1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/module.h> 36 #include <sys/mutex.h> 37 #include <sys/sx.h> 38 #include <sys/syslog.h> 39 #include <sys/malloc.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/kthread.h> 43 #include <sys/sbuf.h> 44 #include <sys/sysctl.h> 45 #include <sys/uio.h> 46 #include <sys/unistd.h> 47 #include <sys/queue.h> 48 #include <sys/taskqueue.h> 49 50 #include <machine/stdarg.h> 51 52 #include <xen/xen-os.h> 53 #include <xen/hypervisor.h> 54 #include <xen/xen_intr.h> 55 56 #include <contrib/xen/hvm/params.h> 57 #include <xen/hvm.h> 58 59 #include <xen/xenstore/xenstorevar.h> 60 #include <xen/xenstore/xenstore_internal.h> 61 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 65 /** 66 * \file xenstore.c 67 * \brief XenStore interface 68 * 69 * The XenStore interface is a simple storage system that is a means of 70 * communicating state and configuration data between the Xen Domain 0 71 * and the various guest domains. All configuration data other than 72 * a small amount of essential information required during the early 73 * boot process of launching a Xen aware guest, is managed using the 74 * XenStore. 75 * 76 * The XenStore is ASCII string based, and has a structure and semantics 77 * similar to a filesystem. There are files and directories, the directories 78 * able to contain files or other directories. The depth of the hierarchy 79 * is only limited by the XenStore's maximum path length. 80 * 81 * The communication channel between the XenStore service and other 82 * domains is via two, guest specific, ring buffers in a shared memory 83 * area. One ring buffer is used for communicating in each direction. 84 * The grant table references for this shared memory are given to the 85 * guest either via the xen_start_info structure for a fully para- 86 * virtualized guest, or via HVM hypercalls for a hardware virtualized 87 * guest. 88 * 89 * The XenStore communication relies on an event channel and thus 90 * interrupts. For this reason, the attachment of the XenStore 91 * relies on an interrupt driven configuration hook to hold off 92 * boot processing until communication with the XenStore service 93 * can be established. 94 * 95 * Several Xen services depend on the XenStore, most notably the 96 * XenBus used to discover and manage Xen devices. These services 97 * are implemented as NewBus child attachments to a bus exported 98 * by this XenStore driver. 99 */ 100 101 static struct xs_watch *find_watch(const char *token); 102 103 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 104 105 /** 106 * Pointer to shared memory communication structures allowing us 107 * to communicate with the XenStore service. 108 * 109 * When operating in full PV mode, this pointer is set early in kernel 110 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 111 * to get the guest frame number for the shared page and then map it 112 * into kva. See xs_init() for details. 113 */ 114 static struct xenstore_domain_interface *xen_store; 115 116 /*-------------------------- Private Data Structures ------------------------*/ 117 118 /** 119 * Structure capturing messages received from the XenStore service. 120 */ 121 struct xs_stored_msg { 122 TAILQ_ENTRY(xs_stored_msg) list; 123 124 struct xsd_sockmsg hdr; 125 126 union { 127 /* Queued replies. */ 128 struct { 129 char *body; 130 } reply; 131 132 /* Queued watch events. */ 133 struct { 134 struct xs_watch *handle; 135 const char **vec; 136 u_int vec_size; 137 } watch; 138 } u; 139 }; 140 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 141 142 /** 143 * Container for all XenStore related state. 144 */ 145 struct xs_softc { 146 /** Newbus device for the XenStore. */ 147 device_t xs_dev; 148 149 /** 150 * Lock serializing access to ring producer/consumer 151 * indexes. Use of this lock guarantees that wakeups 152 * of blocking readers/writers are not missed due to 153 * races with the XenStore service. 154 */ 155 struct mtx ring_lock; 156 157 /* 158 * Mutex used to insure exclusive access to the outgoing 159 * communication ring. We use a lock type that can be 160 * held while sleeping so that xs_write() can block waiting 161 * for space in the ring to free up, without allowing another 162 * writer to come in and corrupt a partial message write. 163 */ 164 struct sx request_mutex; 165 166 /** 167 * A list of replies to our requests. 168 * 169 * The reply list is filled by xs_rcv_thread(). It 170 * is consumed by the context that issued the request 171 * to which a reply is made. The requester blocks in 172 * xs_read_reply(). 173 * 174 * /note Only one requesting context can be active at a time. 175 * This is guaranteed by the request_mutex and insures 176 * that the requester sees replies matching the order 177 * of its requests. 178 */ 179 struct xs_stored_msg_list reply_list; 180 181 /** Lock protecting the reply list. */ 182 struct mtx reply_lock; 183 184 /** 185 * List of registered watches. 186 */ 187 struct xs_watch_list registered_watches; 188 189 /** Lock protecting the registered watches list. */ 190 struct mtx registered_watches_lock; 191 192 /** 193 * List of pending watch callback events. 194 */ 195 struct xs_stored_msg_list watch_events; 196 197 /** Lock protecting the watch calback list. */ 198 struct mtx watch_events_lock; 199 200 /** 201 * The processid of the xenwatch thread. 202 */ 203 pid_t xenwatch_pid; 204 205 /** 206 * Sleepable mutex used to gate the execution of XenStore 207 * watch event callbacks. 208 * 209 * xenwatch_thread holds an exclusive lock on this mutex 210 * while delivering event callbacks, and xenstore_unregister_watch() 211 * uses an exclusive lock of this mutex to guarantee that no 212 * callbacks of the just unregistered watch are pending 213 * before returning to its caller. 214 */ 215 struct sx xenwatch_mutex; 216 217 /** 218 * The HVM guest pseudo-physical frame number. This is Xen's mapping 219 * of the true machine frame number into our "physical address space". 220 */ 221 unsigned long gpfn; 222 223 /** 224 * The event channel for communicating with the 225 * XenStore service. 226 */ 227 int evtchn; 228 229 /** Handle for XenStore interrupts. */ 230 xen_intr_handle_t xen_intr_handle; 231 232 /** 233 * Interrupt driven config hook allowing us to defer 234 * attaching children until interrupts (and thus communication 235 * with the XenStore service) are available. 236 */ 237 struct intr_config_hook xs_attachcb; 238 239 /** 240 * Xenstore is a user-space process that usually runs in Dom0, 241 * so if this domain is booting as Dom0, xenstore wont we accessible, 242 * and we have to defer the initialization of xenstore related 243 * devices to later (when xenstore is started). 244 */ 245 bool initialized; 246 247 /** 248 * Task to run when xenstore is initialized (Dom0 only), will 249 * take care of attaching xenstore related devices. 250 */ 251 struct task xs_late_init; 252 }; 253 254 /*-------------------------------- Global Data ------------------------------*/ 255 static struct xs_softc xs; 256 257 /*------------------------- Private Utility Functions -----------------------*/ 258 259 /** 260 * Count and optionally record pointers to a number of NUL terminated 261 * strings in a buffer. 262 * 263 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 264 * \param dest An array to store pointers to each string found in strings. 265 * \param len The length of the buffer pointed to by strings. 266 * 267 * \return A count of the number of strings found. 268 */ 269 static u_int 270 extract_strings(const char *strings, const char **dest, u_int len) 271 { 272 u_int num; 273 const char *p; 274 275 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 276 if (dest != NULL) 277 *dest++ = p; 278 num++; 279 } 280 281 return (num); 282 } 283 284 /** 285 * Convert a contiguous buffer containing a series of NUL terminated 286 * strings into an array of pointers to strings. 287 * 288 * The returned pointer references the array of string pointers which 289 * is followed by the storage for the string data. It is the client's 290 * responsibility to free this storage. 291 * 292 * The storage addressed by strings is free'd prior to split returning. 293 * 294 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 295 * \param len The length of the buffer pointed to by strings. 296 * \param num The number of strings found and returned in the strings 297 * array. 298 * 299 * \return An array of pointers to the strings found in the input buffer. 300 */ 301 static const char ** 302 split(char *strings, u_int len, u_int *num) 303 { 304 const char **ret; 305 306 /* Protect against unterminated buffers. */ 307 if (len > 0) 308 strings[len - 1] = '\0'; 309 310 /* Count the strings. */ 311 *num = extract_strings(strings, /*dest*/NULL, len); 312 313 /* Transfer to one big alloc for easy freeing by the caller. */ 314 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 315 memcpy(&ret[*num], strings, len); 316 free(strings, M_XENSTORE); 317 318 /* Extract pointers to newly allocated array. */ 319 strings = (char *)&ret[*num]; 320 (void)extract_strings(strings, /*dest*/ret, len); 321 322 return (ret); 323 } 324 325 /*------------------------- Public Utility Functions -------------------------*/ 326 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 327 struct sbuf * 328 xs_join(const char *dir, const char *name) 329 { 330 struct sbuf *sb; 331 332 sb = sbuf_new_auto(); 333 sbuf_cat(sb, dir); 334 if (name[0] != '\0') { 335 sbuf_putc(sb, '/'); 336 sbuf_cat(sb, name); 337 } 338 sbuf_finish(sb); 339 340 return (sb); 341 } 342 343 /*-------------------- Low Level Communication Management --------------------*/ 344 /** 345 * Interrupt handler for the XenStore event channel. 346 * 347 * XenStore reads and writes block on "xen_store" for buffer 348 * space. Wakeup any blocking operations when the XenStore 349 * service has modified the queues. 350 */ 351 static void 352 xs_intr(void * arg __unused /*__attribute__((unused))*/) 353 { 354 355 /* If xenstore has not been initialized, initialize it now */ 356 if (!xs.initialized) { 357 xs.initialized = true; 358 /* 359 * Since this task is probing and attaching devices we 360 * have to hold the Giant lock. 361 */ 362 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 363 } 364 365 /* 366 * Hold ring lock across wakeup so that clients 367 * cannot miss a wakeup. 368 */ 369 mtx_lock(&xs.ring_lock); 370 wakeup(xen_store); 371 mtx_unlock(&xs.ring_lock); 372 } 373 374 /** 375 * Verify that the indexes for a ring are valid. 376 * 377 * The difference between the producer and consumer cannot 378 * exceed the size of the ring. 379 * 380 * \param cons The consumer index for the ring to test. 381 * \param prod The producer index for the ring to test. 382 * 383 * \retval 1 If indexes are in range. 384 * \retval 0 If the indexes are out of range. 385 */ 386 static int 387 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 388 { 389 390 return ((prod - cons) <= XENSTORE_RING_SIZE); 391 } 392 393 /** 394 * Return a pointer to, and the length of, the contiguous 395 * free region available for output in a ring buffer. 396 * 397 * \param cons The consumer index for the ring. 398 * \param prod The producer index for the ring. 399 * \param buf The base address of the ring's storage. 400 * \param len The amount of contiguous storage available. 401 * 402 * \return A pointer to the start location of the free region. 403 */ 404 static void * 405 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 406 char *buf, uint32_t *len) 407 { 408 409 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 410 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 411 *len = XENSTORE_RING_SIZE - (prod - cons); 412 return (buf + MASK_XENSTORE_IDX(prod)); 413 } 414 415 /** 416 * Return a pointer to, and the length of, the contiguous 417 * data available to read from a ring buffer. 418 * 419 * \param cons The consumer index for the ring. 420 * \param prod The producer index for the ring. 421 * \param buf The base address of the ring's storage. 422 * \param len The amount of contiguous data available to read. 423 * 424 * \return A pointer to the start location of the available data. 425 */ 426 static const void * 427 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 428 const char *buf, uint32_t *len) 429 { 430 431 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 432 if ((prod - cons) < *len) 433 *len = prod - cons; 434 return (buf + MASK_XENSTORE_IDX(cons)); 435 } 436 437 /** 438 * Transmit data to the XenStore service. 439 * 440 * \param tdata A pointer to the contiguous data to send. 441 * \param len The amount of data to send. 442 * 443 * \return On success 0, otherwise an errno value indicating the 444 * cause of failure. 445 * 446 * \invariant Called from thread context. 447 * \invariant The buffer pointed to by tdata is at least len bytes 448 * in length. 449 * \invariant xs.request_mutex exclusively locked. 450 */ 451 static int 452 xs_write_store(const void *tdata, unsigned len) 453 { 454 XENSTORE_RING_IDX cons, prod; 455 const char *data = (const char *)tdata; 456 int error; 457 458 sx_assert(&xs.request_mutex, SX_XLOCKED); 459 while (len != 0) { 460 void *dst; 461 u_int avail; 462 463 /* Hold lock so we can't miss wakeups should we block. */ 464 mtx_lock(&xs.ring_lock); 465 cons = xen_store->req_cons; 466 prod = xen_store->req_prod; 467 if ((prod - cons) == XENSTORE_RING_SIZE) { 468 /* 469 * Output ring is full. Wait for a ring event. 470 * 471 * Note that the events from both queues 472 * are combined, so being woken does not 473 * guarantee that data exist in the read 474 * ring. 475 * 476 * To simplify error recovery and the retry, 477 * we specify PDROP so our lock is *not* held 478 * when msleep returns. 479 */ 480 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 481 "xbwrite", /*timeout*/0); 482 if (error && error != EWOULDBLOCK) 483 return (error); 484 485 /* Try again. */ 486 continue; 487 } 488 mtx_unlock(&xs.ring_lock); 489 490 /* Verify queue sanity. */ 491 if (!xs_check_indexes(cons, prod)) { 492 xen_store->req_cons = xen_store->req_prod = 0; 493 return (EIO); 494 } 495 496 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 497 if (avail > len) 498 avail = len; 499 500 memcpy(dst, data, avail); 501 data += avail; 502 len -= avail; 503 504 /* 505 * The store to the producer index, which indicates 506 * to the other side that new data has arrived, must 507 * be visible only after our copy of the data into the 508 * ring has completed. 509 */ 510 wmb(); 511 xen_store->req_prod += avail; 512 513 /* 514 * xen_intr_signal() implies mb(). The other side will see 515 * the change to req_prod at the time of the interrupt. 516 */ 517 xen_intr_signal(xs.xen_intr_handle); 518 } 519 520 return (0); 521 } 522 523 /** 524 * Receive data from the XenStore service. 525 * 526 * \param tdata A pointer to the contiguous buffer to receive the data. 527 * \param len The amount of data to receive. 528 * 529 * \return On success 0, otherwise an errno value indicating the 530 * cause of failure. 531 * 532 * \invariant Called from thread context. 533 * \invariant The buffer pointed to by tdata is at least len bytes 534 * in length. 535 * 536 * \note xs_read does not perform any internal locking to guarantee 537 * serial access to the incoming ring buffer. However, there 538 * is only one context processing reads: xs_rcv_thread(). 539 */ 540 static int 541 xs_read_store(void *tdata, unsigned len) 542 { 543 XENSTORE_RING_IDX cons, prod; 544 char *data = (char *)tdata; 545 int error; 546 547 while (len != 0) { 548 u_int avail; 549 const char *src; 550 551 /* Hold lock so we can't miss wakeups should we block. */ 552 mtx_lock(&xs.ring_lock); 553 cons = xen_store->rsp_cons; 554 prod = xen_store->rsp_prod; 555 if (cons == prod) { 556 /* 557 * Nothing to read. Wait for a ring event. 558 * 559 * Note that the events from both queues 560 * are combined, so being woken does not 561 * guarantee that data exist in the read 562 * ring. 563 * 564 * To simplify error recovery and the retry, 565 * we specify PDROP so our lock is *not* held 566 * when msleep returns. 567 */ 568 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 569 "xbread", /*timeout*/0); 570 if (error && error != EWOULDBLOCK) 571 return (error); 572 continue; 573 } 574 mtx_unlock(&xs.ring_lock); 575 576 /* Verify queue sanity. */ 577 if (!xs_check_indexes(cons, prod)) { 578 xen_store->rsp_cons = xen_store->rsp_prod = 0; 579 return (EIO); 580 } 581 582 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 583 if (avail > len) 584 avail = len; 585 586 /* 587 * Insure the data we read is related to the indexes 588 * we read above. 589 */ 590 rmb(); 591 592 memcpy(data, src, avail); 593 data += avail; 594 len -= avail; 595 596 /* 597 * Insure that the producer of this ring does not see 598 * the ring space as free until after we have copied it 599 * out. 600 */ 601 mb(); 602 xen_store->rsp_cons += avail; 603 604 /* 605 * xen_intr_signal() implies mb(). The producer will see 606 * the updated consumer index when the event is delivered. 607 */ 608 xen_intr_signal(xs.xen_intr_handle); 609 } 610 611 return (0); 612 } 613 614 /*----------------------- Received Message Processing ------------------------*/ 615 /** 616 * Block reading the next message from the XenStore service and 617 * process the result. 618 * 619 * \param type The returned type of the XenStore message received. 620 * 621 * \return 0 on success. Otherwise an errno value indicating the 622 * type of failure encountered. 623 */ 624 static int 625 xs_process_msg(enum xsd_sockmsg_type *type) 626 { 627 struct xs_stored_msg *msg; 628 char *body; 629 int error; 630 631 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 632 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 633 if (error) { 634 free(msg, M_XENSTORE); 635 return (error); 636 } 637 638 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 639 error = xs_read_store(body, msg->hdr.len); 640 if (error) { 641 free(body, M_XENSTORE); 642 free(msg, M_XENSTORE); 643 return (error); 644 } 645 body[msg->hdr.len] = '\0'; 646 647 *type = msg->hdr.type; 648 if (msg->hdr.type == XS_WATCH_EVENT) { 649 msg->u.watch.vec = split(body, msg->hdr.len, 650 &msg->u.watch.vec_size); 651 652 mtx_lock(&xs.registered_watches_lock); 653 msg->u.watch.handle = find_watch( 654 msg->u.watch.vec[XS_WATCH_TOKEN]); 655 mtx_lock(&xs.watch_events_lock); 656 if (msg->u.watch.handle != NULL && 657 (!msg->u.watch.handle->max_pending || 658 msg->u.watch.handle->pending < 659 msg->u.watch.handle->max_pending)) { 660 msg->u.watch.handle->pending++; 661 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 662 wakeup(&xs.watch_events); 663 mtx_unlock(&xs.watch_events_lock); 664 } else { 665 mtx_unlock(&xs.watch_events_lock); 666 free(msg->u.watch.vec, M_XENSTORE); 667 free(msg, M_XENSTORE); 668 } 669 mtx_unlock(&xs.registered_watches_lock); 670 } else { 671 msg->u.reply.body = body; 672 mtx_lock(&xs.reply_lock); 673 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 674 wakeup(&xs.reply_list); 675 mtx_unlock(&xs.reply_lock); 676 } 677 678 return (0); 679 } 680 681 /** 682 * Thread body of the XenStore receive thread. 683 * 684 * This thread blocks waiting for data from the XenStore service 685 * and processes and received messages. 686 */ 687 static void 688 xs_rcv_thread(void *arg __unused) 689 { 690 int error; 691 enum xsd_sockmsg_type type; 692 693 for (;;) { 694 error = xs_process_msg(&type); 695 if (error) 696 printf("XENSTORE error %d while reading message\n", 697 error); 698 } 699 } 700 701 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 702 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 703 704 /** 705 * Convert a XenStore error string into an errno number. 706 * 707 * \param errorstring The error string to convert. 708 * 709 * \return The errno best matching the input string. 710 * 711 * \note Unknown error strings are converted to EINVAL. 712 */ 713 static int 714 xs_get_error(const char *errorstring) 715 { 716 u_int i; 717 718 for (i = 0; i < xsd_error_count; i++) { 719 if (!strcmp(errorstring, xsd_errors[i].errstring)) 720 return (xsd_errors[i].errnum); 721 } 722 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 723 errorstring); 724 return (EINVAL); 725 } 726 727 /** 728 * Block waiting for a reply to a message request. 729 * 730 * \param type The returned type of the reply. 731 * \param len The returned body length of the reply. 732 * \param result The returned body of the reply. 733 * 734 * \return 0 on success. Otherwise an errno indicating the 735 * cause of failure. 736 */ 737 static int 738 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 739 { 740 struct xs_stored_msg *msg; 741 char *body; 742 int error; 743 744 mtx_lock(&xs.reply_lock); 745 while (TAILQ_EMPTY(&xs.reply_list)) { 746 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait", 747 hz/10); 748 if (error && error != EWOULDBLOCK) { 749 mtx_unlock(&xs.reply_lock); 750 return (error); 751 } 752 } 753 msg = TAILQ_FIRST(&xs.reply_list); 754 TAILQ_REMOVE(&xs.reply_list, msg, list); 755 mtx_unlock(&xs.reply_lock); 756 757 *type = msg->hdr.type; 758 if (len) 759 *len = msg->hdr.len; 760 body = msg->u.reply.body; 761 762 free(msg, M_XENSTORE); 763 *result = body; 764 return (0); 765 } 766 767 /** 768 * Pass-thru interface for XenStore access by userland processes 769 * via the XenStore device. 770 * 771 * Reply type and length data are returned by overwriting these 772 * fields in the passed in request message. 773 * 774 * \param msg A properly formatted message to transmit to 775 * the XenStore service. 776 * \param result The returned body of the reply. 777 * 778 * \return 0 on success. Otherwise an errno indicating the cause 779 * of failure. 780 * 781 * \note The returned result is provided in malloced storage and thus 782 * must be free'd by the caller with 'free(result, M_XENSTORE); 783 */ 784 int 785 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 786 { 787 int error; 788 789 sx_xlock(&xs.request_mutex); 790 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 791 error = xs_read_reply(&msg->type, &msg->len, result); 792 sx_xunlock(&xs.request_mutex); 793 794 return (error); 795 } 796 797 /** 798 * Send a message with an optionally muti-part body to the XenStore service. 799 * 800 * \param t The transaction to use for this request. 801 * \param request_type The type of message to send. 802 * \param iovec Pointers to the body sections of the request. 803 * \param num_vecs The number of body sections in the request. 804 * \param len The returned length of the reply. 805 * \param result The returned body of the reply. 806 * 807 * \return 0 on success. Otherwise an errno indicating 808 * the cause of failure. 809 * 810 * \note The returned result is provided in malloced storage and thus 811 * must be free'd by the caller with 'free(*result, M_XENSTORE); 812 */ 813 static int 814 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 815 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 816 { 817 struct xsd_sockmsg msg; 818 void *ret = NULL; 819 u_int i; 820 int error; 821 822 msg.tx_id = t.id; 823 msg.req_id = 0; 824 msg.type = request_type; 825 msg.len = 0; 826 for (i = 0; i < num_vecs; i++) 827 msg.len += iovec[i].iov_len; 828 829 sx_xlock(&xs.request_mutex); 830 error = xs_write_store(&msg, sizeof(msg)); 831 if (error) { 832 printf("xs_talkv failed %d\n", error); 833 goto error_lock_held; 834 } 835 836 for (i = 0; i < num_vecs; i++) { 837 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 838 if (error) { 839 printf("xs_talkv failed %d\n", error); 840 goto error_lock_held; 841 } 842 } 843 844 error = xs_read_reply(&msg.type, len, &ret); 845 846 error_lock_held: 847 sx_xunlock(&xs.request_mutex); 848 if (error) 849 return (error); 850 851 if (msg.type == XS_ERROR) { 852 error = xs_get_error(ret); 853 free(ret, M_XENSTORE); 854 return (error); 855 } 856 857 /* Reply is either error or an echo of our request message type. */ 858 KASSERT(msg.type == request_type, ("bad xenstore message type")); 859 860 if (result) 861 *result = ret; 862 else 863 free(ret, M_XENSTORE); 864 865 return (0); 866 } 867 868 /** 869 * Wrapper for xs_talkv allowing easy transmission of a message with 870 * a single, contiguous, message body. 871 * 872 * \param t The transaction to use for this request. 873 * \param request_type The type of message to send. 874 * \param body The body of the request. 875 * \param len The returned length of the reply. 876 * \param result The returned body of the reply. 877 * 878 * \return 0 on success. Otherwise an errno indicating 879 * the cause of failure. 880 * 881 * \note The returned result is provided in malloced storage and thus 882 * must be free'd by the caller with 'free(*result, M_XENSTORE); 883 */ 884 static int 885 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 886 const char *body, u_int *len, void **result) 887 { 888 struct iovec iovec; 889 890 iovec.iov_base = (void *)(uintptr_t)body; 891 iovec.iov_len = strlen(body) + 1; 892 893 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 894 } 895 896 /*------------------------- XenStore Watch Support ---------------------------*/ 897 /** 898 * Transmit a watch request to the XenStore service. 899 * 900 * \param path The path in the XenStore to watch. 901 * \param tocken A unique identifier for this watch. 902 * 903 * \return 0 on success. Otherwise an errno indicating the 904 * cause of failure. 905 */ 906 static int 907 xs_watch(const char *path, const char *token) 908 { 909 struct iovec iov[2]; 910 911 iov[0].iov_base = (void *)(uintptr_t) path; 912 iov[0].iov_len = strlen(path) + 1; 913 iov[1].iov_base = (void *)(uintptr_t) token; 914 iov[1].iov_len = strlen(token) + 1; 915 916 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 917 } 918 919 /** 920 * Transmit an uwatch request to the XenStore service. 921 * 922 * \param path The path in the XenStore to watch. 923 * \param tocken A unique identifier for this watch. 924 * 925 * \return 0 on success. Otherwise an errno indicating the 926 * cause of failure. 927 */ 928 static int 929 xs_unwatch(const char *path, const char *token) 930 { 931 struct iovec iov[2]; 932 933 iov[0].iov_base = (void *)(uintptr_t) path; 934 iov[0].iov_len = strlen(path) + 1; 935 iov[1].iov_base = (void *)(uintptr_t) token; 936 iov[1].iov_len = strlen(token) + 1; 937 938 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 939 } 940 941 /** 942 * Convert from watch token (unique identifier) to the associated 943 * internal tracking structure for this watch. 944 * 945 * \param tocken The unique identifier for the watch to find. 946 * 947 * \return A pointer to the found watch structure or NULL. 948 */ 949 static struct xs_watch * 950 find_watch(const char *token) 951 { 952 struct xs_watch *i, *cmp; 953 954 cmp = (void *)strtoul(token, NULL, 16); 955 956 LIST_FOREACH(i, &xs.registered_watches, list) 957 if (i == cmp) 958 return (i); 959 960 return (NULL); 961 } 962 963 /** 964 * Thread body of the XenStore watch event dispatch thread. 965 */ 966 static void 967 xenwatch_thread(void *unused) 968 { 969 struct xs_stored_msg *msg; 970 971 for (;;) { 972 mtx_lock(&xs.watch_events_lock); 973 while (TAILQ_EMPTY(&xs.watch_events)) 974 mtx_sleep(&xs.watch_events, 975 &xs.watch_events_lock, 976 PWAIT | PCATCH, "waitev", hz/10); 977 978 mtx_unlock(&xs.watch_events_lock); 979 sx_xlock(&xs.xenwatch_mutex); 980 981 mtx_lock(&xs.watch_events_lock); 982 msg = TAILQ_FIRST(&xs.watch_events); 983 if (msg) { 984 TAILQ_REMOVE(&xs.watch_events, msg, list); 985 msg->u.watch.handle->pending--; 986 } 987 mtx_unlock(&xs.watch_events_lock); 988 989 if (msg != NULL) { 990 /* 991 * XXX There are messages coming in with a NULL 992 * XXX callback. This deserves further investigation; 993 * XXX the workaround here simply prevents the kernel 994 * XXX from panic'ing on startup. 995 */ 996 if (msg->u.watch.handle->callback != NULL) 997 msg->u.watch.handle->callback( 998 msg->u.watch.handle, 999 (const char **)msg->u.watch.vec, 1000 msg->u.watch.vec_size); 1001 free(msg->u.watch.vec, M_XENSTORE); 1002 free(msg, M_XENSTORE); 1003 } 1004 1005 sx_xunlock(&xs.xenwatch_mutex); 1006 } 1007 } 1008 1009 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1010 /** 1011 * Setup communication channels with the XenStore service. 1012 * 1013 * \return On success, 0. Otherwise an errno value indicating the 1014 * type of failure. 1015 */ 1016 static int 1017 xs_init_comms(void) 1018 { 1019 int error; 1020 1021 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1022 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1023 "(%08x:%08x): fixing up\n", 1024 xen_store->rsp_cons, xen_store->rsp_prod); 1025 xen_store->rsp_cons = xen_store->rsp_prod; 1026 } 1027 1028 xen_intr_unbind(&xs.xen_intr_handle); 1029 1030 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1031 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1032 &xs.xen_intr_handle); 1033 if (error) { 1034 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1035 return (error); 1036 } 1037 1038 return (0); 1039 } 1040 1041 /*------------------ Private Device Attachment Functions --------------------*/ 1042 static void 1043 xs_identify(driver_t *driver, device_t parent) 1044 { 1045 1046 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1047 } 1048 1049 /** 1050 * Probe for the existence of the XenStore. 1051 * 1052 * \param dev 1053 */ 1054 static int 1055 xs_probe(device_t dev) 1056 { 1057 /* 1058 * We are either operating within a PV kernel or being probed 1059 * as the child of the successfully attached xenpci device. 1060 * Thus we are in a Xen environment and there will be a XenStore. 1061 * Unconditionally return success. 1062 */ 1063 device_set_desc(dev, "XenStore"); 1064 return (BUS_PROBE_NOWILDCARD); 1065 } 1066 1067 static void 1068 xs_attach_deferred(void *arg) 1069 { 1070 1071 bus_identify_children(xs.xs_dev); 1072 bus_attach_children(xs.xs_dev); 1073 1074 config_intrhook_disestablish(&xs.xs_attachcb); 1075 } 1076 1077 static void 1078 xs_attach_late(void *arg, int pending) 1079 { 1080 1081 KASSERT((pending == 1), ("xs late attach queued several times")); 1082 bus_identify_children(xs.xs_dev); 1083 bus_attach_children(xs.xs_dev); 1084 } 1085 1086 /** 1087 * Attach to the XenStore. 1088 * 1089 * This routine also prepares for the probe/attach of drivers that rely 1090 * on the XenStore. 1091 */ 1092 static int 1093 xs_attach(device_t dev) 1094 { 1095 int error; 1096 1097 /* Allow us to get device_t from softc and vice-versa. */ 1098 xs.xs_dev = dev; 1099 device_set_softc(dev, &xs); 1100 1101 /* Initialize the interface to xenstore. */ 1102 struct proc *p; 1103 1104 xs.initialized = false; 1105 xs.evtchn = xen_get_xenstore_evtchn(); 1106 if (xs.evtchn == 0) { 1107 struct evtchn_alloc_unbound alloc_unbound; 1108 1109 /* Allocate a local event channel for xenstore */ 1110 alloc_unbound.dom = DOMID_SELF; 1111 alloc_unbound.remote_dom = DOMID_SELF; 1112 error = HYPERVISOR_event_channel_op( 1113 EVTCHNOP_alloc_unbound, &alloc_unbound); 1114 if (error != 0) 1115 panic( 1116 "unable to alloc event channel for Dom0: %d", 1117 error); 1118 1119 xs.evtchn = alloc_unbound.port; 1120 1121 /* Allocate memory for the xs shared ring */ 1122 xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO); 1123 xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store)); 1124 } else { 1125 xs.gpfn = xen_get_xenstore_mfn(); 1126 xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE, 1127 VM_MEMATTR_XEN); 1128 xs.initialized = true; 1129 } 1130 1131 TAILQ_INIT(&xs.reply_list); 1132 TAILQ_INIT(&xs.watch_events); 1133 1134 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1135 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1136 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1137 sx_init(&xs.request_mutex, "xenstore request"); 1138 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1139 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1140 1141 /* Initialize the shared memory rings to talk to xenstored */ 1142 error = xs_init_comms(); 1143 if (error) 1144 return (error); 1145 1146 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1147 0, "xenwatch"); 1148 if (error) 1149 return (error); 1150 xs.xenwatch_pid = p->p_pid; 1151 1152 error = kproc_create(xs_rcv_thread, NULL, NULL, 1153 RFHIGHPID, 0, "xenstore_rcv"); 1154 1155 xs.xs_attachcb.ich_func = xs_attach_deferred; 1156 xs.xs_attachcb.ich_arg = NULL; 1157 if (xs.initialized) { 1158 config_intrhook_establish(&xs.xs_attachcb); 1159 } else { 1160 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1161 } 1162 1163 return (error); 1164 } 1165 1166 /** 1167 * Prepare for suspension of this VM by halting XenStore access after 1168 * all transactions and individual requests have completed. 1169 */ 1170 static int 1171 xs_suspend(device_t dev) 1172 { 1173 int error; 1174 1175 /* Suspend child Xen devices. */ 1176 error = bus_generic_suspend(dev); 1177 if (error != 0) 1178 return (error); 1179 1180 sx_xlock(&xs.request_mutex); 1181 1182 return (0); 1183 } 1184 1185 /** 1186 * Resume XenStore operations after this VM is resumed. 1187 */ 1188 static int 1189 xs_resume(device_t dev __unused) 1190 { 1191 struct xs_watch *watch; 1192 char token[sizeof(watch) * 2 + 1]; 1193 1194 xs_init_comms(); 1195 1196 sx_xunlock(&xs.request_mutex); 1197 1198 /* 1199 * NB: since xenstore childs have not been resumed yet, there's 1200 * no need to hold any watch mutex. Having clients try to add or 1201 * remove watches at this point (before xenstore is resumed) is 1202 * clearly a violantion of the resume order. 1203 */ 1204 LIST_FOREACH(watch, &xs.registered_watches, list) { 1205 sprintf(token, "%lX", (long)watch); 1206 xs_watch(watch->node, token); 1207 } 1208 1209 /* Resume child Xen devices. */ 1210 bus_generic_resume(dev); 1211 1212 return (0); 1213 } 1214 1215 /*-------------------- Private Device Attachment Data -----------------------*/ 1216 static device_method_t xenstore_methods[] = { 1217 /* Device interface */ 1218 DEVMETHOD(device_identify, xs_identify), 1219 DEVMETHOD(device_probe, xs_probe), 1220 DEVMETHOD(device_attach, xs_attach), 1221 DEVMETHOD(device_detach, bus_generic_detach), 1222 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1223 DEVMETHOD(device_suspend, xs_suspend), 1224 DEVMETHOD(device_resume, xs_resume), 1225 1226 /* Bus interface */ 1227 DEVMETHOD(bus_add_child, bus_generic_add_child), 1228 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1229 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1230 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1231 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1232 1233 DEVMETHOD_END 1234 }; 1235 1236 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1237 1238 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, 0, 0); 1239 1240 /*------------------------------- Sysctl Data --------------------------------*/ 1241 /* XXX Shouldn't the node be somewhere else? */ 1242 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 1243 "Xen"); 1244 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1245 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1246 1247 /*-------------------------------- Public API --------------------------------*/ 1248 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1249 bool 1250 xs_initialized(void) 1251 { 1252 1253 return (xs.initialized); 1254 } 1255 1256 evtchn_port_t 1257 xs_evtchn(void) 1258 { 1259 1260 return (xs.evtchn); 1261 } 1262 1263 vm_paddr_t 1264 xs_address(void) 1265 { 1266 1267 return (ptoa(xs.gpfn)); 1268 } 1269 1270 int 1271 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1272 u_int *num, const char ***result) 1273 { 1274 struct sbuf *path; 1275 char *strings; 1276 u_int len = 0; 1277 int error; 1278 1279 path = xs_join(dir, node); 1280 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1281 (void **)&strings); 1282 sbuf_delete(path); 1283 if (error) 1284 return (error); 1285 1286 *result = split(strings, len, num); 1287 1288 return (0); 1289 } 1290 1291 int 1292 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1293 { 1294 const char **d; 1295 int error, dir_n; 1296 1297 error = xs_directory(t, dir, node, &dir_n, &d); 1298 if (error) 1299 return (0); 1300 free(d, M_XENSTORE); 1301 return (1); 1302 } 1303 1304 int 1305 xs_read(struct xs_transaction t, const char *dir, const char *node, 1306 u_int *len, void **result) 1307 { 1308 struct sbuf *path; 1309 void *ret; 1310 int error; 1311 1312 path = xs_join(dir, node); 1313 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1314 sbuf_delete(path); 1315 if (error) 1316 return (error); 1317 *result = ret; 1318 return (0); 1319 } 1320 1321 int 1322 xs_write(struct xs_transaction t, const char *dir, const char *node, 1323 const char *string) 1324 { 1325 struct sbuf *path; 1326 struct iovec iovec[2]; 1327 int error; 1328 1329 path = xs_join(dir, node); 1330 1331 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1332 iovec[0].iov_len = sbuf_len(path) + 1; 1333 iovec[1].iov_base = (void *)(uintptr_t) string; 1334 iovec[1].iov_len = strlen(string); 1335 1336 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1337 sbuf_delete(path); 1338 1339 return (error); 1340 } 1341 1342 int 1343 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1344 { 1345 struct sbuf *path; 1346 int ret; 1347 1348 path = xs_join(dir, node); 1349 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1350 sbuf_delete(path); 1351 1352 return (ret); 1353 } 1354 1355 int 1356 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1357 { 1358 struct sbuf *path; 1359 int ret; 1360 1361 path = xs_join(dir, node); 1362 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1363 sbuf_delete(path); 1364 1365 return (ret); 1366 } 1367 1368 int 1369 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1370 { 1371 struct xs_transaction local_xbt; 1372 struct sbuf *root_path_sbuf; 1373 struct sbuf *cur_path_sbuf; 1374 char *root_path; 1375 char *cur_path; 1376 const char **dir; 1377 int error; 1378 1379 retry: 1380 root_path_sbuf = xs_join(base, node); 1381 cur_path_sbuf = xs_join(base, node); 1382 root_path = sbuf_data(root_path_sbuf); 1383 cur_path = sbuf_data(cur_path_sbuf); 1384 dir = NULL; 1385 local_xbt.id = 0; 1386 1387 if (xbt.id == 0) { 1388 error = xs_transaction_start(&local_xbt); 1389 if (error != 0) 1390 goto out; 1391 xbt = local_xbt; 1392 } 1393 1394 while (1) { 1395 u_int count; 1396 u_int i; 1397 1398 error = xs_directory(xbt, cur_path, "", &count, &dir); 1399 if (error) 1400 goto out; 1401 1402 for (i = 0; i < count; i++) { 1403 error = xs_rm(xbt, cur_path, dir[i]); 1404 if (error == ENOTEMPTY) { 1405 struct sbuf *push_dir; 1406 1407 /* 1408 * Descend to clear out this sub directory. 1409 * We'll return to cur_dir once push_dir 1410 * is empty. 1411 */ 1412 push_dir = xs_join(cur_path, dir[i]); 1413 sbuf_delete(cur_path_sbuf); 1414 cur_path_sbuf = push_dir; 1415 cur_path = sbuf_data(cur_path_sbuf); 1416 break; 1417 } else if (error != 0) { 1418 goto out; 1419 } 1420 } 1421 1422 free(dir, M_XENSTORE); 1423 dir = NULL; 1424 1425 if (i == count) { 1426 char *last_slash; 1427 1428 /* Directory is empty. It is now safe to remove. */ 1429 error = xs_rm(xbt, cur_path, ""); 1430 if (error != 0) 1431 goto out; 1432 1433 if (!strcmp(cur_path, root_path)) 1434 break; 1435 1436 /* Return to processing the parent directory. */ 1437 last_slash = strrchr(cur_path, '/'); 1438 KASSERT(last_slash != NULL, 1439 ("xs_rm_tree: mangled path %s", cur_path)); 1440 *last_slash = '\0'; 1441 } 1442 } 1443 1444 out: 1445 sbuf_delete(cur_path_sbuf); 1446 sbuf_delete(root_path_sbuf); 1447 if (dir != NULL) 1448 free(dir, M_XENSTORE); 1449 1450 if (local_xbt.id != 0) { 1451 int terror; 1452 1453 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1454 xbt.id = 0; 1455 if (terror == EAGAIN && error == 0) 1456 goto retry; 1457 } 1458 return (error); 1459 } 1460 1461 int 1462 xs_transaction_start(struct xs_transaction *t) 1463 { 1464 char *id_str; 1465 int error; 1466 1467 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1468 (void **)&id_str); 1469 if (error == 0) { 1470 t->id = strtoul(id_str, NULL, 0); 1471 free(id_str, M_XENSTORE); 1472 } 1473 return (error); 1474 } 1475 1476 int 1477 xs_transaction_end(struct xs_transaction t, int abort) 1478 { 1479 char abortstr[2]; 1480 1481 if (abort) 1482 strcpy(abortstr, "F"); 1483 else 1484 strcpy(abortstr, "T"); 1485 1486 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1487 } 1488 1489 int 1490 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1491 int *scancountp, const char *fmt, ...) 1492 { 1493 va_list ap; 1494 int error, ns; 1495 char *val; 1496 1497 error = xs_read(t, dir, node, NULL, (void **) &val); 1498 if (error) 1499 return (error); 1500 1501 va_start(ap, fmt); 1502 ns = vsscanf(val, fmt, ap); 1503 va_end(ap); 1504 free(val, M_XENSTORE); 1505 /* Distinctive errno. */ 1506 if (ns == 0) 1507 return (ERANGE); 1508 if (scancountp) 1509 *scancountp = ns; 1510 return (0); 1511 } 1512 1513 int 1514 xs_vprintf(struct xs_transaction t, 1515 const char *dir, const char *node, const char *fmt, va_list ap) 1516 { 1517 struct sbuf *sb; 1518 int error; 1519 1520 sb = sbuf_new_auto(); 1521 sbuf_vprintf(sb, fmt, ap); 1522 sbuf_finish(sb); 1523 error = xs_write(t, dir, node, sbuf_data(sb)); 1524 sbuf_delete(sb); 1525 1526 return (error); 1527 } 1528 1529 int 1530 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1531 const char *fmt, ...) 1532 { 1533 va_list ap; 1534 int error; 1535 1536 va_start(ap, fmt); 1537 error = xs_vprintf(t, dir, node, fmt, ap); 1538 va_end(ap); 1539 1540 return (error); 1541 } 1542 1543 int 1544 xs_gather(struct xs_transaction t, const char *dir, ...) 1545 { 1546 va_list ap; 1547 const char *name; 1548 int error; 1549 1550 va_start(ap, dir); 1551 error = 0; 1552 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1553 const char *fmt = va_arg(ap, char *); 1554 void *result = va_arg(ap, void *); 1555 char *p; 1556 1557 error = xs_read(t, dir, name, NULL, (void **) &p); 1558 if (error) 1559 break; 1560 1561 if (fmt) { 1562 if (sscanf(p, fmt, result) == 0) 1563 error = EINVAL; 1564 free(p, M_XENSTORE); 1565 } else 1566 *(char **)result = p; 1567 } 1568 va_end(ap); 1569 1570 return (error); 1571 } 1572 1573 int 1574 xs_register_watch(struct xs_watch *watch) 1575 { 1576 /* Pointer in ascii is the token. */ 1577 char token[sizeof(watch) * 2 + 1]; 1578 int error; 1579 1580 watch->pending = 0; 1581 sprintf(token, "%lX", (long)watch); 1582 1583 mtx_lock(&xs.registered_watches_lock); 1584 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1585 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1586 mtx_unlock(&xs.registered_watches_lock); 1587 1588 error = xs_watch(watch->node, token); 1589 1590 /* Ignore errors due to multiple registration. */ 1591 if (error == EEXIST) 1592 error = 0; 1593 1594 if (error != 0) { 1595 mtx_lock(&xs.registered_watches_lock); 1596 LIST_REMOVE(watch, list); 1597 mtx_unlock(&xs.registered_watches_lock); 1598 } 1599 1600 return (error); 1601 } 1602 1603 void 1604 xs_unregister_watch(struct xs_watch *watch) 1605 { 1606 struct xs_stored_msg *msg, *tmp; 1607 char token[sizeof(watch) * 2 + 1]; 1608 int error; 1609 1610 sprintf(token, "%lX", (long)watch); 1611 1612 mtx_lock(&xs.registered_watches_lock); 1613 if (find_watch(token) == NULL) { 1614 mtx_unlock(&xs.registered_watches_lock); 1615 return; 1616 } 1617 LIST_REMOVE(watch, list); 1618 mtx_unlock(&xs.registered_watches_lock); 1619 1620 error = xs_unwatch(watch->node, token); 1621 if (error) 1622 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1623 watch->node, error); 1624 1625 /* Cancel pending watch events. */ 1626 mtx_lock(&xs.watch_events_lock); 1627 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1628 if (msg->u.watch.handle != watch) 1629 continue; 1630 TAILQ_REMOVE(&xs.watch_events, msg, list); 1631 free(msg->u.watch.vec, M_XENSTORE); 1632 free(msg, M_XENSTORE); 1633 } 1634 mtx_unlock(&xs.watch_events_lock); 1635 1636 /* Flush any currently-executing callback, unless we are it. :-) */ 1637 if (curproc->p_pid != xs.xenwatch_pid) { 1638 sx_xlock(&xs.xenwatch_mutex); 1639 sx_xunlock(&xs.xenwatch_mutex); 1640 } 1641 } 1642 1643 void 1644 xs_lock(void) 1645 { 1646 1647 sx_xlock(&xs.request_mutex); 1648 return; 1649 } 1650 1651 void 1652 xs_unlock(void) 1653 { 1654 1655 sx_xunlock(&xs.request_mutex); 1656 return; 1657 } 1658