xref: /freebsd/sys/dev/xen/xenstore/xenstore.c (revision 6c7cae4a73b883ec0410e882bb56622c3090592c)
1 /******************************************************************************
2  * xenstore.c
3  *
4  * Low-level kernel interface to the XenStore.
5  *
6  * Copyright (C) 2005 Rusty Russell, IBM Corporation
7  * Copyright (C) 2009,2010 Spectra Logic Corporation
8  *
9  * This file may be distributed separately from the Linux kernel, or
10  * incorporated into other software packages, subject to the following license:
11  *
12  * Permission is hereby granted, free of charge, to any person obtaining a copy
13  * of this source file (the "Software"), to deal in the Software without
14  * restriction, including without limitation the rights to use, copy, modify,
15  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
16  * and to permit persons to whom the Software is furnished to do so, subject to
17  * the following conditions:
18  *
19  * The above copyright notice and this permission notice shall be included in
20  * all copies or substantial portions of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
25  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28  * IN THE SOFTWARE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/module.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/syslog.h>
42 #include <sys/malloc.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sbuf.h>
47 #include <sys/sysctl.h>
48 #include <sys/uio.h>
49 #include <sys/unistd.h>
50 #include <sys/queue.h>
51 #include <sys/taskqueue.h>
52 
53 #include <machine/stdarg.h>
54 
55 #include <xen/xen-os.h>
56 #include <xen/hypervisor.h>
57 #include <xen/xen_intr.h>
58 
59 #include <xen/interface/hvm/params.h>
60 #include <xen/hvm.h>
61 
62 #include <xen/xenstore/xenstorevar.h>
63 #include <xen/xenstore/xenstore_internal.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 
68 /**
69  * \file xenstore.c
70  * \brief XenStore interface
71  *
72  * The XenStore interface is a simple storage system that is a means of
73  * communicating state and configuration data between the Xen Domain 0
74  * and the various guest domains.  All configuration data other than
75  * a small amount of essential information required during the early
76  * boot process of launching a Xen aware guest, is managed using the
77  * XenStore.
78  *
79  * The XenStore is ASCII string based, and has a structure and semantics
80  * similar to a filesystem.  There are files and directories, the directories
81  * able to contain files or other directories.  The depth of the hierarchy
82  * is only limited by the XenStore's maximum path length.
83  *
84  * The communication channel between the XenStore service and other
85  * domains is via two, guest specific, ring buffers in a shared memory
86  * area.  One ring buffer is used for communicating in each direction.
87  * The grant table references for this shared memory are given to the
88  * guest either via the xen_start_info structure for a fully para-
89  * virtualized guest, or via HVM hypercalls for a hardware virtualized
90  * guest.
91  *
92  * The XenStore communication relies on an event channel and thus
93  * interrupts.  For this reason, the attachment of the XenStore
94  * relies on an interrupt driven configuration hook to hold off
95  * boot processing until communication with the XenStore service
96  * can be established.
97  *
98  * Several Xen services depend on the XenStore, most notably the
99  * XenBus used to discover and manage Xen devices.  These services
100  * are implemented as NewBus child attachments to a bus exported
101  * by this XenStore driver.
102  */
103 
104 static struct xs_watch *find_watch(const char *token);
105 
106 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results");
107 
108 /**
109  * Pointer to shared memory communication structures allowing us
110  * to communicate with the XenStore service.
111  *
112  * When operating in full PV mode, this pointer is set early in kernel
113  * startup from within xen_machdep.c.  In HVM mode, we use hypercalls
114  * to get the guest frame number for the shared page and then map it
115  * into kva.  See xs_init() for details.
116  */
117 static struct xenstore_domain_interface *xen_store;
118 
119 /*-------------------------- Private Data Structures ------------------------*/
120 
121 /**
122  * Structure capturing messages received from the XenStore service.
123  */
124 struct xs_stored_msg {
125 	TAILQ_ENTRY(xs_stored_msg) list;
126 
127 	struct xsd_sockmsg hdr;
128 
129 	union {
130 		/* Queued replies. */
131 		struct {
132 			char *body;
133 		} reply;
134 
135 		/* Queued watch events. */
136 		struct {
137 			struct xs_watch *handle;
138 			const char **vec;
139 			u_int vec_size;
140 		} watch;
141 	} u;
142 };
143 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg);
144 
145 /**
146  * Container for all XenStore related state.
147  */
148 struct xs_softc {
149 	/** Newbus device for the XenStore. */
150 	device_t xs_dev;
151 
152 	/**
153 	 * Lock serializing access to ring producer/consumer
154 	 * indexes.  Use of this lock guarantees that wakeups
155 	 * of blocking readers/writers are not missed due to
156 	 * races with the XenStore service.
157 	 */
158 	struct mtx ring_lock;
159 
160 	/*
161 	 * Mutex used to insure exclusive access to the outgoing
162 	 * communication ring.  We use a lock type that can be
163 	 * held while sleeping so that xs_write() can block waiting
164 	 * for space in the ring to free up, without allowing another
165 	 * writer to come in and corrupt a partial message write.
166 	 */
167 	struct sx request_mutex;
168 
169 	/**
170 	 * A list of replies to our requests.
171 	 *
172 	 * The reply list is filled by xs_rcv_thread().  It
173 	 * is consumed by the context that issued the request
174 	 * to which a reply is made.  The requester blocks in
175 	 * xs_read_reply().
176 	 *
177 	 * /note Only one requesting context can be active at a time.
178 	 *       This is guaranteed by the request_mutex and insures
179 	 *	 that the requester sees replies matching the order
180 	 *	 of its requests.
181 	 */
182 	struct xs_stored_msg_list reply_list;
183 
184 	/** Lock protecting the reply list. */
185 	struct mtx reply_lock;
186 
187 	/**
188 	 * List of registered watches.
189 	 */
190 	struct xs_watch_list  registered_watches;
191 
192 	/** Lock protecting the registered watches list. */
193 	struct mtx registered_watches_lock;
194 
195 	/**
196 	 * List of pending watch callback events.
197 	 */
198 	struct xs_stored_msg_list watch_events;
199 
200 	/** Lock protecting the watch calback list. */
201 	struct mtx watch_events_lock;
202 
203 	/**
204 	 * The processid of the xenwatch thread.
205 	 */
206 	pid_t xenwatch_pid;
207 
208 	/**
209 	 * Sleepable mutex used to gate the execution of XenStore
210 	 * watch event callbacks.
211 	 *
212 	 * xenwatch_thread holds an exclusive lock on this mutex
213 	 * while delivering event callbacks, and xenstore_unregister_watch()
214 	 * uses an exclusive lock of this mutex to guarantee that no
215 	 * callbacks of the just unregistered watch are pending
216 	 * before returning to its caller.
217 	 */
218 	struct sx xenwatch_mutex;
219 
220 	/**
221 	 * The HVM guest pseudo-physical frame number.  This is Xen's mapping
222 	 * of the true machine frame number into our "physical address space".
223 	 */
224 	unsigned long gpfn;
225 
226 	/**
227 	 * The event channel for communicating with the
228 	 * XenStore service.
229 	 */
230 	int evtchn;
231 
232 	/** Handle for XenStore interrupts. */
233 	xen_intr_handle_t xen_intr_handle;
234 
235 	/**
236 	 * Interrupt driven config hook allowing us to defer
237 	 * attaching children until interrupts (and thus communication
238 	 * with the XenStore service) are available.
239 	 */
240 	struct intr_config_hook xs_attachcb;
241 
242 	/**
243 	 * Xenstore is a user-space process that usually runs in Dom0,
244 	 * so if this domain is booting as Dom0, xenstore wont we accessible,
245 	 * and we have to defer the initialization of xenstore related
246 	 * devices to later (when xenstore is started).
247 	 */
248 	bool initialized;
249 
250 	/**
251 	 * Task to run when xenstore is initialized (Dom0 only), will
252 	 * take care of attaching xenstore related devices.
253 	 */
254 	struct task xs_late_init;
255 };
256 
257 /*-------------------------------- Global Data ------------------------------*/
258 static struct xs_softc xs;
259 
260 /*------------------------- Private Utility Functions -----------------------*/
261 
262 /**
263  * Count and optionally record pointers to a number of NUL terminated
264  * strings in a buffer.
265  *
266  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
267  * \param dest	   An array to store pointers to each string found in strings.
268  * \param len	   The length of the buffer pointed to by strings.
269  *
270  * \return  A count of the number of strings found.
271  */
272 static u_int
273 extract_strings(const char *strings, const char **dest, u_int len)
274 {
275 	u_int num;
276 	const char *p;
277 
278 	for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) {
279 		if (dest != NULL)
280 			*dest++ = p;
281 		num++;
282 	}
283 
284 	return (num);
285 }
286 
287 /**
288  * Convert a contiguous buffer containing a series of NUL terminated
289  * strings into an array of pointers to strings.
290  *
291  * The returned pointer references the array of string pointers which
292  * is followed by the storage for the string data.  It is the client's
293  * responsibility to free this storage.
294  *
295  * The storage addressed by strings is free'd prior to split returning.
296  *
297  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
298  * \param len	   The length of the buffer pointed to by strings.
299  * \param num	   The number of strings found and returned in the strings
300  *                 array.
301  *
302  * \return  An array of pointers to the strings found in the input buffer.
303  */
304 static const char **
305 split(char *strings, u_int len, u_int *num)
306 {
307 	const char **ret;
308 
309 	/* Protect against unterminated buffers. */
310 	if (len > 0)
311 		strings[len - 1] = '\0';
312 
313 	/* Count the strings. */
314 	*num = extract_strings(strings, /*dest*/NULL, len);
315 
316 	/* Transfer to one big alloc for easy freeing by the caller. */
317 	ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK);
318 	memcpy(&ret[*num], strings, len);
319 	free(strings, M_XENSTORE);
320 
321 	/* Extract pointers to newly allocated array. */
322 	strings = (char *)&ret[*num];
323 	(void)extract_strings(strings, /*dest*/ret, len);
324 
325 	return (ret);
326 }
327 
328 /*------------------------- Public Utility Functions -------------------------*/
329 /*------- API comments for these methods can be found in xenstorevar.h -------*/
330 struct sbuf *
331 xs_join(const char *dir, const char *name)
332 {
333 	struct sbuf *sb;
334 
335 	sb = sbuf_new_auto();
336 	sbuf_cat(sb, dir);
337 	if (name[0] != '\0') {
338 		sbuf_putc(sb, '/');
339 		sbuf_cat(sb, name);
340 	}
341 	sbuf_finish(sb);
342 
343 	return (sb);
344 }
345 
346 /*-------------------- Low Level Communication Management --------------------*/
347 /**
348  * Interrupt handler for the XenStore event channel.
349  *
350  * XenStore reads and writes block on "xen_store" for buffer
351  * space.  Wakeup any blocking operations when the XenStore
352  * service has modified the queues.
353  */
354 static void
355 xs_intr(void * arg __unused /*__attribute__((unused))*/)
356 {
357 
358 	/* If xenstore has not been initialized, initialize it now */
359 	if (!xs.initialized) {
360 		xs.initialized = true;
361 		/*
362 		 * Since this task is probing and attaching devices we
363 		 * have to hold the Giant lock.
364 		 */
365 		taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init);
366 	}
367 
368 	/*
369 	 * Hold ring lock across wakeup so that clients
370 	 * cannot miss a wakeup.
371 	 */
372 	mtx_lock(&xs.ring_lock);
373 	wakeup(xen_store);
374 	mtx_unlock(&xs.ring_lock);
375 }
376 
377 /**
378  * Verify that the indexes for a ring are valid.
379  *
380  * The difference between the producer and consumer cannot
381  * exceed the size of the ring.
382  *
383  * \param cons  The consumer index for the ring to test.
384  * \param prod  The producer index for the ring to test.
385  *
386  * \retval 1  If indexes are in range.
387  * \retval 0  If the indexes are out of range.
388  */
389 static int
390 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod)
391 {
392 
393 	return ((prod - cons) <= XENSTORE_RING_SIZE);
394 }
395 
396 /**
397  * Return a pointer to, and the length of, the contiguous
398  * free region available for output in a ring buffer.
399  *
400  * \param cons  The consumer index for the ring.
401  * \param prod  The producer index for the ring.
402  * \param buf   The base address of the ring's storage.
403  * \param len   The amount of contiguous storage available.
404  *
405  * \return  A pointer to the start location of the free region.
406  */
407 static void *
408 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
409     char *buf, uint32_t *len)
410 {
411 
412 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod);
413 	if ((XENSTORE_RING_SIZE - (prod - cons)) < *len)
414 		*len = XENSTORE_RING_SIZE - (prod - cons);
415 	return (buf + MASK_XENSTORE_IDX(prod));
416 }
417 
418 /**
419  * Return a pointer to, and the length of, the contiguous
420  * data available to read from a ring buffer.
421  *
422  * \param cons  The consumer index for the ring.
423  * \param prod  The producer index for the ring.
424  * \param buf   The base address of the ring's storage.
425  * \param len   The amount of contiguous data available to read.
426  *
427  * \return  A pointer to the start location of the available data.
428  */
429 static const void *
430 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
431     const char *buf, uint32_t *len)
432 {
433 
434 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons);
435 	if ((prod - cons) < *len)
436 		*len = prod - cons;
437 	return (buf + MASK_XENSTORE_IDX(cons));
438 }
439 
440 /**
441  * Transmit data to the XenStore service.
442  *
443  * \param tdata  A pointer to the contiguous data to send.
444  * \param len    The amount of data to send.
445  *
446  * \return  On success 0, otherwise an errno value indicating the
447  *          cause of failure.
448  *
449  * \invariant  Called from thread context.
450  * \invariant  The buffer pointed to by tdata is at least len bytes
451  *             in length.
452  * \invariant  xs.request_mutex exclusively locked.
453  */
454 static int
455 xs_write_store(const void *tdata, unsigned len)
456 {
457 	XENSTORE_RING_IDX cons, prod;
458 	const char *data = (const char *)tdata;
459 	int error;
460 
461 	sx_assert(&xs.request_mutex, SX_XLOCKED);
462 	while (len != 0) {
463 		void *dst;
464 		u_int avail;
465 
466 		/* Hold lock so we can't miss wakeups should we block. */
467 		mtx_lock(&xs.ring_lock);
468 		cons = xen_store->req_cons;
469 		prod = xen_store->req_prod;
470 		if ((prod - cons) == XENSTORE_RING_SIZE) {
471 			/*
472 			 * Output ring is full. Wait for a ring event.
473 			 *
474 			 * Note that the events from both queues
475 			 * are combined, so being woken does not
476 			 * guarantee that data exist in the read
477 			 * ring.
478 			 *
479 			 * To simplify error recovery and the retry,
480 			 * we specify PDROP so our lock is *not* held
481 			 * when msleep returns.
482 			 */
483 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
484 			     "xbwrite", /*timeout*/0);
485 			if (error && error != EWOULDBLOCK)
486 				return (error);
487 
488 			/* Try again. */
489 			continue;
490 		}
491 		mtx_unlock(&xs.ring_lock);
492 
493 		/* Verify queue sanity. */
494 		if (!xs_check_indexes(cons, prod)) {
495 			xen_store->req_cons = xen_store->req_prod = 0;
496 			return (EIO);
497 		}
498 
499 		dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail);
500 		if (avail > len)
501 			avail = len;
502 
503 		memcpy(dst, data, avail);
504 		data += avail;
505 		len -= avail;
506 
507 		/*
508 		 * The store to the producer index, which indicates
509 		 * to the other side that new data has arrived, must
510 		 * be visible only after our copy of the data into the
511 		 * ring has completed.
512 		 */
513 		wmb();
514 		xen_store->req_prod += avail;
515 
516 		/*
517 		 * xen_intr_signal() implies mb(). The other side will see
518 		 * the change to req_prod at the time of the interrupt.
519 		 */
520 		xen_intr_signal(xs.xen_intr_handle);
521 	}
522 
523 	return (0);
524 }
525 
526 /**
527  * Receive data from the XenStore service.
528  *
529  * \param tdata  A pointer to the contiguous buffer to receive the data.
530  * \param len    The amount of data to receive.
531  *
532  * \return  On success 0, otherwise an errno value indicating the
533  *          cause of failure.
534  *
535  * \invariant  Called from thread context.
536  * \invariant  The buffer pointed to by tdata is at least len bytes
537  *             in length.
538  *
539  * \note xs_read does not perform any internal locking to guarantee
540  *       serial access to the incoming ring buffer.  However, there
541  *	 is only one context processing reads: xs_rcv_thread().
542  */
543 static int
544 xs_read_store(void *tdata, unsigned len)
545 {
546 	XENSTORE_RING_IDX cons, prod;
547 	char *data = (char *)tdata;
548 	int error;
549 
550 	while (len != 0) {
551 		u_int avail;
552 		const char *src;
553 
554 		/* Hold lock so we can't miss wakeups should we block. */
555 		mtx_lock(&xs.ring_lock);
556 		cons = xen_store->rsp_cons;
557 		prod = xen_store->rsp_prod;
558 		if (cons == prod) {
559 			/*
560 			 * Nothing to read. Wait for a ring event.
561 			 *
562 			 * Note that the events from both queues
563 			 * are combined, so being woken does not
564 			 * guarantee that data exist in the read
565 			 * ring.
566 			 *
567 			 * To simplify error recovery and the retry,
568 			 * we specify PDROP so our lock is *not* held
569 			 * when msleep returns.
570 			 */
571 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
572 			    "xbread", /*timeout*/0);
573 			if (error && error != EWOULDBLOCK)
574 				return (error);
575 			continue;
576 		}
577 		mtx_unlock(&xs.ring_lock);
578 
579 		/* Verify queue sanity. */
580 		if (!xs_check_indexes(cons, prod)) {
581 			xen_store->rsp_cons = xen_store->rsp_prod = 0;
582 			return (EIO);
583 		}
584 
585 		src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail);
586 		if (avail > len)
587 			avail = len;
588 
589 		/*
590 		 * Insure the data we read is related to the indexes
591 		 * we read above.
592 		 */
593 		rmb();
594 
595 		memcpy(data, src, avail);
596 		data += avail;
597 		len -= avail;
598 
599 		/*
600 		 * Insure that the producer of this ring does not see
601 		 * the ring space as free until after we have copied it
602 		 * out.
603 		 */
604 		mb();
605 		xen_store->rsp_cons += avail;
606 
607 		/*
608 		 * xen_intr_signal() implies mb(). The producer will see
609 		 * the updated consumer index when the event is delivered.
610 		 */
611 		xen_intr_signal(xs.xen_intr_handle);
612 	}
613 
614 	return (0);
615 }
616 
617 /*----------------------- Received Message Processing ------------------------*/
618 /**
619  * Block reading the next message from the XenStore service and
620  * process the result.
621  *
622  * \param type  The returned type of the XenStore message received.
623  *
624  * \return  0 on success.  Otherwise an errno value indicating the
625  *          type of failure encountered.
626  */
627 static int
628 xs_process_msg(enum xsd_sockmsg_type *type)
629 {
630 	struct xs_stored_msg *msg;
631 	char *body;
632 	int error;
633 
634 	msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK);
635 	error = xs_read_store(&msg->hdr, sizeof(msg->hdr));
636 	if (error) {
637 		free(msg, M_XENSTORE);
638 		return (error);
639 	}
640 
641 	body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK);
642 	error = xs_read_store(body, msg->hdr.len);
643 	if (error) {
644 		free(body, M_XENSTORE);
645 		free(msg, M_XENSTORE);
646 		return (error);
647 	}
648 	body[msg->hdr.len] = '\0';
649 
650 	*type = msg->hdr.type;
651 	if (msg->hdr.type == XS_WATCH_EVENT) {
652 		msg->u.watch.vec = split(body, msg->hdr.len,
653 		    &msg->u.watch.vec_size);
654 
655 		mtx_lock(&xs.registered_watches_lock);
656 		msg->u.watch.handle = find_watch(
657 		    msg->u.watch.vec[XS_WATCH_TOKEN]);
658 		if (msg->u.watch.handle != NULL) {
659 			mtx_lock(&xs.watch_events_lock);
660 			TAILQ_INSERT_TAIL(&xs.watch_events, msg, list);
661 			wakeup(&xs.watch_events);
662 			mtx_unlock(&xs.watch_events_lock);
663 		} else {
664 			free(msg->u.watch.vec, M_XENSTORE);
665 			free(msg, M_XENSTORE);
666 		}
667 		mtx_unlock(&xs.registered_watches_lock);
668 	} else {
669 		msg->u.reply.body = body;
670 		mtx_lock(&xs.reply_lock);
671 		TAILQ_INSERT_TAIL(&xs.reply_list, msg, list);
672 		wakeup(&xs.reply_list);
673 		mtx_unlock(&xs.reply_lock);
674 	}
675 
676 	return (0);
677 }
678 
679 /**
680  * Thread body of the XenStore receive thread.
681  *
682  * This thread blocks waiting for data from the XenStore service
683  * and processes and received messages.
684  */
685 static void
686 xs_rcv_thread(void *arg __unused)
687 {
688 	int error;
689 	enum xsd_sockmsg_type type;
690 
691 	for (;;) {
692 		error = xs_process_msg(&type);
693 		if (error)
694 			printf("XENSTORE error %d while reading message\n",
695 			    error);
696 	}
697 }
698 
699 /*---------------- XenStore Message Request/Reply Processing -----------------*/
700 #define xsd_error_count	(sizeof(xsd_errors) / sizeof(xsd_errors[0]))
701 
702 /**
703  * Convert a XenStore error string into an errno number.
704  *
705  * \param errorstring  The error string to convert.
706  *
707  * \return  The errno best matching the input string.
708  *
709  * \note Unknown error strings are converted to EINVAL.
710  */
711 static int
712 xs_get_error(const char *errorstring)
713 {
714 	u_int i;
715 
716 	for (i = 0; i < xsd_error_count; i++) {
717 		if (!strcmp(errorstring, xsd_errors[i].errstring))
718 			return (xsd_errors[i].errnum);
719 	}
720 	log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s",
721 	    errorstring);
722 	return (EINVAL);
723 }
724 
725 /**
726  * Block waiting for a reply to a message request.
727  *
728  * \param type	  The returned type of the reply.
729  * \param len	  The returned body length of the reply.
730  * \param result  The returned body of the reply.
731  *
732  * \return  0 on success.  Otherwise an errno indicating the
733  *          cause of failure.
734  */
735 static int
736 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result)
737 {
738 	struct xs_stored_msg *msg;
739 	char *body;
740 	int error;
741 
742 	mtx_lock(&xs.reply_lock);
743 	while (TAILQ_EMPTY(&xs.reply_list)) {
744 		error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait",
745 		    hz/10);
746 		if (error && error != EWOULDBLOCK) {
747 			mtx_unlock(&xs.reply_lock);
748 			return (error);
749 		}
750 	}
751 	msg = TAILQ_FIRST(&xs.reply_list);
752 	TAILQ_REMOVE(&xs.reply_list, msg, list);
753 	mtx_unlock(&xs.reply_lock);
754 
755 	*type = msg->hdr.type;
756 	if (len)
757 		*len = msg->hdr.len;
758 	body = msg->u.reply.body;
759 
760 	free(msg, M_XENSTORE);
761 	*result = body;
762 	return (0);
763 }
764 
765 /**
766  * Pass-thru interface for XenStore access by userland processes
767  * via the XenStore device.
768  *
769  * Reply type and length data are returned by overwriting these
770  * fields in the passed in request message.
771  *
772  * \param msg	  A properly formatted message to transmit to
773  *		  the XenStore service.
774  * \param result  The returned body of the reply.
775  *
776  * \return  0 on success.  Otherwise an errno indicating the cause
777  *          of failure.
778  *
779  * \note The returned result is provided in malloced storage and thus
780  *       must be free'd by the caller with 'free(result, M_XENSTORE);
781  */
782 int
783 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result)
784 {
785 	uint32_t request_type;
786 	int error;
787 
788 	request_type = msg->type;
789 
790 	sx_xlock(&xs.request_mutex);
791 	if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0)
792 		error = xs_read_reply(&msg->type, &msg->len, result);
793 	sx_xunlock(&xs.request_mutex);
794 
795 	return (error);
796 }
797 
798 /**
799  * Send a message with an optionally muti-part body to the XenStore service.
800  *
801  * \param t              The transaction to use for this request.
802  * \param request_type   The type of message to send.
803  * \param iovec          Pointers to the body sections of the request.
804  * \param num_vecs       The number of body sections in the request.
805  * \param len            The returned length of the reply.
806  * \param result         The returned body of the reply.
807  *
808  * \return  0 on success.  Otherwise an errno indicating
809  *          the cause of failure.
810  *
811  * \note The returned result is provided in malloced storage and thus
812  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
813  */
814 static int
815 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type,
816     const struct iovec *iovec, u_int num_vecs, u_int *len, void **result)
817 {
818 	struct xsd_sockmsg msg;
819 	void *ret = NULL;
820 	u_int i;
821 	int error;
822 
823 	msg.tx_id = t.id;
824 	msg.req_id = 0;
825 	msg.type = request_type;
826 	msg.len = 0;
827 	for (i = 0; i < num_vecs; i++)
828 		msg.len += iovec[i].iov_len;
829 
830 	sx_xlock(&xs.request_mutex);
831 	error = xs_write_store(&msg, sizeof(msg));
832 	if (error) {
833 		printf("xs_talkv failed %d\n", error);
834 		goto error_lock_held;
835 	}
836 
837 	for (i = 0; i < num_vecs; i++) {
838 		error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len);
839 		if (error) {
840 			printf("xs_talkv failed %d\n", error);
841 			goto error_lock_held;
842 		}
843 	}
844 
845 	error = xs_read_reply(&msg.type, len, &ret);
846 
847 error_lock_held:
848 	sx_xunlock(&xs.request_mutex);
849 	if (error)
850 		return (error);
851 
852 	if (msg.type == XS_ERROR) {
853 		error = xs_get_error(ret);
854 		free(ret, M_XENSTORE);
855 		return (error);
856 	}
857 
858 	/* Reply is either error or an echo of our request message type. */
859 	KASSERT(msg.type == request_type, ("bad xenstore message type"));
860 
861 	if (result)
862 		*result = ret;
863 	else
864 		free(ret, M_XENSTORE);
865 
866 	return (0);
867 }
868 
869 /**
870  * Wrapper for xs_talkv allowing easy transmission of a message with
871  * a single, contiguous, message body.
872  *
873  * \param t              The transaction to use for this request.
874  * \param request_type   The type of message to send.
875  * \param body           The body of the request.
876  * \param len            The returned length of the reply.
877  * \param result         The returned body of the reply.
878  *
879  * \return  0 on success.  Otherwise an errno indicating
880  *          the cause of failure.
881  *
882  * \note The returned result is provided in malloced storage and thus
883  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
884  */
885 static int
886 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type,
887     const char *body, u_int *len, void **result)
888 {
889 	struct iovec iovec;
890 
891 	iovec.iov_base = (void *)(uintptr_t)body;
892 	iovec.iov_len = strlen(body) + 1;
893 
894 	return (xs_talkv(t, request_type, &iovec, 1, len, result));
895 }
896 
897 /*------------------------- XenStore Watch Support ---------------------------*/
898 /**
899  * Transmit a watch request to the XenStore service.
900  *
901  * \param path    The path in the XenStore to watch.
902  * \param tocken  A unique identifier for this watch.
903  *
904  * \return  0 on success.  Otherwise an errno indicating the
905  *          cause of failure.
906  */
907 static int
908 xs_watch(const char *path, const char *token)
909 {
910 	struct iovec iov[2];
911 
912 	iov[0].iov_base = (void *)(uintptr_t) path;
913 	iov[0].iov_len = strlen(path) + 1;
914 	iov[1].iov_base = (void *)(uintptr_t) token;
915 	iov[1].iov_len = strlen(token) + 1;
916 
917 	return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL));
918 }
919 
920 /**
921  * Transmit an uwatch request to the XenStore service.
922  *
923  * \param path    The path in the XenStore to watch.
924  * \param tocken  A unique identifier for this watch.
925  *
926  * \return  0 on success.  Otherwise an errno indicating the
927  *          cause of failure.
928  */
929 static int
930 xs_unwatch(const char *path, const char *token)
931 {
932 	struct iovec iov[2];
933 
934 	iov[0].iov_base = (void *)(uintptr_t) path;
935 	iov[0].iov_len = strlen(path) + 1;
936 	iov[1].iov_base = (void *)(uintptr_t) token;
937 	iov[1].iov_len = strlen(token) + 1;
938 
939 	return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL));
940 }
941 
942 /**
943  * Convert from watch token (unique identifier) to the associated
944  * internal tracking structure for this watch.
945  *
946  * \param tocken  The unique identifier for the watch to find.
947  *
948  * \return  A pointer to the found watch structure or NULL.
949  */
950 static struct xs_watch *
951 find_watch(const char *token)
952 {
953 	struct xs_watch *i, *cmp;
954 
955 	cmp = (void *)strtoul(token, NULL, 16);
956 
957 	LIST_FOREACH(i, &xs.registered_watches, list)
958 		if (i == cmp)
959 			return (i);
960 
961 	return (NULL);
962 }
963 
964 /**
965  * Thread body of the XenStore watch event dispatch thread.
966  */
967 static void
968 xenwatch_thread(void *unused)
969 {
970 	struct xs_stored_msg *msg;
971 
972 	for (;;) {
973 		mtx_lock(&xs.watch_events_lock);
974 		while (TAILQ_EMPTY(&xs.watch_events))
975 			mtx_sleep(&xs.watch_events,
976 			    &xs.watch_events_lock,
977 			    PWAIT | PCATCH, "waitev", hz/10);
978 
979 		mtx_unlock(&xs.watch_events_lock);
980 		sx_xlock(&xs.xenwatch_mutex);
981 
982 		mtx_lock(&xs.watch_events_lock);
983 		msg = TAILQ_FIRST(&xs.watch_events);
984 		if (msg)
985 			TAILQ_REMOVE(&xs.watch_events, msg, list);
986 		mtx_unlock(&xs.watch_events_lock);
987 
988 		if (msg != NULL) {
989 			/*
990 			 * XXX There are messages coming in with a NULL
991 			 * XXX callback.  This deserves further investigation;
992 			 * XXX the workaround here simply prevents the kernel
993 			 * XXX from panic'ing on startup.
994 			 */
995 			if (msg->u.watch.handle->callback != NULL)
996 				msg->u.watch.handle->callback(
997 					msg->u.watch.handle,
998 					(const char **)msg->u.watch.vec,
999 					msg->u.watch.vec_size);
1000 			free(msg->u.watch.vec, M_XENSTORE);
1001 			free(msg, M_XENSTORE);
1002 		}
1003 
1004 		sx_xunlock(&xs.xenwatch_mutex);
1005 	}
1006 }
1007 
1008 /*----------- XenStore Configuration, Initialization, and Control ------------*/
1009 /**
1010  * Setup communication channels with the XenStore service.
1011  *
1012  * \return  On success, 0. Otherwise an errno value indicating the
1013  *          type of failure.
1014  */
1015 static int
1016 xs_init_comms(void)
1017 {
1018 	int error;
1019 
1020 	if (xen_store->rsp_prod != xen_store->rsp_cons) {
1021 		log(LOG_WARNING, "XENSTORE response ring is not quiescent "
1022 		    "(%08x:%08x): fixing up\n",
1023 		    xen_store->rsp_cons, xen_store->rsp_prod);
1024 		xen_store->rsp_cons = xen_store->rsp_prod;
1025 	}
1026 
1027 	xen_intr_unbind(&xs.xen_intr_handle);
1028 
1029 	error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn,
1030 	    /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE,
1031 	    &xs.xen_intr_handle);
1032 	if (error) {
1033 		log(LOG_WARNING, "XENSTORE request irq failed %i\n", error);
1034 		return (error);
1035 	}
1036 
1037 	return (0);
1038 }
1039 
1040 /*------------------ Private Device Attachment Functions  --------------------*/
1041 static void
1042 xs_identify(driver_t *driver, device_t parent)
1043 {
1044 
1045 	BUS_ADD_CHILD(parent, 0, "xenstore", 0);
1046 }
1047 
1048 /**
1049  * Probe for the existence of the XenStore.
1050  *
1051  * \param dev
1052  */
1053 static int
1054 xs_probe(device_t dev)
1055 {
1056 	/*
1057 	 * We are either operating within a PV kernel or being probed
1058 	 * as the child of the successfully attached xenpci device.
1059 	 * Thus we are in a Xen environment and there will be a XenStore.
1060 	 * Unconditionally return success.
1061 	 */
1062 	device_set_desc(dev, "XenStore");
1063 	return (BUS_PROBE_NOWILDCARD);
1064 }
1065 
1066 static void
1067 xs_attach_deferred(void *arg)
1068 {
1069 
1070 	bus_generic_probe(xs.xs_dev);
1071 	bus_generic_attach(xs.xs_dev);
1072 
1073 	config_intrhook_disestablish(&xs.xs_attachcb);
1074 }
1075 
1076 static void
1077 xs_attach_late(void *arg, int pending)
1078 {
1079 
1080 	KASSERT((pending == 1), ("xs late attach queued several times"));
1081 	bus_generic_probe(xs.xs_dev);
1082 	bus_generic_attach(xs.xs_dev);
1083 }
1084 
1085 /**
1086  * Attach to the XenStore.
1087  *
1088  * This routine also prepares for the probe/attach of drivers that rely
1089  * on the XenStore.
1090  */
1091 static int
1092 xs_attach(device_t dev)
1093 {
1094 	int error;
1095 
1096 	/* Allow us to get device_t from softc and vice-versa. */
1097 	xs.xs_dev = dev;
1098 	device_set_softc(dev, &xs);
1099 
1100 	/* Initialize the interface to xenstore. */
1101 	struct proc *p;
1102 
1103 	xs.initialized = false;
1104 	xs.evtchn = xen_get_xenstore_evtchn();
1105 	if (xs.evtchn == 0) {
1106 		struct evtchn_alloc_unbound alloc_unbound;
1107 
1108 		/* Allocate a local event channel for xenstore */
1109 		alloc_unbound.dom = DOMID_SELF;
1110 		alloc_unbound.remote_dom = DOMID_SELF;
1111 		error = HYPERVISOR_event_channel_op(
1112 		    EVTCHNOP_alloc_unbound, &alloc_unbound);
1113 		if (error != 0)
1114 			panic(
1115 			   "unable to alloc event channel for Dom0: %d",
1116 			    error);
1117 
1118 		xs.evtchn = alloc_unbound.port;
1119 
1120 		/* Allocate memory for the xs shared ring */
1121 		xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO);
1122 		xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store));
1123 	} else {
1124 		xs.gpfn = xen_get_xenstore_mfn();
1125 		xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE,
1126 		    PAT_WRITE_BACK);
1127 		xs.initialized = true;
1128 	}
1129 
1130 	TAILQ_INIT(&xs.reply_list);
1131 	TAILQ_INIT(&xs.watch_events);
1132 
1133 	mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF);
1134 	mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF);
1135 	sx_init(&xs.xenwatch_mutex, "xenwatch");
1136 	sx_init(&xs.request_mutex, "xenstore request");
1137 	mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF);
1138 	mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF);
1139 
1140 	/* Initialize the shared memory rings to talk to xenstored */
1141 	error = xs_init_comms();
1142 	if (error)
1143 		return (error);
1144 
1145 	error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID,
1146 	    0, "xenwatch");
1147 	if (error)
1148 		return (error);
1149 	xs.xenwatch_pid = p->p_pid;
1150 
1151 	error = kproc_create(xs_rcv_thread, NULL, NULL,
1152 	    RFHIGHPID, 0, "xenstore_rcv");
1153 
1154 	xs.xs_attachcb.ich_func = xs_attach_deferred;
1155 	xs.xs_attachcb.ich_arg = NULL;
1156 	if (xs.initialized) {
1157 		config_intrhook_establish(&xs.xs_attachcb);
1158 	} else {
1159 		TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL);
1160 	}
1161 
1162 	return (error);
1163 }
1164 
1165 /**
1166  * Prepare for suspension of this VM by halting XenStore access after
1167  * all transactions and individual requests have completed.
1168  */
1169 static int
1170 xs_suspend(device_t dev)
1171 {
1172 	int error;
1173 
1174 	/* Suspend child Xen devices. */
1175 	error = bus_generic_suspend(dev);
1176 	if (error != 0)
1177 		return (error);
1178 
1179 	sx_xlock(&xs.request_mutex);
1180 
1181 	return (0);
1182 }
1183 
1184 /**
1185  * Resume XenStore operations after this VM is resumed.
1186  */
1187 static int
1188 xs_resume(device_t dev __unused)
1189 {
1190 	struct xs_watch *watch;
1191 	char token[sizeof(watch) * 2 + 1];
1192 
1193 	xs_init_comms();
1194 
1195 	sx_xunlock(&xs.request_mutex);
1196 
1197 	/*
1198 	 * NB: since xenstore childs have not been resumed yet, there's
1199 	 * no need to hold any watch mutex. Having clients try to add or
1200 	 * remove watches at this point (before xenstore is resumed) is
1201 	 * clearly a violantion of the resume order.
1202 	 */
1203 	LIST_FOREACH(watch, &xs.registered_watches, list) {
1204 		sprintf(token, "%lX", (long)watch);
1205 		xs_watch(watch->node, token);
1206 	}
1207 
1208 	/* Resume child Xen devices. */
1209 	bus_generic_resume(dev);
1210 
1211 	return (0);
1212 }
1213 
1214 /*-------------------- Private Device Attachment Data  -----------------------*/
1215 static device_method_t xenstore_methods[] = {
1216 	/* Device interface */
1217 	DEVMETHOD(device_identify,	xs_identify),
1218 	DEVMETHOD(device_probe,         xs_probe),
1219 	DEVMETHOD(device_attach,        xs_attach),
1220 	DEVMETHOD(device_detach,        bus_generic_detach),
1221 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
1222 	DEVMETHOD(device_suspend,       xs_suspend),
1223 	DEVMETHOD(device_resume,        xs_resume),
1224 
1225 	/* Bus interface */
1226 	DEVMETHOD(bus_add_child,        bus_generic_add_child),
1227 	DEVMETHOD(bus_alloc_resource,   bus_generic_alloc_resource),
1228 	DEVMETHOD(bus_release_resource, bus_generic_release_resource),
1229 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1230 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1231 
1232 	DEVMETHOD_END
1233 };
1234 
1235 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0);
1236 static devclass_t xenstore_devclass;
1237 
1238 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0);
1239 
1240 /*------------------------------- Sysctl Data --------------------------------*/
1241 /* XXX Shouldn't the node be somewhere else? */
1242 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
1243     "Xen");
1244 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, "");
1245 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, "");
1246 
1247 /*-------------------------------- Public API --------------------------------*/
1248 /*------- API comments for these methods can be found in xenstorevar.h -------*/
1249 bool
1250 xs_initialized(void)
1251 {
1252 
1253 	return (xs.initialized);
1254 }
1255 
1256 evtchn_port_t
1257 xs_evtchn(void)
1258 {
1259 
1260     return (xs.evtchn);
1261 }
1262 
1263 vm_paddr_t
1264 xs_address(void)
1265 {
1266 
1267     return (ptoa(xs.gpfn));
1268 }
1269 
1270 int
1271 xs_directory(struct xs_transaction t, const char *dir, const char *node,
1272     u_int *num, const char ***result)
1273 {
1274 	struct sbuf *path;
1275 	char *strings;
1276 	u_int len = 0;
1277 	int error;
1278 
1279 	path = xs_join(dir, node);
1280 	error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len,
1281 	    (void **)&strings);
1282 	sbuf_delete(path);
1283 	if (error)
1284 		return (error);
1285 
1286 	*result = split(strings, len, num);
1287 
1288 	return (0);
1289 }
1290 
1291 int
1292 xs_exists(struct xs_transaction t, const char *dir, const char *node)
1293 {
1294 	const char **d;
1295 	int error, dir_n;
1296 
1297 	error = xs_directory(t, dir, node, &dir_n, &d);
1298 	if (error)
1299 		return (0);
1300 	free(d, M_XENSTORE);
1301 	return (1);
1302 }
1303 
1304 int
1305 xs_read(struct xs_transaction t, const char *dir, const char *node,
1306     u_int *len, void **result)
1307 {
1308 	struct sbuf *path;
1309 	void *ret;
1310 	int error;
1311 
1312 	path = xs_join(dir, node);
1313 	error = xs_single(t, XS_READ, sbuf_data(path), len, &ret);
1314 	sbuf_delete(path);
1315 	if (error)
1316 		return (error);
1317 	*result = ret;
1318 	return (0);
1319 }
1320 
1321 int
1322 xs_write(struct xs_transaction t, const char *dir, const char *node,
1323     const char *string)
1324 {
1325 	struct sbuf *path;
1326 	struct iovec iovec[2];
1327 	int error;
1328 
1329 	path = xs_join(dir, node);
1330 
1331 	iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path);
1332 	iovec[0].iov_len = sbuf_len(path) + 1;
1333 	iovec[1].iov_base = (void *)(uintptr_t) string;
1334 	iovec[1].iov_len = strlen(string);
1335 
1336 	error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL);
1337 	sbuf_delete(path);
1338 
1339 	return (error);
1340 }
1341 
1342 int
1343 xs_mkdir(struct xs_transaction t, const char *dir, const char *node)
1344 {
1345 	struct sbuf *path;
1346 	int ret;
1347 
1348 	path = xs_join(dir, node);
1349 	ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL);
1350 	sbuf_delete(path);
1351 
1352 	return (ret);
1353 }
1354 
1355 int
1356 xs_rm(struct xs_transaction t, const char *dir, const char *node)
1357 {
1358 	struct sbuf *path;
1359 	int ret;
1360 
1361 	path = xs_join(dir, node);
1362 	ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL);
1363 	sbuf_delete(path);
1364 
1365 	return (ret);
1366 }
1367 
1368 int
1369 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node)
1370 {
1371 	struct xs_transaction local_xbt;
1372 	struct sbuf *root_path_sbuf;
1373 	struct sbuf *cur_path_sbuf;
1374 	char *root_path;
1375 	char *cur_path;
1376 	const char **dir;
1377 	int error;
1378 
1379 retry:
1380 	root_path_sbuf = xs_join(base, node);
1381 	cur_path_sbuf  = xs_join(base, node);
1382 	root_path      = sbuf_data(root_path_sbuf);
1383 	cur_path       = sbuf_data(cur_path_sbuf);
1384 	dir            = NULL;
1385 	local_xbt.id   = 0;
1386 
1387 	if (xbt.id == 0) {
1388 		error = xs_transaction_start(&local_xbt);
1389 		if (error != 0)
1390 			goto out;
1391 		xbt = local_xbt;
1392 	}
1393 
1394 	while (1) {
1395 		u_int count;
1396 		u_int i;
1397 
1398 		error = xs_directory(xbt, cur_path, "", &count, &dir);
1399 		if (error)
1400 			goto out;
1401 
1402 		for (i = 0; i < count; i++) {
1403 			error = xs_rm(xbt, cur_path, dir[i]);
1404 			if (error == ENOTEMPTY) {
1405 				struct sbuf *push_dir;
1406 
1407 				/*
1408 				 * Descend to clear out this sub directory.
1409 				 * We'll return to cur_dir once push_dir
1410 				 * is empty.
1411 				 */
1412 				push_dir = xs_join(cur_path, dir[i]);
1413 				sbuf_delete(cur_path_sbuf);
1414 				cur_path_sbuf = push_dir;
1415 				cur_path = sbuf_data(cur_path_sbuf);
1416 				break;
1417 			} else if (error != 0) {
1418 				goto out;
1419 			}
1420 		}
1421 
1422 		free(dir, M_XENSTORE);
1423 		dir = NULL;
1424 
1425 		if (i == count) {
1426 			char *last_slash;
1427 
1428 			/* Directory is empty.  It is now safe to remove. */
1429 			error = xs_rm(xbt, cur_path, "");
1430 			if (error != 0)
1431 				goto out;
1432 
1433 			if (!strcmp(cur_path, root_path))
1434 				break;
1435 
1436 			/* Return to processing the parent directory. */
1437 			last_slash = strrchr(cur_path, '/');
1438 			KASSERT(last_slash != NULL,
1439 				("xs_rm_tree: mangled path %s", cur_path));
1440 			*last_slash = '\0';
1441 		}
1442 	}
1443 
1444 out:
1445 	sbuf_delete(cur_path_sbuf);
1446 	sbuf_delete(root_path_sbuf);
1447 	if (dir != NULL)
1448 		free(dir, M_XENSTORE);
1449 
1450 	if (local_xbt.id != 0) {
1451 		int terror;
1452 
1453 		terror = xs_transaction_end(local_xbt, /*abort*/error != 0);
1454 		xbt.id = 0;
1455 		if (terror == EAGAIN && error == 0)
1456 			goto retry;
1457 	}
1458 	return (error);
1459 }
1460 
1461 int
1462 xs_transaction_start(struct xs_transaction *t)
1463 {
1464 	char *id_str;
1465 	int error;
1466 
1467 	error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL,
1468 	    (void **)&id_str);
1469 	if (error == 0) {
1470 		t->id = strtoul(id_str, NULL, 0);
1471 		free(id_str, M_XENSTORE);
1472 	}
1473 	return (error);
1474 }
1475 
1476 int
1477 xs_transaction_end(struct xs_transaction t, int abort)
1478 {
1479 	char abortstr[2];
1480 
1481 	if (abort)
1482 		strcpy(abortstr, "F");
1483 	else
1484 		strcpy(abortstr, "T");
1485 
1486 	return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL));
1487 }
1488 
1489 int
1490 xs_scanf(struct xs_transaction t, const char *dir, const char *node,
1491      int *scancountp, const char *fmt, ...)
1492 {
1493 	va_list ap;
1494 	int error, ns;
1495 	char *val;
1496 
1497 	error = xs_read(t, dir, node, NULL, (void **) &val);
1498 	if (error)
1499 		return (error);
1500 
1501 	va_start(ap, fmt);
1502 	ns = vsscanf(val, fmt, ap);
1503 	va_end(ap);
1504 	free(val, M_XENSTORE);
1505 	/* Distinctive errno. */
1506 	if (ns == 0)
1507 		return (ERANGE);
1508 	if (scancountp)
1509 		*scancountp = ns;
1510 	return (0);
1511 }
1512 
1513 int
1514 xs_vprintf(struct xs_transaction t,
1515     const char *dir, const char *node, const char *fmt, va_list ap)
1516 {
1517 	struct sbuf *sb;
1518 	int error;
1519 
1520 	sb = sbuf_new_auto();
1521 	sbuf_vprintf(sb, fmt, ap);
1522 	sbuf_finish(sb);
1523 	error = xs_write(t, dir, node, sbuf_data(sb));
1524 	sbuf_delete(sb);
1525 
1526 	return (error);
1527 }
1528 
1529 int
1530 xs_printf(struct xs_transaction t, const char *dir, const char *node,
1531      const char *fmt, ...)
1532 {
1533 	va_list ap;
1534 	int error;
1535 
1536 	va_start(ap, fmt);
1537 	error = xs_vprintf(t, dir, node, fmt, ap);
1538 	va_end(ap);
1539 
1540 	return (error);
1541 }
1542 
1543 int
1544 xs_gather(struct xs_transaction t, const char *dir, ...)
1545 {
1546 	va_list ap;
1547 	const char *name;
1548 	int error;
1549 
1550 	va_start(ap, dir);
1551 	error = 0;
1552 	while (error == 0 && (name = va_arg(ap, char *)) != NULL) {
1553 		const char *fmt = va_arg(ap, char *);
1554 		void *result = va_arg(ap, void *);
1555 		char *p;
1556 
1557 		error = xs_read(t, dir, name, NULL, (void **) &p);
1558 		if (error)
1559 			break;
1560 
1561 		if (fmt) {
1562 			if (sscanf(p, fmt, result) == 0)
1563 				error = EINVAL;
1564 			free(p, M_XENSTORE);
1565 		} else
1566 			*(char **)result = p;
1567 	}
1568 	va_end(ap);
1569 
1570 	return (error);
1571 }
1572 
1573 int
1574 xs_register_watch(struct xs_watch *watch)
1575 {
1576 	/* Pointer in ascii is the token. */
1577 	char token[sizeof(watch) * 2 + 1];
1578 	int error;
1579 
1580 	sprintf(token, "%lX", (long)watch);
1581 
1582 	mtx_lock(&xs.registered_watches_lock);
1583 	KASSERT(find_watch(token) == NULL, ("watch already registered"));
1584 	LIST_INSERT_HEAD(&xs.registered_watches, watch, list);
1585 	mtx_unlock(&xs.registered_watches_lock);
1586 
1587 	error = xs_watch(watch->node, token);
1588 
1589 	/* Ignore errors due to multiple registration. */
1590 	if (error == EEXIST)
1591 		error = 0;
1592 
1593 	if (error != 0) {
1594 		mtx_lock(&xs.registered_watches_lock);
1595 		LIST_REMOVE(watch, list);
1596 		mtx_unlock(&xs.registered_watches_lock);
1597 	}
1598 
1599 	return (error);
1600 }
1601 
1602 void
1603 xs_unregister_watch(struct xs_watch *watch)
1604 {
1605 	struct xs_stored_msg *msg, *tmp;
1606 	char token[sizeof(watch) * 2 + 1];
1607 	int error;
1608 
1609 	sprintf(token, "%lX", (long)watch);
1610 
1611 	mtx_lock(&xs.registered_watches_lock);
1612 	if (find_watch(token) == NULL) {
1613 		mtx_unlock(&xs.registered_watches_lock);
1614 		return;
1615 	}
1616 	LIST_REMOVE(watch, list);
1617 	mtx_unlock(&xs.registered_watches_lock);
1618 
1619 	error = xs_unwatch(watch->node, token);
1620 	if (error)
1621 		log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n",
1622 		    watch->node, error);
1623 
1624 	/* Cancel pending watch events. */
1625 	mtx_lock(&xs.watch_events_lock);
1626 	TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) {
1627 		if (msg->u.watch.handle != watch)
1628 			continue;
1629 		TAILQ_REMOVE(&xs.watch_events, msg, list);
1630 		free(msg->u.watch.vec, M_XENSTORE);
1631 		free(msg, M_XENSTORE);
1632 	}
1633 	mtx_unlock(&xs.watch_events_lock);
1634 
1635 	/* Flush any currently-executing callback, unless we are it. :-) */
1636 	if (curproc->p_pid != xs.xenwatch_pid) {
1637 		sx_xlock(&xs.xenwatch_mutex);
1638 		sx_xunlock(&xs.xenwatch_mutex);
1639 	}
1640 }
1641 
1642 void
1643 xs_lock(void)
1644 {
1645 
1646 	sx_xlock(&xs.request_mutex);
1647 	return;
1648 }
1649 
1650 void
1651 xs_unlock(void)
1652 {
1653 
1654 	sx_xunlock(&xs.request_mutex);
1655 	return;
1656 }
1657