1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/module.h> 36 #include <sys/mutex.h> 37 #include <sys/sx.h> 38 #include <sys/syslog.h> 39 #include <sys/malloc.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/kthread.h> 43 #include <sys/sbuf.h> 44 #include <sys/sysctl.h> 45 #include <sys/uio.h> 46 #include <sys/unistd.h> 47 #include <sys/queue.h> 48 #include <sys/stdarg.h> 49 #include <sys/taskqueue.h> 50 51 #include <xen/xen-os.h> 52 #include <xen/hypervisor.h> 53 #include <xen/xen_intr.h> 54 55 #include <contrib/xen/hvm/params.h> 56 #include <xen/hvm.h> 57 58 #include <xen/xenstore/xenstorevar.h> 59 #include <xen/xenstore/xenstore_internal.h> 60 61 #include <vm/vm.h> 62 #include <vm/pmap.h> 63 64 /** 65 * \file xenstore.c 66 * \brief XenStore interface 67 * 68 * The XenStore interface is a simple storage system that is a means of 69 * communicating state and configuration data between the Xen Domain 0 70 * and the various guest domains. All configuration data other than 71 * a small amount of essential information required during the early 72 * boot process of launching a Xen aware guest, is managed using the 73 * XenStore. 74 * 75 * The XenStore is ASCII string based, and has a structure and semantics 76 * similar to a filesystem. There are files and directories, the directories 77 * able to contain files or other directories. The depth of the hierarchy 78 * is only limited by the XenStore's maximum path length. 79 * 80 * The communication channel between the XenStore service and other 81 * domains is via two, guest specific, ring buffers in a shared memory 82 * area. One ring buffer is used for communicating in each direction. 83 * The grant table references for this shared memory are given to the 84 * guest either via the xen_start_info structure for a fully para- 85 * virtualized guest, or via HVM hypercalls for a hardware virtualized 86 * guest. 87 * 88 * The XenStore communication relies on an event channel and thus 89 * interrupts. For this reason, the attachment of the XenStore 90 * relies on an interrupt driven configuration hook to hold off 91 * boot processing until communication with the XenStore service 92 * can be established. 93 * 94 * Several Xen services depend on the XenStore, most notably the 95 * XenBus used to discover and manage Xen devices. These services 96 * are implemented as NewBus child attachments to a bus exported 97 * by this XenStore driver. 98 */ 99 100 static struct xs_watch *find_watch(const char *token); 101 102 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 103 104 /** 105 * Pointer to shared memory communication structures allowing us 106 * to communicate with the XenStore service. 107 * 108 * When operating in full PV mode, this pointer is set early in kernel 109 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 110 * to get the guest frame number for the shared page and then map it 111 * into kva. See xs_init() for details. 112 */ 113 static struct xenstore_domain_interface *xen_store; 114 115 /*-------------------------- Private Data Structures ------------------------*/ 116 117 /** 118 * Structure capturing messages received from the XenStore service. 119 */ 120 struct xs_stored_msg { 121 TAILQ_ENTRY(xs_stored_msg) list; 122 123 struct xsd_sockmsg hdr; 124 125 union { 126 /* Queued replies. */ 127 struct { 128 char *body; 129 } reply; 130 131 /* Queued watch events. */ 132 struct { 133 struct xs_watch *handle; 134 const char **vec; 135 u_int vec_size; 136 } watch; 137 } u; 138 }; 139 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 140 141 /** 142 * Container for all XenStore related state. 143 */ 144 struct xs_softc { 145 /** Newbus device for the XenStore. */ 146 device_t xs_dev; 147 148 /** 149 * Lock serializing access to ring producer/consumer 150 * indexes. Use of this lock guarantees that wakeups 151 * of blocking readers/writers are not missed due to 152 * races with the XenStore service. 153 */ 154 struct mtx ring_lock; 155 156 /* 157 * Mutex used to insure exclusive access to the outgoing 158 * communication ring. We use a lock type that can be 159 * held while sleeping so that xs_write() can block waiting 160 * for space in the ring to free up, without allowing another 161 * writer to come in and corrupt a partial message write. 162 */ 163 struct sx request_mutex; 164 165 /** 166 * A list of replies to our requests. 167 * 168 * The reply list is filled by xs_rcv_thread(). It 169 * is consumed by the context that issued the request 170 * to which a reply is made. The requester blocks in 171 * xs_read_reply(). 172 * 173 * /note Only one requesting context can be active at a time. 174 * This is guaranteed by the request_mutex and insures 175 * that the requester sees replies matching the order 176 * of its requests. 177 */ 178 struct xs_stored_msg_list reply_list; 179 180 /** Lock protecting the reply list. */ 181 struct mtx reply_lock; 182 183 /** 184 * List of registered watches. 185 */ 186 struct xs_watch_list registered_watches; 187 188 /** Lock protecting the registered watches list. */ 189 struct mtx registered_watches_lock; 190 191 /** 192 * List of pending watch callback events. 193 */ 194 struct xs_stored_msg_list watch_events; 195 196 /** Lock protecting the watch calback list. */ 197 struct mtx watch_events_lock; 198 199 /** 200 * The processid of the xenwatch thread. 201 */ 202 pid_t xenwatch_pid; 203 204 /** 205 * Sleepable mutex used to gate the execution of XenStore 206 * watch event callbacks. 207 * 208 * xenwatch_thread holds an exclusive lock on this mutex 209 * while delivering event callbacks, and xenstore_unregister_watch() 210 * uses an exclusive lock of this mutex to guarantee that no 211 * callbacks of the just unregistered watch are pending 212 * before returning to its caller. 213 */ 214 struct sx xenwatch_mutex; 215 216 /** 217 * The HVM guest pseudo-physical frame number. This is Xen's mapping 218 * of the true machine frame number into our "physical address space". 219 */ 220 unsigned long gpfn; 221 222 /** 223 * The event channel for communicating with the 224 * XenStore service. 225 */ 226 int evtchn; 227 228 /** Handle for XenStore interrupts. */ 229 xen_intr_handle_t xen_intr_handle; 230 231 /** 232 * Interrupt driven config hook allowing us to defer 233 * attaching children until interrupts (and thus communication 234 * with the XenStore service) are available. 235 */ 236 struct intr_config_hook xs_attachcb; 237 238 /** 239 * Xenstore is a user-space process that usually runs in Dom0, 240 * so if this domain is booting as Dom0, xenstore wont we accessible, 241 * and we have to defer the initialization of xenstore related 242 * devices to later (when xenstore is started). 243 */ 244 bool initialized; 245 246 /** 247 * Task to run when xenstore is initialized (Dom0 only), will 248 * take care of attaching xenstore related devices. 249 */ 250 struct task xs_late_init; 251 }; 252 253 /*-------------------------------- Global Data ------------------------------*/ 254 static struct xs_softc xs; 255 256 /*------------------------- Private Utility Functions -----------------------*/ 257 258 /** 259 * Count and optionally record pointers to a number of NUL terminated 260 * strings in a buffer. 261 * 262 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 263 * \param dest An array to store pointers to each string found in strings. 264 * \param len The length of the buffer pointed to by strings. 265 * 266 * \return A count of the number of strings found. 267 */ 268 static u_int 269 extract_strings(const char *strings, const char **dest, u_int len) 270 { 271 u_int num; 272 const char *p; 273 274 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 275 if (dest != NULL) 276 *dest++ = p; 277 num++; 278 } 279 280 return (num); 281 } 282 283 /** 284 * Convert a contiguous buffer containing a series of NUL terminated 285 * strings into an array of pointers to strings. 286 * 287 * The returned pointer references the array of string pointers which 288 * is followed by the storage for the string data. It is the client's 289 * responsibility to free this storage. 290 * 291 * The storage addressed by strings is free'd prior to split returning. 292 * 293 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 294 * \param len The length of the buffer pointed to by strings. 295 * \param num The number of strings found and returned in the strings 296 * array. 297 * 298 * \return An array of pointers to the strings found in the input buffer. 299 */ 300 static const char ** 301 split(char *strings, u_int len, u_int *num) 302 { 303 const char **ret; 304 305 /* Protect against unterminated buffers. */ 306 if (len > 0) 307 strings[len - 1] = '\0'; 308 309 /* Count the strings. */ 310 *num = extract_strings(strings, /*dest*/NULL, len); 311 312 /* Transfer to one big alloc for easy freeing by the caller. */ 313 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 314 memcpy(&ret[*num], strings, len); 315 free(strings, M_XENSTORE); 316 317 /* Extract pointers to newly allocated array. */ 318 strings = (char *)&ret[*num]; 319 (void)extract_strings(strings, /*dest*/ret, len); 320 321 return (ret); 322 } 323 324 /*------------------------- Public Utility Functions -------------------------*/ 325 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 326 struct sbuf * 327 xs_join(const char *dir, const char *name) 328 { 329 struct sbuf *sb; 330 331 sb = sbuf_new_auto(); 332 sbuf_cat(sb, dir); 333 if (name[0] != '\0') { 334 sbuf_putc(sb, '/'); 335 sbuf_cat(sb, name); 336 } 337 sbuf_finish(sb); 338 339 return (sb); 340 } 341 342 /*-------------------- Low Level Communication Management --------------------*/ 343 /** 344 * Interrupt handler for the XenStore event channel. 345 * 346 * XenStore reads and writes block on "xen_store" for buffer 347 * space. Wakeup any blocking operations when the XenStore 348 * service has modified the queues. 349 */ 350 static void 351 xs_intr(void * arg __unused /*__attribute__((unused))*/) 352 { 353 354 /* If xenstore has not been initialized, initialize it now */ 355 if (!xs.initialized) { 356 xs.initialized = true; 357 /* 358 * Since this task is probing and attaching devices we 359 * have to hold the Giant lock. 360 */ 361 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 362 } 363 364 /* 365 * Hold ring lock across wakeup so that clients 366 * cannot miss a wakeup. 367 */ 368 mtx_lock(&xs.ring_lock); 369 wakeup(xen_store); 370 mtx_unlock(&xs.ring_lock); 371 } 372 373 /** 374 * Verify that the indexes for a ring are valid. 375 * 376 * The difference between the producer and consumer cannot 377 * exceed the size of the ring. 378 * 379 * \param cons The consumer index for the ring to test. 380 * \param prod The producer index for the ring to test. 381 * 382 * \retval 1 If indexes are in range. 383 * \retval 0 If the indexes are out of range. 384 */ 385 static int 386 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 387 { 388 389 return ((prod - cons) <= XENSTORE_RING_SIZE); 390 } 391 392 /** 393 * Return a pointer to, and the length of, the contiguous 394 * free region available for output in a ring buffer. 395 * 396 * \param cons The consumer index for the ring. 397 * \param prod The producer index for the ring. 398 * \param buf The base address of the ring's storage. 399 * \param len The amount of contiguous storage available. 400 * 401 * \return A pointer to the start location of the free region. 402 */ 403 static void * 404 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 405 char *buf, uint32_t *len) 406 { 407 408 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 409 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 410 *len = XENSTORE_RING_SIZE - (prod - cons); 411 return (buf + MASK_XENSTORE_IDX(prod)); 412 } 413 414 /** 415 * Return a pointer to, and the length of, the contiguous 416 * data available to read from a ring buffer. 417 * 418 * \param cons The consumer index for the ring. 419 * \param prod The producer index for the ring. 420 * \param buf The base address of the ring's storage. 421 * \param len The amount of contiguous data available to read. 422 * 423 * \return A pointer to the start location of the available data. 424 */ 425 static const void * 426 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 427 const char *buf, uint32_t *len) 428 { 429 430 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 431 if ((prod - cons) < *len) 432 *len = prod - cons; 433 return (buf + MASK_XENSTORE_IDX(cons)); 434 } 435 436 /** 437 * Transmit data to the XenStore service. 438 * 439 * \param tdata A pointer to the contiguous data to send. 440 * \param len The amount of data to send. 441 * 442 * \return On success 0, otherwise an errno value indicating the 443 * cause of failure. 444 * 445 * \invariant Called from thread context. 446 * \invariant The buffer pointed to by tdata is at least len bytes 447 * in length. 448 * \invariant xs.request_mutex exclusively locked. 449 */ 450 static int 451 xs_write_store(const void *tdata, unsigned len) 452 { 453 XENSTORE_RING_IDX cons, prod; 454 const char *data = (const char *)tdata; 455 int error; 456 457 sx_assert(&xs.request_mutex, SX_XLOCKED); 458 while (len != 0) { 459 void *dst; 460 u_int avail; 461 462 /* Hold lock so we can't miss wakeups should we block. */ 463 mtx_lock(&xs.ring_lock); 464 cons = xen_store->req_cons; 465 prod = xen_store->req_prod; 466 if ((prod - cons) == XENSTORE_RING_SIZE) { 467 /* 468 * Output ring is full. Wait for a ring event. 469 * 470 * Note that the events from both queues 471 * are combined, so being woken does not 472 * guarantee that data exist in the read 473 * ring. 474 * 475 * To simplify error recovery and the retry, 476 * we specify PDROP so our lock is *not* held 477 * when msleep returns. 478 */ 479 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 480 "xbwrite", /*timeout*/0); 481 if (error && error != EWOULDBLOCK) 482 return (error); 483 484 /* Try again. */ 485 continue; 486 } 487 mtx_unlock(&xs.ring_lock); 488 489 /* Verify queue sanity. */ 490 if (!xs_check_indexes(cons, prod)) { 491 xen_store->req_cons = xen_store->req_prod = 0; 492 return (EIO); 493 } 494 495 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 496 if (avail > len) 497 avail = len; 498 499 memcpy(dst, data, avail); 500 data += avail; 501 len -= avail; 502 503 /* 504 * The store to the producer index, which indicates 505 * to the other side that new data has arrived, must 506 * be visible only after our copy of the data into the 507 * ring has completed. 508 */ 509 wmb(); 510 xen_store->req_prod += avail; 511 512 /* 513 * xen_intr_signal() implies mb(). The other side will see 514 * the change to req_prod at the time of the interrupt. 515 */ 516 xen_intr_signal(xs.xen_intr_handle); 517 } 518 519 return (0); 520 } 521 522 /** 523 * Receive data from the XenStore service. 524 * 525 * \param tdata A pointer to the contiguous buffer to receive the data. 526 * \param len The amount of data to receive. 527 * 528 * \return On success 0, otherwise an errno value indicating the 529 * cause of failure. 530 * 531 * \invariant Called from thread context. 532 * \invariant The buffer pointed to by tdata is at least len bytes 533 * in length. 534 * 535 * \note xs_read does not perform any internal locking to guarantee 536 * serial access to the incoming ring buffer. However, there 537 * is only one context processing reads: xs_rcv_thread(). 538 */ 539 static int 540 xs_read_store(void *tdata, unsigned len) 541 { 542 XENSTORE_RING_IDX cons, prod; 543 char *data = (char *)tdata; 544 int error; 545 546 while (len != 0) { 547 u_int avail; 548 const char *src; 549 550 /* Hold lock so we can't miss wakeups should we block. */ 551 mtx_lock(&xs.ring_lock); 552 cons = xen_store->rsp_cons; 553 prod = xen_store->rsp_prod; 554 if (cons == prod) { 555 /* 556 * Nothing to read. Wait for a ring event. 557 * 558 * Note that the events from both queues 559 * are combined, so being woken does not 560 * guarantee that data exist in the read 561 * ring. 562 * 563 * To simplify error recovery and the retry, 564 * we specify PDROP so our lock is *not* held 565 * when msleep returns. 566 */ 567 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 568 "xbread", /*timeout*/0); 569 if (error && error != EWOULDBLOCK) 570 return (error); 571 continue; 572 } 573 mtx_unlock(&xs.ring_lock); 574 575 /* Verify queue sanity. */ 576 if (!xs_check_indexes(cons, prod)) { 577 xen_store->rsp_cons = xen_store->rsp_prod = 0; 578 return (EIO); 579 } 580 581 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 582 if (avail > len) 583 avail = len; 584 585 /* 586 * Insure the data we read is related to the indexes 587 * we read above. 588 */ 589 rmb(); 590 591 memcpy(data, src, avail); 592 data += avail; 593 len -= avail; 594 595 /* 596 * Insure that the producer of this ring does not see 597 * the ring space as free until after we have copied it 598 * out. 599 */ 600 mb(); 601 xen_store->rsp_cons += avail; 602 603 /* 604 * xen_intr_signal() implies mb(). The producer will see 605 * the updated consumer index when the event is delivered. 606 */ 607 xen_intr_signal(xs.xen_intr_handle); 608 } 609 610 return (0); 611 } 612 613 /*----------------------- Received Message Processing ------------------------*/ 614 /** 615 * Block reading the next message from the XenStore service and 616 * process the result. 617 * 618 * \param type The returned type of the XenStore message received. 619 * 620 * \return 0 on success. Otherwise an errno value indicating the 621 * type of failure encountered. 622 */ 623 static int 624 xs_process_msg(enum xsd_sockmsg_type *type) 625 { 626 struct xs_stored_msg *msg; 627 char *body; 628 int error; 629 630 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 631 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 632 if (error) { 633 free(msg, M_XENSTORE); 634 return (error); 635 } 636 637 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 638 error = xs_read_store(body, msg->hdr.len); 639 if (error) { 640 free(body, M_XENSTORE); 641 free(msg, M_XENSTORE); 642 return (error); 643 } 644 body[msg->hdr.len] = '\0'; 645 646 *type = msg->hdr.type; 647 if (msg->hdr.type == XS_WATCH_EVENT) { 648 msg->u.watch.vec = split(body, msg->hdr.len, 649 &msg->u.watch.vec_size); 650 651 mtx_lock(&xs.registered_watches_lock); 652 msg->u.watch.handle = find_watch( 653 msg->u.watch.vec[XS_WATCH_TOKEN]); 654 mtx_lock(&xs.watch_events_lock); 655 if (msg->u.watch.handle != NULL && 656 (!msg->u.watch.handle->max_pending || 657 msg->u.watch.handle->pending < 658 msg->u.watch.handle->max_pending)) { 659 msg->u.watch.handle->pending++; 660 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 661 wakeup(&xs.watch_events); 662 mtx_unlock(&xs.watch_events_lock); 663 } else { 664 mtx_unlock(&xs.watch_events_lock); 665 free(msg->u.watch.vec, M_XENSTORE); 666 free(msg, M_XENSTORE); 667 } 668 mtx_unlock(&xs.registered_watches_lock); 669 } else { 670 msg->u.reply.body = body; 671 mtx_lock(&xs.reply_lock); 672 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 673 wakeup(&xs.reply_list); 674 mtx_unlock(&xs.reply_lock); 675 } 676 677 return (0); 678 } 679 680 /** 681 * Thread body of the XenStore receive thread. 682 * 683 * This thread blocks waiting for data from the XenStore service 684 * and processes and received messages. 685 */ 686 static void 687 xs_rcv_thread(void *arg __unused) 688 { 689 int error; 690 enum xsd_sockmsg_type type; 691 692 for (;;) { 693 error = xs_process_msg(&type); 694 if (error) 695 printf("XENSTORE error %d while reading message\n", 696 error); 697 } 698 } 699 700 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 701 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 702 703 /** 704 * Convert a XenStore error string into an errno number. 705 * 706 * \param errorstring The error string to convert. 707 * 708 * \return The errno best matching the input string. 709 * 710 * \note Unknown error strings are converted to EINVAL. 711 */ 712 static int 713 xs_get_error(const char *errorstring) 714 { 715 u_int i; 716 717 for (i = 0; i < xsd_error_count; i++) { 718 if (!strcmp(errorstring, xsd_errors[i].errstring)) 719 return (xsd_errors[i].errnum); 720 } 721 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 722 errorstring); 723 return (EINVAL); 724 } 725 726 /** 727 * Block waiting for a reply to a message request. 728 * 729 * \param type The returned type of the reply. 730 * \param len The returned body length of the reply. 731 * \param result The returned body of the reply. 732 * 733 * \return 0 on success. Otherwise an errno indicating the 734 * cause of failure. 735 */ 736 static int 737 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 738 { 739 struct xs_stored_msg *msg; 740 char *body; 741 int error; 742 743 mtx_lock(&xs.reply_lock); 744 while (TAILQ_EMPTY(&xs.reply_list)) { 745 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait", 746 hz/10); 747 if (error && error != EWOULDBLOCK) { 748 mtx_unlock(&xs.reply_lock); 749 return (error); 750 } 751 } 752 msg = TAILQ_FIRST(&xs.reply_list); 753 TAILQ_REMOVE(&xs.reply_list, msg, list); 754 mtx_unlock(&xs.reply_lock); 755 756 *type = msg->hdr.type; 757 if (len) 758 *len = msg->hdr.len; 759 body = msg->u.reply.body; 760 761 free(msg, M_XENSTORE); 762 *result = body; 763 return (0); 764 } 765 766 /** 767 * Pass-thru interface for XenStore access by userland processes 768 * via the XenStore device. 769 * 770 * Reply type and length data are returned by overwriting these 771 * fields in the passed in request message. 772 * 773 * \param msg A properly formatted message to transmit to 774 * the XenStore service. 775 * \param result The returned body of the reply. 776 * 777 * \return 0 on success. Otherwise an errno indicating the cause 778 * of failure. 779 * 780 * \note The returned result is provided in malloced storage and thus 781 * must be free'd by the caller with 'free(result, M_XENSTORE); 782 */ 783 int 784 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 785 { 786 int error; 787 788 sx_xlock(&xs.request_mutex); 789 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 790 error = xs_read_reply(&msg->type, &msg->len, result); 791 sx_xunlock(&xs.request_mutex); 792 793 return (error); 794 } 795 796 /** 797 * Send a message with an optionally muti-part body to the XenStore service. 798 * 799 * \param t The transaction to use for this request. 800 * \param request_type The type of message to send. 801 * \param iovec Pointers to the body sections of the request. 802 * \param num_vecs The number of body sections in the request. 803 * \param len The returned length of the reply. 804 * \param result The returned body of the reply. 805 * 806 * \return 0 on success. Otherwise an errno indicating 807 * the cause of failure. 808 * 809 * \note The returned result is provided in malloced storage and thus 810 * must be free'd by the caller with 'free(*result, M_XENSTORE); 811 */ 812 static int 813 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 814 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 815 { 816 struct xsd_sockmsg msg; 817 void *ret = NULL; 818 u_int i; 819 int error; 820 821 msg.tx_id = t.id; 822 msg.req_id = 0; 823 msg.type = request_type; 824 msg.len = 0; 825 for (i = 0; i < num_vecs; i++) 826 msg.len += iovec[i].iov_len; 827 828 sx_xlock(&xs.request_mutex); 829 error = xs_write_store(&msg, sizeof(msg)); 830 if (error) { 831 printf("xs_talkv failed %d\n", error); 832 goto error_lock_held; 833 } 834 835 for (i = 0; i < num_vecs; i++) { 836 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 837 if (error) { 838 printf("xs_talkv failed %d\n", error); 839 goto error_lock_held; 840 } 841 } 842 843 error = xs_read_reply(&msg.type, len, &ret); 844 845 error_lock_held: 846 sx_xunlock(&xs.request_mutex); 847 if (error) 848 return (error); 849 850 if (msg.type == XS_ERROR) { 851 error = xs_get_error(ret); 852 free(ret, M_XENSTORE); 853 return (error); 854 } 855 856 /* Reply is either error or an echo of our request message type. */ 857 KASSERT(msg.type == request_type, ("bad xenstore message type")); 858 859 if (result) 860 *result = ret; 861 else 862 free(ret, M_XENSTORE); 863 864 return (0); 865 } 866 867 /** 868 * Wrapper for xs_talkv allowing easy transmission of a message with 869 * a single, contiguous, message body. 870 * 871 * \param t The transaction to use for this request. 872 * \param request_type The type of message to send. 873 * \param body The body of the request. 874 * \param len The returned length of the reply. 875 * \param result The returned body of the reply. 876 * 877 * \return 0 on success. Otherwise an errno indicating 878 * the cause of failure. 879 * 880 * \note The returned result is provided in malloced storage and thus 881 * must be free'd by the caller with 'free(*result, M_XENSTORE); 882 */ 883 static int 884 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 885 const char *body, u_int *len, void **result) 886 { 887 struct iovec iovec; 888 889 iovec.iov_base = (void *)(uintptr_t)body; 890 iovec.iov_len = strlen(body) + 1; 891 892 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 893 } 894 895 /*------------------------- XenStore Watch Support ---------------------------*/ 896 /** 897 * Transmit a watch request to the XenStore service. 898 * 899 * \param path The path in the XenStore to watch. 900 * \param tocken A unique identifier for this watch. 901 * 902 * \return 0 on success. Otherwise an errno indicating the 903 * cause of failure. 904 */ 905 static int 906 xs_watch(const char *path, const char *token) 907 { 908 struct iovec iov[2]; 909 910 iov[0].iov_base = (void *)(uintptr_t) path; 911 iov[0].iov_len = strlen(path) + 1; 912 iov[1].iov_base = (void *)(uintptr_t) token; 913 iov[1].iov_len = strlen(token) + 1; 914 915 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 916 } 917 918 /** 919 * Transmit an uwatch request to the XenStore service. 920 * 921 * \param path The path in the XenStore to watch. 922 * \param tocken A unique identifier for this watch. 923 * 924 * \return 0 on success. Otherwise an errno indicating the 925 * cause of failure. 926 */ 927 static int 928 xs_unwatch(const char *path, const char *token) 929 { 930 struct iovec iov[2]; 931 932 iov[0].iov_base = (void *)(uintptr_t) path; 933 iov[0].iov_len = strlen(path) + 1; 934 iov[1].iov_base = (void *)(uintptr_t) token; 935 iov[1].iov_len = strlen(token) + 1; 936 937 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 938 } 939 940 /** 941 * Convert from watch token (unique identifier) to the associated 942 * internal tracking structure for this watch. 943 * 944 * \param tocken The unique identifier for the watch to find. 945 * 946 * \return A pointer to the found watch structure or NULL. 947 */ 948 static struct xs_watch * 949 find_watch(const char *token) 950 { 951 struct xs_watch *i, *cmp; 952 953 cmp = (void *)strtoul(token, NULL, 16); 954 955 LIST_FOREACH(i, &xs.registered_watches, list) 956 if (i == cmp) 957 return (i); 958 959 return (NULL); 960 } 961 962 /** 963 * Thread body of the XenStore watch event dispatch thread. 964 */ 965 static void 966 xenwatch_thread(void *unused) 967 { 968 struct xs_stored_msg *msg; 969 970 for (;;) { 971 mtx_lock(&xs.watch_events_lock); 972 while (TAILQ_EMPTY(&xs.watch_events)) 973 mtx_sleep(&xs.watch_events, 974 &xs.watch_events_lock, 975 PWAIT | PCATCH, "waitev", hz/10); 976 977 mtx_unlock(&xs.watch_events_lock); 978 sx_xlock(&xs.xenwatch_mutex); 979 980 mtx_lock(&xs.watch_events_lock); 981 msg = TAILQ_FIRST(&xs.watch_events); 982 if (msg) { 983 TAILQ_REMOVE(&xs.watch_events, msg, list); 984 msg->u.watch.handle->pending--; 985 } 986 mtx_unlock(&xs.watch_events_lock); 987 988 if (msg != NULL) { 989 /* 990 * XXX There are messages coming in with a NULL 991 * XXX callback. This deserves further investigation; 992 * XXX the workaround here simply prevents the kernel 993 * XXX from panic'ing on startup. 994 */ 995 if (msg->u.watch.handle->callback != NULL) 996 msg->u.watch.handle->callback( 997 msg->u.watch.handle, 998 (const char **)msg->u.watch.vec, 999 msg->u.watch.vec_size); 1000 free(msg->u.watch.vec, M_XENSTORE); 1001 free(msg, M_XENSTORE); 1002 } 1003 1004 sx_xunlock(&xs.xenwatch_mutex); 1005 } 1006 } 1007 1008 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1009 /** 1010 * Setup communication channels with the XenStore service. 1011 * 1012 * \return On success, 0. Otherwise an errno value indicating the 1013 * type of failure. 1014 */ 1015 static int 1016 xs_init_comms(void) 1017 { 1018 int error; 1019 1020 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1021 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1022 "(%08x:%08x): fixing up\n", 1023 xen_store->rsp_cons, xen_store->rsp_prod); 1024 xen_store->rsp_cons = xen_store->rsp_prod; 1025 } 1026 1027 xen_intr_unbind(&xs.xen_intr_handle); 1028 1029 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1030 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1031 &xs.xen_intr_handle); 1032 if (error) { 1033 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1034 return (error); 1035 } 1036 1037 return (0); 1038 } 1039 1040 /*------------------ Private Device Attachment Functions --------------------*/ 1041 static void 1042 xs_identify(driver_t *driver, device_t parent) 1043 { 1044 1045 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1046 } 1047 1048 /** 1049 * Probe for the existence of the XenStore. 1050 * 1051 * \param dev 1052 */ 1053 static int 1054 xs_probe(device_t dev) 1055 { 1056 /* 1057 * We are either operating within a PV kernel or being probed 1058 * as the child of the successfully attached xenpci device. 1059 * Thus we are in a Xen environment and there will be a XenStore. 1060 * Unconditionally return success. 1061 */ 1062 device_set_desc(dev, "XenStore"); 1063 return (BUS_PROBE_NOWILDCARD); 1064 } 1065 1066 static void 1067 xs_attach_deferred(void *arg) 1068 { 1069 1070 bus_identify_children(xs.xs_dev); 1071 bus_attach_children(xs.xs_dev); 1072 1073 config_intrhook_disestablish(&xs.xs_attachcb); 1074 } 1075 1076 static void 1077 xs_attach_late(void *arg, int pending) 1078 { 1079 1080 KASSERT((pending == 1), ("xs late attach queued several times")); 1081 bus_identify_children(xs.xs_dev); 1082 bus_attach_children(xs.xs_dev); 1083 } 1084 1085 /** 1086 * Attach to the XenStore. 1087 * 1088 * This routine also prepares for the probe/attach of drivers that rely 1089 * on the XenStore. 1090 */ 1091 static int 1092 xs_attach(device_t dev) 1093 { 1094 int error; 1095 1096 /* Allow us to get device_t from softc and vice-versa. */ 1097 xs.xs_dev = dev; 1098 device_set_softc(dev, &xs); 1099 1100 /* Initialize the interface to xenstore. */ 1101 struct proc *p; 1102 1103 xs.initialized = false; 1104 xs.evtchn = xen_get_xenstore_evtchn(); 1105 if (xs.evtchn == 0) { 1106 struct evtchn_alloc_unbound alloc_unbound; 1107 1108 /* Allocate a local event channel for xenstore */ 1109 alloc_unbound.dom = DOMID_SELF; 1110 alloc_unbound.remote_dom = DOMID_SELF; 1111 error = HYPERVISOR_event_channel_op( 1112 EVTCHNOP_alloc_unbound, &alloc_unbound); 1113 if (error != 0) 1114 panic( 1115 "unable to alloc event channel for Dom0: %d", 1116 error); 1117 1118 xs.evtchn = alloc_unbound.port; 1119 1120 /* Allocate memory for the xs shared ring */ 1121 xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO); 1122 xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store)); 1123 } else { 1124 xs.gpfn = xen_get_xenstore_mfn(); 1125 xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE, 1126 VM_MEMATTR_XEN); 1127 xs.initialized = true; 1128 } 1129 1130 TAILQ_INIT(&xs.reply_list); 1131 TAILQ_INIT(&xs.watch_events); 1132 1133 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1134 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1135 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1136 sx_init(&xs.request_mutex, "xenstore request"); 1137 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1138 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1139 1140 /* Initialize the shared memory rings to talk to xenstored */ 1141 error = xs_init_comms(); 1142 if (error) 1143 return (error); 1144 1145 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1146 0, "xenwatch"); 1147 if (error) 1148 return (error); 1149 xs.xenwatch_pid = p->p_pid; 1150 1151 error = kproc_create(xs_rcv_thread, NULL, NULL, 1152 RFHIGHPID, 0, "xenstore_rcv"); 1153 1154 xs.xs_attachcb.ich_func = xs_attach_deferred; 1155 xs.xs_attachcb.ich_arg = NULL; 1156 if (xs.initialized) { 1157 config_intrhook_establish(&xs.xs_attachcb); 1158 } else { 1159 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1160 } 1161 1162 return (error); 1163 } 1164 1165 /** 1166 * Prepare for suspension of this VM by halting XenStore access after 1167 * all transactions and individual requests have completed. 1168 */ 1169 static int 1170 xs_suspend(device_t dev) 1171 { 1172 int error; 1173 1174 /* Suspend child Xen devices. */ 1175 error = bus_generic_suspend(dev); 1176 if (error != 0) 1177 return (error); 1178 1179 sx_xlock(&xs.request_mutex); 1180 1181 return (0); 1182 } 1183 1184 /** 1185 * Resume XenStore operations after this VM is resumed. 1186 */ 1187 static int 1188 xs_resume(device_t dev __unused) 1189 { 1190 struct xs_watch *watch; 1191 char token[sizeof(watch) * 2 + 1]; 1192 1193 xs_init_comms(); 1194 1195 sx_xunlock(&xs.request_mutex); 1196 1197 /* 1198 * NB: since xenstore childs have not been resumed yet, there's 1199 * no need to hold any watch mutex. Having clients try to add or 1200 * remove watches at this point (before xenstore is resumed) is 1201 * clearly a violantion of the resume order. 1202 */ 1203 LIST_FOREACH(watch, &xs.registered_watches, list) { 1204 sprintf(token, "%lX", (long)watch); 1205 xs_watch(watch->node, token); 1206 } 1207 1208 /* Resume child Xen devices. */ 1209 bus_generic_resume(dev); 1210 1211 return (0); 1212 } 1213 1214 /*-------------------- Private Device Attachment Data -----------------------*/ 1215 static device_method_t xenstore_methods[] = { 1216 /* Device interface */ 1217 DEVMETHOD(device_identify, xs_identify), 1218 DEVMETHOD(device_probe, xs_probe), 1219 DEVMETHOD(device_attach, xs_attach), 1220 DEVMETHOD(device_detach, bus_generic_detach), 1221 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1222 DEVMETHOD(device_suspend, xs_suspend), 1223 DEVMETHOD(device_resume, xs_resume), 1224 1225 /* Bus interface */ 1226 DEVMETHOD(bus_add_child, bus_generic_add_child), 1227 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1228 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1229 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1230 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1231 1232 DEVMETHOD_END 1233 }; 1234 1235 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1236 1237 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, 0, 0); 1238 1239 /*------------------------------- Sysctl Data --------------------------------*/ 1240 /* XXX Shouldn't the node be somewhere else? */ 1241 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 1242 "Xen"); 1243 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1244 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1245 1246 /*-------------------------------- Public API --------------------------------*/ 1247 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1248 bool 1249 xs_initialized(void) 1250 { 1251 1252 return (xs.initialized); 1253 } 1254 1255 evtchn_port_t 1256 xs_evtchn(void) 1257 { 1258 1259 return (xs.evtchn); 1260 } 1261 1262 vm_paddr_t 1263 xs_address(void) 1264 { 1265 1266 return (ptoa(xs.gpfn)); 1267 } 1268 1269 int 1270 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1271 u_int *num, const char ***result) 1272 { 1273 struct sbuf *path; 1274 char *strings; 1275 u_int len = 0; 1276 int error; 1277 1278 path = xs_join(dir, node); 1279 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1280 (void **)&strings); 1281 sbuf_delete(path); 1282 if (error) 1283 return (error); 1284 1285 *result = split(strings, len, num); 1286 1287 return (0); 1288 } 1289 1290 int 1291 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1292 { 1293 const char **d; 1294 int error, dir_n; 1295 1296 error = xs_directory(t, dir, node, &dir_n, &d); 1297 if (error) 1298 return (0); 1299 free(d, M_XENSTORE); 1300 return (1); 1301 } 1302 1303 int 1304 xs_read(struct xs_transaction t, const char *dir, const char *node, 1305 u_int *len, void **result) 1306 { 1307 struct sbuf *path; 1308 void *ret; 1309 int error; 1310 1311 path = xs_join(dir, node); 1312 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1313 sbuf_delete(path); 1314 if (error) 1315 return (error); 1316 *result = ret; 1317 return (0); 1318 } 1319 1320 int 1321 xs_write(struct xs_transaction t, const char *dir, const char *node, 1322 const char *string) 1323 { 1324 struct sbuf *path; 1325 struct iovec iovec[2]; 1326 int error; 1327 1328 path = xs_join(dir, node); 1329 1330 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1331 iovec[0].iov_len = sbuf_len(path) + 1; 1332 iovec[1].iov_base = (void *)(uintptr_t) string; 1333 iovec[1].iov_len = strlen(string); 1334 1335 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1336 sbuf_delete(path); 1337 1338 return (error); 1339 } 1340 1341 int 1342 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1343 { 1344 struct sbuf *path; 1345 int ret; 1346 1347 path = xs_join(dir, node); 1348 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1349 sbuf_delete(path); 1350 1351 return (ret); 1352 } 1353 1354 int 1355 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1356 { 1357 struct sbuf *path; 1358 int ret; 1359 1360 path = xs_join(dir, node); 1361 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1362 sbuf_delete(path); 1363 1364 return (ret); 1365 } 1366 1367 int 1368 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1369 { 1370 struct xs_transaction local_xbt; 1371 struct sbuf *root_path_sbuf; 1372 struct sbuf *cur_path_sbuf; 1373 char *root_path; 1374 char *cur_path; 1375 const char **dir; 1376 int error; 1377 1378 retry: 1379 root_path_sbuf = xs_join(base, node); 1380 cur_path_sbuf = xs_join(base, node); 1381 root_path = sbuf_data(root_path_sbuf); 1382 cur_path = sbuf_data(cur_path_sbuf); 1383 dir = NULL; 1384 local_xbt.id = 0; 1385 1386 if (xbt.id == 0) { 1387 error = xs_transaction_start(&local_xbt); 1388 if (error != 0) 1389 goto out; 1390 xbt = local_xbt; 1391 } 1392 1393 while (1) { 1394 u_int count; 1395 u_int i; 1396 1397 error = xs_directory(xbt, cur_path, "", &count, &dir); 1398 if (error) 1399 goto out; 1400 1401 for (i = 0; i < count; i++) { 1402 error = xs_rm(xbt, cur_path, dir[i]); 1403 if (error == ENOTEMPTY) { 1404 struct sbuf *push_dir; 1405 1406 /* 1407 * Descend to clear out this sub directory. 1408 * We'll return to cur_dir once push_dir 1409 * is empty. 1410 */ 1411 push_dir = xs_join(cur_path, dir[i]); 1412 sbuf_delete(cur_path_sbuf); 1413 cur_path_sbuf = push_dir; 1414 cur_path = sbuf_data(cur_path_sbuf); 1415 break; 1416 } else if (error != 0) { 1417 goto out; 1418 } 1419 } 1420 1421 free(dir, M_XENSTORE); 1422 dir = NULL; 1423 1424 if (i == count) { 1425 char *last_slash; 1426 1427 /* Directory is empty. It is now safe to remove. */ 1428 error = xs_rm(xbt, cur_path, ""); 1429 if (error != 0) 1430 goto out; 1431 1432 if (!strcmp(cur_path, root_path)) 1433 break; 1434 1435 /* Return to processing the parent directory. */ 1436 last_slash = strrchr(cur_path, '/'); 1437 KASSERT(last_slash != NULL, 1438 ("xs_rm_tree: mangled path %s", cur_path)); 1439 *last_slash = '\0'; 1440 } 1441 } 1442 1443 out: 1444 sbuf_delete(cur_path_sbuf); 1445 sbuf_delete(root_path_sbuf); 1446 if (dir != NULL) 1447 free(dir, M_XENSTORE); 1448 1449 if (local_xbt.id != 0) { 1450 int terror; 1451 1452 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1453 xbt.id = 0; 1454 if (terror == EAGAIN && error == 0) 1455 goto retry; 1456 } 1457 return (error); 1458 } 1459 1460 int 1461 xs_transaction_start(struct xs_transaction *t) 1462 { 1463 char *id_str; 1464 int error; 1465 1466 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1467 (void **)&id_str); 1468 if (error == 0) { 1469 t->id = strtoul(id_str, NULL, 0); 1470 free(id_str, M_XENSTORE); 1471 } 1472 return (error); 1473 } 1474 1475 int 1476 xs_transaction_end(struct xs_transaction t, int abort) 1477 { 1478 char abortstr[2]; 1479 1480 if (abort) 1481 strcpy(abortstr, "F"); 1482 else 1483 strcpy(abortstr, "T"); 1484 1485 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1486 } 1487 1488 int 1489 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1490 int *scancountp, const char *fmt, ...) 1491 { 1492 va_list ap; 1493 int error, ns; 1494 char *val; 1495 1496 error = xs_read(t, dir, node, NULL, (void **) &val); 1497 if (error) 1498 return (error); 1499 1500 va_start(ap, fmt); 1501 ns = vsscanf(val, fmt, ap); 1502 va_end(ap); 1503 free(val, M_XENSTORE); 1504 /* Distinctive errno. */ 1505 if (ns == 0) 1506 return (ERANGE); 1507 if (scancountp) 1508 *scancountp = ns; 1509 return (0); 1510 } 1511 1512 int 1513 xs_vprintf(struct xs_transaction t, 1514 const char *dir, const char *node, const char *fmt, va_list ap) 1515 { 1516 struct sbuf *sb; 1517 int error; 1518 1519 sb = sbuf_new_auto(); 1520 sbuf_vprintf(sb, fmt, ap); 1521 sbuf_finish(sb); 1522 error = xs_write(t, dir, node, sbuf_data(sb)); 1523 sbuf_delete(sb); 1524 1525 return (error); 1526 } 1527 1528 int 1529 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1530 const char *fmt, ...) 1531 { 1532 va_list ap; 1533 int error; 1534 1535 va_start(ap, fmt); 1536 error = xs_vprintf(t, dir, node, fmt, ap); 1537 va_end(ap); 1538 1539 return (error); 1540 } 1541 1542 int 1543 xs_gather(struct xs_transaction t, const char *dir, ...) 1544 { 1545 va_list ap; 1546 const char *name; 1547 int error; 1548 1549 va_start(ap, dir); 1550 error = 0; 1551 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1552 const char *fmt = va_arg(ap, char *); 1553 void *result = va_arg(ap, void *); 1554 char *p; 1555 1556 error = xs_read(t, dir, name, NULL, (void **) &p); 1557 if (error) 1558 break; 1559 1560 if (fmt) { 1561 if (sscanf(p, fmt, result) == 0) 1562 error = EINVAL; 1563 free(p, M_XENSTORE); 1564 } else 1565 *(char **)result = p; 1566 } 1567 va_end(ap); 1568 1569 return (error); 1570 } 1571 1572 int 1573 xs_register_watch(struct xs_watch *watch) 1574 { 1575 /* Pointer in ascii is the token. */ 1576 char token[sizeof(watch) * 2 + 1]; 1577 int error; 1578 1579 watch->pending = 0; 1580 sprintf(token, "%lX", (long)watch); 1581 1582 mtx_lock(&xs.registered_watches_lock); 1583 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1584 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1585 mtx_unlock(&xs.registered_watches_lock); 1586 1587 error = xs_watch(watch->node, token); 1588 1589 /* Ignore errors due to multiple registration. */ 1590 if (error == EEXIST) 1591 error = 0; 1592 1593 if (error != 0) { 1594 mtx_lock(&xs.registered_watches_lock); 1595 LIST_REMOVE(watch, list); 1596 mtx_unlock(&xs.registered_watches_lock); 1597 } 1598 1599 return (error); 1600 } 1601 1602 void 1603 xs_unregister_watch(struct xs_watch *watch) 1604 { 1605 struct xs_stored_msg *msg, *tmp; 1606 char token[sizeof(watch) * 2 + 1]; 1607 int error; 1608 1609 sprintf(token, "%lX", (long)watch); 1610 1611 mtx_lock(&xs.registered_watches_lock); 1612 if (find_watch(token) == NULL) { 1613 mtx_unlock(&xs.registered_watches_lock); 1614 return; 1615 } 1616 LIST_REMOVE(watch, list); 1617 mtx_unlock(&xs.registered_watches_lock); 1618 1619 error = xs_unwatch(watch->node, token); 1620 if (error) 1621 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1622 watch->node, error); 1623 1624 /* Cancel pending watch events. */ 1625 mtx_lock(&xs.watch_events_lock); 1626 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1627 if (msg->u.watch.handle != watch) 1628 continue; 1629 TAILQ_REMOVE(&xs.watch_events, msg, list); 1630 free(msg->u.watch.vec, M_XENSTORE); 1631 free(msg, M_XENSTORE); 1632 } 1633 mtx_unlock(&xs.watch_events_lock); 1634 1635 /* Flush any currently-executing callback, unless we are it. :-) */ 1636 if (curproc->p_pid != xs.xenwatch_pid) { 1637 sx_xlock(&xs.xenwatch_mutex); 1638 sx_xunlock(&xs.xenwatch_mutex); 1639 } 1640 } 1641 1642 void 1643 xs_lock(void) 1644 { 1645 1646 sx_xlock(&xs.request_mutex); 1647 return; 1648 } 1649 1650 void 1651 xs_unlock(void) 1652 { 1653 1654 sx_xunlock(&xs.request_mutex); 1655 return; 1656 } 1657