec, 1003 msg->u.watch.vec_size); 1004 free(msg->u.watch.vec, M_XENSTORE); 1005 free(msg, M_XENSTORE); 1006 } 1007 1008 sx_xunlock(&xs.xenwatch_mutex); 1009 } 1010 } 1011 1012 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1013 /** 1014 * Setup communication channels with the XenStore service. 1015 * 1016 * \return On success, 0. Otherwise an errno value indicating the 1017 * type of failure. 1018 */ 1019 static int 1020 xs_init_comms(void) 1021 { 1022 int error; 1023 1024 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1025 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1026 "(%08x:%08x): fixing up\n", 1027 xen_store->rsp_cons, xen_store->rsp_prod); 1028 xen_store->rsp_cons = xen_store->rsp_prod; 1029 } 1030 1031 xen_intr_unbind(&xs.xen_intr_handle); 1032 1033 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1034 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1035 &xs.xen_intr_handle); 1036 if (error) { 1037 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1038 return (error); 1039 } 1040 1041 return (0); 1042 } 1043 1044 /*------------------ Private Device Attachment Functions --------------------*/ 1045 static void 1046 xs_identify(driver_t *driver, device_t parent) 1047 { 1048 1049 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1050 } 1051 1052 /** 1053 * Probe for the existence of the XenStore. 1054 * 1055 * \param dev 1056 */ 1057 static int 1058 xs_probe(device_t dev) 1059 { 1060 /* 1061 * We are either operating within a PV kernel or being probed 1062 * as the child of the successfully attached xenpci device. 1063 * Thus we are in a Xen environment and there will be a XenStore. 1064 * Unconditionally return success. 1065 */ 1066 device_set_desc(dev, "XenStore"); 1067 return (BUS_PROBE_NOWILDCARD); 1068 } 1069 1070 static void 1071 xs_attach_deferred(void *arg) 1072 { 1073 1074 bus_generic_probe(xs.xs_dev); 1075 bus_generic_attach(xs.xs_dev); 1076 1077 config_intrhook_disestablish(&xs.xs_attachcb); 1078 } 1079 1080 static void 1081 xs_attach_late(void *arg, int pending) 1082 { 1083 1084 KASSERT((pending == 1), ("xs late attach queued several times")); 1085 bus_generic_probe(xs.xs_dev); 1086 bus_generic_attach(xs.xs_dev); 1087 } 1088 1089 /** 1090 * Attach to the XenStore. 1091 * 1092 * This routine also prepares for the probe/attach of drivers that rely 1093 * on the XenStore. 1094 */ 1095 static int 1096 xs_attach(device_t dev) 1097 { 1098 int error; 1099 1100 /* Allow us to get device_t from softc and vice-versa. */ 1101 xs.xs_dev = dev; 1102 device_set_softc(dev, &xs); 1103 1104 /* Initialize the interface to xenstore. */ 1105 struct proc *p; 1106 1107 xs.initialized = false; 1108 xs.evtchn = xen_get_xenstore_evtchn(); 1109 if (xs.evtchn == 0) { 1110 struct evtchn_alloc_unbound alloc_unbound; 1111 1112 /* Allocate a local event channel for xenstore */ 1113 alloc_unbound.dom = DOMID_SELF; 1114 alloc_unbound.remote_dom = DOMID_SELF; 1115 error = HYPERVISOR_event_channel_op( 1116 EVTCHNOP_alloc_unbound, &alloc_unbound); 1117 if (error != 0) 1118 panic( 1119 "unable to alloc event channel for Dom0: %d", 1120 error); 1121 1122 xs.evtchn = alloc_unbound.port; 1123 1124 /* Allocate memory for the xs shared ring */ 1125 xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO); 1126 xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store)); 1127 } else { 1128 xs.gpfn = xen_get_xenstore_mfn(); 1129 xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE, 1130 VM_MEMATTR_XEN); 1131 xs.initialized = true; 1132 } 1133 1134 TAILQ_INIT(&xs.reply_list); 1135 TAILQ_INIT(&xs.watch_events); 1136 1137 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1138 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1139 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1140 sx_init(&xs.request_mutex, "xenstore request"); 1141 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1142 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1143 1144 /* Initialize the shared memory rings to talk to xenstored */ 1145 error = xs_init_comms(); 1146 if (error) 1147 return (error); 1148 1149 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1150 0, "xenwatch"); 1151 if (error) 1152 return (error); 1153 xs.xenwatch_pid = p->p_pid; 1154 1155 error = kproc_create(xs_rcv_thread, NULL, NULL, 1156 RFHIGHPID, 0, "xenstore_rcv"); 1157 1158 xs.xs_attachcb.ich_func = xs_attach_deferred; 1159 xs.xs_attachcb.ich_arg = NULL; 1160 if (xs.initialized) { 1161 config_intrhook_establish(&xs.xs_attachcb); 1162 } else { 1163 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1164 } 1165 1166 return (error); 1167 } 1168 1169 /** 1170 * Prepare for suspension of this VM by halting XenStore access after 1171 * all transactions and individual requests have completed. 1172 */ 1173 static int 1174 xs_suspend(device_t dev) 1175 { 1176 int error; 1177 1178 /* Suspend child Xen devices. */ 1179 error = bus_generic_suspend(dev); 1180 if (error != 0) 1181 return (error); 1182 1183 sx_xlock(&xs.request_mutex); 1184 1185 return (0); 1186 } 1187 1188 /** 1189 * Resume XenStore operations after this VM is resumed. 1190 */ 1191 static int 1192 xs_resume(device_t dev __unused) 1193 { 1194 struct xs_watch *watch; 1195 char token[sizeof(watch) * 2 + 1]; 1196 1197 xs_init_comms(); 1198 1199 sx_xunlock(&xs.request_mutex); 1200 1201 /* 1202 * NB: since xenstore childs have not been resumed yet, there's 1203 * no need to hold any watch mutex. Having clients try to add or 1204 * remove watches at this point (before xenstore is resumed) is 1205 * clearly a violantion of the resume order. 1206 */ 1207 LIST_FOREACH(watch, &xs.registered_watches, list) { 1208 sprintf(token, "%lX", (long)watch); 1209 xs_watch(watch->node, token); 1210 } 1211 1212 /* Resume child Xen devices. */ 1213 bus_generic_resume(dev); 1214 1215 return (0); 1216 } 1217 1218 /*-------------------- Private Device Attachment Data -----------------------*/ 1219 static device_method_t xenstore_methods[] = { 1220 /* Device interface */ 1221 DEVMETHOD(device_identify, xs_identify), 1222 DEVMETHOD(device_probe, xs_probe), 1223 DEVMETHOD(device_attach, xs_attach), 1224 DEVMETHOD(device_detach, bus_generic_detach), 1225 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1226 DEVMETHOD(device_suspend, xs_suspend), 1227 DEVMETHOD(device_resume, xs_resume), 1228 1229 /* Bus interface */ 1230 DEVMETHOD(bus_add_child, bus_generic_add_child), 1231 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1232 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1233 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1234 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1235 1236 DEVMETHOD_END 1237 }; 1238 1239 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1240 1241 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, 0, 0); 1242 1243 /*------------------------------- Sysctl Data --------------------------------*/ 1244 /* XXX Shouldn't the node be somewhere else? */ 1245 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 1246 "Xen"); 1247 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1248 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1249 1250 /*-------------------------------- Public API --------------------------------*/ 1251 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1252 bool 1253 xs_initialized(void) 1254 { 1255 1256 return (xs.initialized); 1257 } 1258 1259 evtchn_port_t 1260 xs_evtchn(void) 1261 { 1262 1263 return (xs.evtchn); 1264 } 1265 1266 vm_paddr_t 1267 xs_address(void) 1268 { 1269 1270 return (ptoa(xs.gpfn)); 1271 } 1272 1273 int 1274 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1275 u_int *num, const char ***result) 1276 { 1277 struct sbuf *path; 1278 char *strings; 1279 u_int len = 0; 1280 int error; 1281 1282 path = xs_join(dir, node); 1283 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1284 (void **)&strings); 1285 sbuf_delete(path); 1286 if (error) 1287 return (error); 1288 1289 *result = split(strings, len, num); 1290 1291 return (0); 1292 } 1293 1294 int 1295 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1296 { 1297 const char **d; 1298 int error, dir_n; 1299 1300 error = xs_directory(t, dir, node, &dir_n, &d); 1301 if (error) 1302 return (0); 1303 free(d, M_XENSTORE); 1304 return (1); 1305 } 1306 1307 int 1308 xs_read(struct xs_transaction t, const char *dir, const char *node, 1309 u_int *len, void **result) 1310 { 1311 struct sbuf *path; 1312 void *ret; 1313 int error; 1314 1315 path = xs_join(dir, node); 1316 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1317 sbuf_delete(path); 1318 if (error) 1319 return (error); 1320 *result = ret; 1321 return (0); 1322 } 1323 1324 int 1325 xs_write(struct xs_transaction t, const char *dir, const char *node, 1326 const char *string) 1327 { 1328 struct sbuf *path; 1329 struct iovec iovec[2]; 1330 int error; 1331 1332 path = xs_join(dir, node); 1333 1334 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1335 iovec[0].iov_len = sbuf_len(path) + 1; 1336 iovec[1].iov_base = (void *)(uintptr_t) string; 1337 iovec[1].iov_len = strlen(string); 1338 1339 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1340 sbuf_delete(path); 1341 1342 return (error); 1343 } 1344 1345 int 1346 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1347 { 1348 struct sbuf *path; 1349 int ret; 1350 1351 path = xs_join(dir, node); 1352 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1353 sbuf_delete(path); 1354 1355 return (ret); 1356 } 1357 1358 int 1359 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1360 { 1361 struct sbuf *path; 1362 int ret; 1363 1364 path = xs_join(dir, node); 1365 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1366 sbuf_delete(path); 1367 1368 return (ret); 1369 } 1370 1371 int 1372 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1373 { 1374 struct xs_transaction local_xbt; 1375 struct sbuf *root_path_sbuf; 1376 struct sbuf *cur_path_sbuf; 1377 char *root_path; 1378 char *cur_path; 1379 const char **dir; 1380 int error; 1381 1382 retry: 1383 root_path_sbuf = xs_join(base, node); 1384 cur_path_sbuf = xs_join(base, node); 1385 root_path = sbuf_data(root_path_sbuf); 1386 cur_path = sbuf_data(cur_path_sbuf); 1387 dir = NULL; 1388 local_xbt.id = 0; 1389 1390 if (xbt.id == 0) { 1391 error = xs_transaction_start(&local_xbt); 1392 if (error != 0) 1393 goto out; 1394 xbt = local_xbt; 1395 } 1396 1397 while (1) { 1398 u_int count; 1399 u_int i; 1400 1401 error = xs_directory(xbt, cur_path, "", &count, &dir); 1402 if (error) 1403 goto out; 1404 1405 for (i = 0; i < count; i++) { 1406 error = xs_rm(xbt, cur_path, dir[i]); 1407 if (error == ENOTEMPTY) { 1408 struct sbuf *push_dir; 1409 1410 /* 1411 * Descend to clear out this sub directory. 1412 * We'll return to cur_dir once push_dir 1413 * is empty. 1414 */ 1415 push_dir = xs_join(cur_path, dir[i]); 1416 sbuf_delete(cur_path_sbuf); 1417 cur_path_sbuf = push_dir; 1418 cur_path = sbuf_data(cur_path_sbuf); 1419 break; 1420 } else if (error != 0) { 1421 goto out; 1422 } 1423 } 1424 1425 free(dir, M_XENSTORE); 1426 dir = NULL; 1427 1428 if (i == count) { 1429 char *last_slash; 1430 1431 /* Directory is empty. It is now safe to remove. */ 1432 error = xs_rm(xbt, cur_path, ""); 1433 if (error != 0) 1434 goto out; 1435 1436 if (!strcmp(cur_path, root_path)) 1437 break; 1438 1439 /* Return to processing the parent directory. */ 1440 last_slash = strrchr(cur_path, '/'); 1441 KASSERT(last_slash != NULL, 1442 ("xs_rm_tree: mangled path %s", cur_path)); 1443 *last_slash = '\0'; 1444 } 1445 } 1446 1447 out: 1448 sbuf_delete(cur_path_sbuf); 1449 sbuf_delete(root_path_sbuf); 1450 if (dir != NULL) 1451 free(dir, M_XENSTORE); 1452 1453 if (local_xbt.id != 0) { 1454 int terror; 1455 1456 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1457 xbt.id = 0; 1458 if (terror == EAGAIN && error == 0) 1459 goto retry; 1460 } 1461 return (error); 1462 } 1463 1464 int 1465 xs_transaction_start(struct xs_transaction *t) 1466 { 1467 char *id_str; 1468 int error; 1469 1470 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1471 (void **)&id_str); 1472 if (error == 0) { 1473 t->id = strtoul(id_str, NULL, 0); 1474 free(id_str, M_XENSTORE); 1475 } 1476 return (error); 1477 } 1478 1479 int 1480 xs_transaction_end(struct xs_transaction t, int abort) 1481 { 1482 char abortstr[2]; 1483 1484 if (abort) 1485 strcpy(abortstr, "F"); 1486 else 1487 strcpy(abortstr, "T"); 1488 1489 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1490 } 1491 1492 int 1493 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1494 int *scancountp, const char *fmt, ...) 1495 { 1496 va_list ap; 1497 int error, ns; 1498 char *val; 1499 1500 error = xs_read(t, dir, node, NULL, (void **) &val); 1501 if (error) 1502 return (error); 1503 1504 va_start(ap, fmt); 1505 ns = vsscanf(val, fmt, ap); 1506 va_end(ap); 1507 free(val, M_XENSTORE); 1508 /* Distinctive errno. */ 1509 if (ns == 0) 1510 return (ERANGE); 1511 if (scancountp) 1512 *scancountp = ns; 1513 return (0); 1514 } 1515 1516 int 1517 xs_vprintf(struct xs_transaction t, 1518 const char *dir, const char *node, const char *fmt, va_list ap) 1519 { 1520 struct sbuf *sb; 1521 int error; 1522 1523 sb = sbuf_new_auto(); 1524 sbuf_vprintf(sb, fmt, ap); 1525 sbuf_finish(sb); 1526 error = xs_write(t, dir, node, sbuf_data(sb)); 1527 sbuf_delete(sb); 1528 1529 return (error); 1530 } 1531 1532 int 1533 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1534 const char *fmt, ...) 1535 { 1536 va_list ap; 1537 int error; 1538 1539 va_start(ap, fmt); 1540 error = xs_vprintf(t, dir, node, fmt, ap); 1541 va_end(ap); 1542 1543 return (error); 1544 } 1545 1546 int 1547 xs_gather(struct xs_transaction t, const char *dir, ...) 1548 { 1549 va_list ap; 1550 const char *name; 1551 int error; 1552 1553 va_start(ap, dir); 1554 error = 0; 1555 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1556 const char *fmt = va_arg(ap, char *); 1557 void *result = va_arg(ap, void *); 1558 char *p; 1559 1560 error = xs_read(t, dir, name, NULL, (void **) &p); 1561 if (error) 1562 break; 1563 1564 if (fmt) { 1565 if (sscanf(p, fmt, result) == 0) 1566 error = EINVAL; 1567 free(p, M_XENSTORE); 1568 } else 1569 *(char **)result = p; 1570 } 1571 va_end(ap); 1572 1573 return (error); 1574 } 1575 1576 int 1577 xs_register_watch(struct xs_watch *watch) 1578 { 1579 /* Pointer in ascii is the token. */ 1580 char token[sizeof(watch) * 2 + 1]; 1581 int error; 1582 1583 watch->pending = 0; 1584 sprintf(token, "%lX", (long)watch); 1585 1586 mtx_lock(&xs.registered_watches_lock); 1587 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1588 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1589 mtx_unlock(&xs.registered_watches_lock); 1590 1591 error = xs_watch(watch->node, token); 1592 1593 /* Ignore errors due to multiple registration. */ 1594 if (error == EEXIST) 1595 error = 0; 1596 1597 if (error != 0) { 1598 mtx_lock(&xs.registered_watches_lock); 1599 LIST_REMOVE(watch, list); 1600 mtx_unlock(&xs.registered_watches_lock); 1601 } 1602 1603 return (error); 1604 } 1605 1606 void 1607 xs_unregister_watch(struct xs_watch *watch) 1608 { 1609 struct xs_stored_msg *msg, *tmp; 1610 char token[sizeof(watch) * 2 + 1]; 1611 int error; 1612 1613 sprintf(token, "%lX", (long)watch); 1614 1615 mtx_lock(&xs.registered_watches_lock); 1616 if (find_watch(token) == NULL) { 1617 mtx_unlock(&xs.registered_watches_lock); 1618 return; 1619 } 1620 LIST_REMOVE(watch, list); 1621 mtx_unlock(&xs.registered_watches_lock); 1622 1623 error = xs_unwatch(watch->node, token); 1624 if (error) 1625 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1626 watch->node, error); 1627 1628 /* Cancel pending watch events. */ 1629 mtx_lock(&xs.watch_events_lock); 1630 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1631 if (msg->u.watch.handle != watch) 1632 continue; 1633 TAILQ_REMOVE(&xs.watch_events, msg, list); 1634 free(msg->u.watch.vec, M_XENSTORE); 1635 free(msg, M_XENSTORE); 1636 } 1637 mtx_unlock(&xs.watch_events_lock); 1638 1639 /* Flush any currently-executing callback, unless we are it. :-) */ 1640 if (curproc->p_pid != xs.xenwatch_pid) { 1641 sx_xlock(&xs.xenwatch_mutex); 1642 sx_xunlock(&xs.xenwatch_mutex); 1643 } 1644 } 1645 1646 void 1647 xs_lock(void) 1648 { 1649 1650 sx_xlock(&xs.request_mutex); 1651 return; 1652 } 1653 1654 void 1655 xs_unlock(void) 1656 { 1657 1658 sx_xunlock(&xs.request_mutex); 1659 return; 1660 } 1661