1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/module.h> 39 #include <sys/mutex.h> 40 #include <sys/sx.h> 41 #include <sys/syslog.h> 42 #include <sys/malloc.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sbuf.h> 47 #include <sys/sysctl.h> 48 #include <sys/uio.h> 49 #include <sys/unistd.h> 50 #include <sys/queue.h> 51 #include <sys/taskqueue.h> 52 53 #include <machine/stdarg.h> 54 55 #include <xen/xen-os.h> 56 #include <xen/hypervisor.h> 57 #include <xen/xen_intr.h> 58 59 #include <xen/interface/hvm/params.h> 60 #include <xen/hvm.h> 61 62 #include <xen/xenstore/xenstorevar.h> 63 #include <xen/xenstore/xenstore_internal.h> 64 65 #include <vm/vm.h> 66 #include <vm/pmap.h> 67 68 /** 69 * \file xenstore.c 70 * \brief XenStore interface 71 * 72 * The XenStore interface is a simple storage system that is a means of 73 * communicating state and configuration data between the Xen Domain 0 74 * and the various guest domains. All configuration data other than 75 * a small amount of essential information required during the early 76 * boot process of launching a Xen aware guest, is managed using the 77 * XenStore. 78 * 79 * The XenStore is ASCII string based, and has a structure and semantics 80 * similar to a filesystem. There are files and directories, the directories 81 * able to contain files or other directories. The depth of the hierarchy 82 * is only limited by the XenStore's maximum path length. 83 * 84 * The communication channel between the XenStore service and other 85 * domains is via two, guest specific, ring buffers in a shared memory 86 * area. One ring buffer is used for communicating in each direction. 87 * The grant table references for this shared memory are given to the 88 * guest either via the xen_start_info structure for a fully para- 89 * virtualized guest, or via HVM hypercalls for a hardware virtualized 90 * guest. 91 * 92 * The XenStore communication relies on an event channel and thus 93 * interrupts. For this reason, the attachment of the XenStore 94 * relies on an interrupt driven configuration hook to hold off 95 * boot processing until communication with the XenStore service 96 * can be established. 97 * 98 * Several Xen services depend on the XenStore, most notably the 99 * XenBus used to discover and manage Xen devices. These services 100 * are implemented as NewBus child attachments to a bus exported 101 * by this XenStore driver. 102 */ 103 104 static struct xs_watch *find_watch(const char *token); 105 106 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 107 108 /** 109 * Pointer to shared memory communication structures allowing us 110 * to communicate with the XenStore service. 111 * 112 * When operating in full PV mode, this pointer is set early in kernel 113 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 114 * to get the guest frame number for the shared page and then map it 115 * into kva. See xs_init() for details. 116 */ 117 static struct xenstore_domain_interface *xen_store; 118 119 /*-------------------------- Private Data Structures ------------------------*/ 120 121 /** 122 * Structure capturing messages received from the XenStore service. 123 */ 124 struct xs_stored_msg { 125 TAILQ_ENTRY(xs_stored_msg) list; 126 127 struct xsd_sockmsg hdr; 128 129 union { 130 /* Queued replies. */ 131 struct { 132 char *body; 133 } reply; 134 135 /* Queued watch events. */ 136 struct { 137 struct xs_watch *handle; 138 const char **vec; 139 u_int vec_size; 140 } watch; 141 } u; 142 }; 143 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 144 145 /** 146 * Container for all XenStore related state. 147 */ 148 struct xs_softc { 149 /** Newbus device for the XenStore. */ 150 device_t xs_dev; 151 152 /** 153 * Lock serializing access to ring producer/consumer 154 * indexes. Use of this lock guarantees that wakeups 155 * of blocking readers/writers are not missed due to 156 * races with the XenStore service. 157 */ 158 struct mtx ring_lock; 159 160 /* 161 * Mutex used to insure exclusive access to the outgoing 162 * communication ring. We use a lock type that can be 163 * held while sleeping so that xs_write() can block waiting 164 * for space in the ring to free up, without allowing another 165 * writer to come in and corrupt a partial message write. 166 */ 167 struct sx request_mutex; 168 169 /** 170 * A list of replies to our requests. 171 * 172 * The reply list is filled by xs_rcv_thread(). It 173 * is consumed by the context that issued the request 174 * to which a reply is made. The requester blocks in 175 * xs_read_reply(). 176 * 177 * /note Only one requesting context can be active at a time. 178 * This is guaranteed by the request_mutex and insures 179 * that the requester sees replies matching the order 180 * of its requests. 181 */ 182 struct xs_stored_msg_list reply_list; 183 184 /** Lock protecting the reply list. */ 185 struct mtx reply_lock; 186 187 /** 188 * List of registered watches. 189 */ 190 struct xs_watch_list registered_watches; 191 192 /** Lock protecting the registered watches list. */ 193 struct mtx registered_watches_lock; 194 195 /** 196 * List of pending watch callback events. 197 */ 198 struct xs_stored_msg_list watch_events; 199 200 /** Lock protecting the watch calback list. */ 201 struct mtx watch_events_lock; 202 203 /** 204 * The processid of the xenwatch thread. 205 */ 206 pid_t xenwatch_pid; 207 208 /** 209 * Sleepable mutex used to gate the execution of XenStore 210 * watch event callbacks. 211 * 212 * xenwatch_thread holds an exclusive lock on this mutex 213 * while delivering event callbacks, and xenstore_unregister_watch() 214 * uses an exclusive lock of this mutex to guarantee that no 215 * callbacks of the just unregistered watch are pending 216 * before returning to its caller. 217 */ 218 struct sx xenwatch_mutex; 219 220 /** 221 * The HVM guest pseudo-physical frame number. This is Xen's mapping 222 * of the true machine frame number into our "physical address space". 223 */ 224 unsigned long gpfn; 225 226 /** 227 * The event channel for communicating with the 228 * XenStore service. 229 */ 230 int evtchn; 231 232 /** Handle for XenStore interrupts. */ 233 xen_intr_handle_t xen_intr_handle; 234 235 /** 236 * Interrupt driven config hook allowing us to defer 237 * attaching children until interrupts (and thus communication 238 * with the XenStore service) are available. 239 */ 240 struct intr_config_hook xs_attachcb; 241 242 /** 243 * Xenstore is a user-space process that usually runs in Dom0, 244 * so if this domain is booting as Dom0, xenstore wont we accessible, 245 * and we have to defer the initialization of xenstore related 246 * devices to later (when xenstore is started). 247 */ 248 bool initialized; 249 250 /** 251 * Task to run when xenstore is initialized (Dom0 only), will 252 * take care of attaching xenstore related devices. 253 */ 254 struct task xs_late_init; 255 }; 256 257 /*-------------------------------- Global Data ------------------------------*/ 258 static struct xs_softc xs; 259 260 /*------------------------- Private Utility Functions -----------------------*/ 261 262 /** 263 * Count and optionally record pointers to a number of NUL terminated 264 * strings in a buffer. 265 * 266 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 267 * \param dest An array to store pointers to each string found in strings. 268 * \param len The length of the buffer pointed to by strings. 269 * 270 * \return A count of the number of strings found. 271 */ 272 static u_int 273 extract_strings(const char *strings, const char **dest, u_int len) 274 { 275 u_int num; 276 const char *p; 277 278 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 279 if (dest != NULL) 280 *dest++ = p; 281 num++; 282 } 283 284 return (num); 285 } 286 287 /** 288 * Convert a contiguous buffer containing a series of NUL terminated 289 * strings into an array of pointers to strings. 290 * 291 * The returned pointer references the array of string pointers which 292 * is followed by the storage for the string data. It is the client's 293 * responsibility to free this storage. 294 * 295 * The storage addressed by strings is free'd prior to split returning. 296 * 297 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 298 * \param len The length of the buffer pointed to by strings. 299 * \param num The number of strings found and returned in the strings 300 * array. 301 * 302 * \return An array of pointers to the strings found in the input buffer. 303 */ 304 static const char ** 305 split(char *strings, u_int len, u_int *num) 306 { 307 const char **ret; 308 309 /* Protect against unterminated buffers. */ 310 if (len > 0) 311 strings[len - 1] = '\0'; 312 313 /* Count the strings. */ 314 *num = extract_strings(strings, /*dest*/NULL, len); 315 316 /* Transfer to one big alloc for easy freeing by the caller. */ 317 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 318 memcpy(&ret[*num], strings, len); 319 free(strings, M_XENSTORE); 320 321 /* Extract pointers to newly allocated array. */ 322 strings = (char *)&ret[*num]; 323 (void)extract_strings(strings, /*dest*/ret, len); 324 325 return (ret); 326 } 327 328 /*------------------------- Public Utility Functions -------------------------*/ 329 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 330 struct sbuf * 331 xs_join(const char *dir, const char *name) 332 { 333 struct sbuf *sb; 334 335 sb = sbuf_new_auto(); 336 sbuf_cat(sb, dir); 337 if (name[0] != '\0') { 338 sbuf_putc(sb, '/'); 339 sbuf_cat(sb, name); 340 } 341 sbuf_finish(sb); 342 343 return (sb); 344 } 345 346 /*-------------------- Low Level Communication Management --------------------*/ 347 /** 348 * Interrupt handler for the XenStore event channel. 349 * 350 * XenStore reads and writes block on "xen_store" for buffer 351 * space. Wakeup any blocking operations when the XenStore 352 * service has modified the queues. 353 */ 354 static void 355 xs_intr(void * arg __unused /*__attribute__((unused))*/) 356 { 357 358 /* If xenstore has not been initialized, initialize it now */ 359 if (!xs.initialized) { 360 xs.initialized = true; 361 /* 362 * Since this task is probing and attaching devices we 363 * have to hold the Giant lock. 364 */ 365 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 366 } 367 368 /* 369 * Hold ring lock across wakeup so that clients 370 * cannot miss a wakeup. 371 */ 372 mtx_lock(&xs.ring_lock); 373 wakeup(xen_store); 374 mtx_unlock(&xs.ring_lock); 375 } 376 377 /** 378 * Verify that the indexes for a ring are valid. 379 * 380 * The difference between the producer and consumer cannot 381 * exceed the size of the ring. 382 * 383 * \param cons The consumer index for the ring to test. 384 * \param prod The producer index for the ring to test. 385 * 386 * \retval 1 If indexes are in range. 387 * \retval 0 If the indexes are out of range. 388 */ 389 static int 390 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 391 { 392 393 return ((prod - cons) <= XENSTORE_RING_SIZE); 394 } 395 396 /** 397 * Return a pointer to, and the length of, the contiguous 398 * free region available for output in a ring buffer. 399 * 400 * \param cons The consumer index for the ring. 401 * \param prod The producer index for the ring. 402 * \param buf The base address of the ring's storage. 403 * \param len The amount of contiguous storage available. 404 * 405 * \return A pointer to the start location of the free region. 406 */ 407 static void * 408 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 409 char *buf, uint32_t *len) 410 { 411 412 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 413 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 414 *len = XENSTORE_RING_SIZE - (prod - cons); 415 return (buf + MASK_XENSTORE_IDX(prod)); 416 } 417 418 /** 419 * Return a pointer to, and the length of, the contiguous 420 * data available to read from a ring buffer. 421 * 422 * \param cons The consumer index for the ring. 423 * \param prod The producer index for the ring. 424 * \param buf The base address of the ring's storage. 425 * \param len The amount of contiguous data available to read. 426 * 427 * \return A pointer to the start location of the available data. 428 */ 429 static const void * 430 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 431 const char *buf, uint32_t *len) 432 { 433 434 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 435 if ((prod - cons) < *len) 436 *len = prod - cons; 437 return (buf + MASK_XENSTORE_IDX(cons)); 438 } 439 440 /** 441 * Transmit data to the XenStore service. 442 * 443 * \param tdata A pointer to the contiguous data to send. 444 * \param len The amount of data to send. 445 * 446 * \return On success 0, otherwise an errno value indicating the 447 * cause of failure. 448 * 449 * \invariant Called from thread context. 450 * \invariant The buffer pointed to by tdata is at least len bytes 451 * in length. 452 * \invariant xs.request_mutex exclusively locked. 453 */ 454 static int 455 xs_write_store(const void *tdata, unsigned len) 456 { 457 XENSTORE_RING_IDX cons, prod; 458 const char *data = (const char *)tdata; 459 int error; 460 461 sx_assert(&xs.request_mutex, SX_XLOCKED); 462 while (len != 0) { 463 void *dst; 464 u_int avail; 465 466 /* Hold lock so we can't miss wakeups should we block. */ 467 mtx_lock(&xs.ring_lock); 468 cons = xen_store->req_cons; 469 prod = xen_store->req_prod; 470 if ((prod - cons) == XENSTORE_RING_SIZE) { 471 /* 472 * Output ring is full. Wait for a ring event. 473 * 474 * Note that the events from both queues 475 * are combined, so being woken does not 476 * guarantee that data exist in the read 477 * ring. 478 * 479 * To simplify error recovery and the retry, 480 * we specify PDROP so our lock is *not* held 481 * when msleep returns. 482 */ 483 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 484 "xbwrite", /*timeout*/0); 485 if (error && error != EWOULDBLOCK) 486 return (error); 487 488 /* Try again. */ 489 continue; 490 } 491 mtx_unlock(&xs.ring_lock); 492 493 /* Verify queue sanity. */ 494 if (!xs_check_indexes(cons, prod)) { 495 xen_store->req_cons = xen_store->req_prod = 0; 496 return (EIO); 497 } 498 499 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 500 if (avail > len) 501 avail = len; 502 503 memcpy(dst, data, avail); 504 data += avail; 505 len -= avail; 506 507 /* 508 * The store to the producer index, which indicates 509 * to the other side that new data has arrived, must 510 * be visible only after our copy of the data into the 511 * ring has completed. 512 */ 513 wmb(); 514 xen_store->req_prod += avail; 515 516 /* 517 * xen_intr_signal() implies mb(). The other side will see 518 * the change to req_prod at the time of the interrupt. 519 */ 520 xen_intr_signal(xs.xen_intr_handle); 521 } 522 523 return (0); 524 } 525 526 /** 527 * Receive data from the XenStore service. 528 * 529 * \param tdata A pointer to the contiguous buffer to receive the data. 530 * \param len The amount of data to receive. 531 * 532 * \return On success 0, otherwise an errno value indicating the 533 * cause of failure. 534 * 535 * \invariant Called from thread context. 536 * \invariant The buffer pointed to by tdata is at least len bytes 537 * in length. 538 * 539 * \note xs_read does not perform any internal locking to guarantee 540 * serial access to the incoming ring buffer. However, there 541 * is only one context processing reads: xs_rcv_thread(). 542 */ 543 static int 544 xs_read_store(void *tdata, unsigned len) 545 { 546 XENSTORE_RING_IDX cons, prod; 547 char *data = (char *)tdata; 548 int error; 549 550 while (len != 0) { 551 u_int avail; 552 const char *src; 553 554 /* Hold lock so we can't miss wakeups should we block. */ 555 mtx_lock(&xs.ring_lock); 556 cons = xen_store->rsp_cons; 557 prod = xen_store->rsp_prod; 558 if (cons == prod) { 559 /* 560 * Nothing to read. Wait for a ring event. 561 * 562 * Note that the events from both queues 563 * are combined, so being woken does not 564 * guarantee that data exist in the read 565 * ring. 566 * 567 * To simplify error recovery and the retry, 568 * we specify PDROP so our lock is *not* held 569 * when msleep returns. 570 */ 571 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 572 "xbread", /*timeout*/0); 573 if (error && error != EWOULDBLOCK) 574 return (error); 575 continue; 576 } 577 mtx_unlock(&xs.ring_lock); 578 579 /* Verify queue sanity. */ 580 if (!xs_check_indexes(cons, prod)) { 581 xen_store->rsp_cons = xen_store->rsp_prod = 0; 582 return (EIO); 583 } 584 585 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 586 if (avail > len) 587 avail = len; 588 589 /* 590 * Insure the data we read is related to the indexes 591 * we read above. 592 */ 593 rmb(); 594 595 memcpy(data, src, avail); 596 data += avail; 597 len -= avail; 598 599 /* 600 * Insure that the producer of this ring does not see 601 * the ring space as free until after we have copied it 602 * out. 603 */ 604 mb(); 605 xen_store->rsp_cons += avail; 606 607 /* 608 * xen_intr_signal() implies mb(). The producer will see 609 * the updated consumer index when the event is delivered. 610 */ 611 xen_intr_signal(xs.xen_intr_handle); 612 } 613 614 return (0); 615 } 616 617 /*----------------------- Received Message Processing ------------------------*/ 618 /** 619 * Block reading the next message from the XenStore service and 620 * process the result. 621 * 622 * \param type The returned type of the XenStore message received. 623 * 624 * \return 0 on success. Otherwise an errno value indicating the 625 * type of failure encountered. 626 */ 627 static int 628 xs_process_msg(enum xsd_sockmsg_type *type) 629 { 630 struct xs_stored_msg *msg; 631 char *body; 632 int error; 633 634 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 635 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 636 if (error) { 637 free(msg, M_XENSTORE); 638 return (error); 639 } 640 641 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 642 error = xs_read_store(body, msg->hdr.len); 643 if (error) { 644 free(body, M_XENSTORE); 645 free(msg, M_XENSTORE); 646 return (error); 647 } 648 body[msg->hdr.len] = '\0'; 649 650 *type = msg->hdr.type; 651 if (msg->hdr.type == XS_WATCH_EVENT) { 652 msg->u.watch.vec = split(body, msg->hdr.len, 653 &msg->u.watch.vec_size); 654 655 mtx_lock(&xs.registered_watches_lock); 656 msg->u.watch.handle = find_watch( 657 msg->u.watch.vec[XS_WATCH_TOKEN]); 658 if (msg->u.watch.handle != NULL) { 659 mtx_lock(&xs.watch_events_lock); 660 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 661 wakeup(&xs.watch_events); 662 mtx_unlock(&xs.watch_events_lock); 663 } else { 664 free(msg->u.watch.vec, M_XENSTORE); 665 free(msg, M_XENSTORE); 666 } 667 mtx_unlock(&xs.registered_watches_lock); 668 } else { 669 msg->u.reply.body = body; 670 mtx_lock(&xs.reply_lock); 671 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 672 wakeup(&xs.reply_list); 673 mtx_unlock(&xs.reply_lock); 674 } 675 676 return (0); 677 } 678 679 /** 680 * Thread body of the XenStore receive thread. 681 * 682 * This thread blocks waiting for data from the XenStore service 683 * and processes and received messages. 684 */ 685 static void 686 xs_rcv_thread(void *arg __unused) 687 { 688 int error; 689 enum xsd_sockmsg_type type; 690 691 for (;;) { 692 error = xs_process_msg(&type); 693 if (error) 694 printf("XENSTORE error %d while reading message\n", 695 error); 696 } 697 } 698 699 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 700 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 701 702 /** 703 * Convert a XenStore error string into an errno number. 704 * 705 * \param errorstring The error string to convert. 706 * 707 * \return The errno best matching the input string. 708 * 709 * \note Unknown error strings are converted to EINVAL. 710 */ 711 static int 712 xs_get_error(const char *errorstring) 713 { 714 u_int i; 715 716 for (i = 0; i < xsd_error_count; i++) { 717 if (!strcmp(errorstring, xsd_errors[i].errstring)) 718 return (xsd_errors[i].errnum); 719 } 720 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 721 errorstring); 722 return (EINVAL); 723 } 724 725 /** 726 * Block waiting for a reply to a message request. 727 * 728 * \param type The returned type of the reply. 729 * \param len The returned body length of the reply. 730 * \param result The returned body of the reply. 731 * 732 * \return 0 on success. Otherwise an errno indicating the 733 * cause of failure. 734 */ 735 static int 736 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 737 { 738 struct xs_stored_msg *msg; 739 char *body; 740 int error; 741 742 mtx_lock(&xs.reply_lock); 743 while (TAILQ_EMPTY(&xs.reply_list)) { 744 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait", 745 hz/10); 746 if (error && error != EWOULDBLOCK) { 747 mtx_unlock(&xs.reply_lock); 748 return (error); 749 } 750 } 751 msg = TAILQ_FIRST(&xs.reply_list); 752 TAILQ_REMOVE(&xs.reply_list, msg, list); 753 mtx_unlock(&xs.reply_lock); 754 755 *type = msg->hdr.type; 756 if (len) 757 *len = msg->hdr.len; 758 body = msg->u.reply.body; 759 760 free(msg, M_XENSTORE); 761 *result = body; 762 return (0); 763 } 764 765 /** 766 * Pass-thru interface for XenStore access by userland processes 767 * via the XenStore device. 768 * 769 * Reply type and length data are returned by overwriting these 770 * fields in the passed in request message. 771 * 772 * \param msg A properly formatted message to transmit to 773 * the XenStore service. 774 * \param result The returned body of the reply. 775 * 776 * \return 0 on success. Otherwise an errno indicating the cause 777 * of failure. 778 * 779 * \note The returned result is provided in malloced storage and thus 780 * must be free'd by the caller with 'free(result, M_XENSTORE); 781 */ 782 int 783 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 784 { 785 uint32_t request_type; 786 int error; 787 788 request_type = msg->type; 789 790 sx_xlock(&xs.request_mutex); 791 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 792 error = xs_read_reply(&msg->type, &msg->len, result); 793 sx_xunlock(&xs.request_mutex); 794 795 return (error); 796 } 797 798 /** 799 * Send a message with an optionally muti-part body to the XenStore service. 800 * 801 * \param t The transaction to use for this request. 802 * \param request_type The type of message to send. 803 * \param iovec Pointers to the body sections of the request. 804 * \param num_vecs The number of body sections in the request. 805 * \param len The returned length of the reply. 806 * \param result The returned body of the reply. 807 * 808 * \return 0 on success. Otherwise an errno indicating 809 * the cause of failure. 810 * 811 * \note The returned result is provided in malloced storage and thus 812 * must be free'd by the caller with 'free(*result, M_XENSTORE); 813 */ 814 static int 815 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 816 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 817 { 818 struct xsd_sockmsg msg; 819 void *ret = NULL; 820 u_int i; 821 int error; 822 823 msg.tx_id = t.id; 824 msg.req_id = 0; 825 msg.type = request_type; 826 msg.len = 0; 827 for (i = 0; i < num_vecs; i++) 828 msg.len += iovec[i].iov_len; 829 830 sx_xlock(&xs.request_mutex); 831 error = xs_write_store(&msg, sizeof(msg)); 832 if (error) { 833 printf("xs_talkv failed %d\n", error); 834 goto error_lock_held; 835 } 836 837 for (i = 0; i < num_vecs; i++) { 838 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 839 if (error) { 840 printf("xs_talkv failed %d\n", error); 841 goto error_lock_held; 842 } 843 } 844 845 error = xs_read_reply(&msg.type, len, &ret); 846 847 error_lock_held: 848 sx_xunlock(&xs.request_mutex); 849 if (error) 850 return (error); 851 852 if (msg.type == XS_ERROR) { 853 error = xs_get_error(ret); 854 free(ret, M_XENSTORE); 855 return (error); 856 } 857 858 /* Reply is either error or an echo of our request message type. */ 859 KASSERT(msg.type == request_type, ("bad xenstore message type")); 860 861 if (result) 862 *result = ret; 863 else 864 free(ret, M_XENSTORE); 865 866 return (0); 867 } 868 869 /** 870 * Wrapper for xs_talkv allowing easy transmission of a message with 871 * a single, contiguous, message body. 872 * 873 * \param t The transaction to use for this request. 874 * \param request_type The type of message to send. 875 * \param body The body of the request. 876 * \param len The returned length of the reply. 877 * \param result The returned body of the reply. 878 * 879 * \return 0 on success. Otherwise an errno indicating 880 * the cause of failure. 881 * 882 * \note The returned result is provided in malloced storage and thus 883 * must be free'd by the caller with 'free(*result, M_XENSTORE); 884 */ 885 static int 886 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 887 const char *body, u_int *len, void **result) 888 { 889 struct iovec iovec; 890 891 iovec.iov_base = (void *)(uintptr_t)body; 892 iovec.iov_len = strlen(body) + 1; 893 894 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 895 } 896 897 /*------------------------- XenStore Watch Support ---------------------------*/ 898 /** 899 * Transmit a watch request to the XenStore service. 900 * 901 * \param path The path in the XenStore to watch. 902 * \param tocken A unique identifier for this watch. 903 * 904 * \return 0 on success. Otherwise an errno indicating the 905 * cause of failure. 906 */ 907 static int 908 xs_watch(const char *path, const char *token) 909 { 910 struct iovec iov[2]; 911 912 iov[0].iov_base = (void *)(uintptr_t) path; 913 iov[0].iov_len = strlen(path) + 1; 914 iov[1].iov_base = (void *)(uintptr_t) token; 915 iov[1].iov_len = strlen(token) + 1; 916 917 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 918 } 919 920 /** 921 * Transmit an uwatch request to the XenStore service. 922 * 923 * \param path The path in the XenStore to watch. 924 * \param tocken A unique identifier for this watch. 925 * 926 * \return 0 on success. Otherwise an errno indicating the 927 * cause of failure. 928 */ 929 static int 930 xs_unwatch(const char *path, const char *token) 931 { 932 struct iovec iov[2]; 933 934 iov[0].iov_base = (void *)(uintptr_t) path; 935 iov[0].iov_len = strlen(path) + 1; 936 iov[1].iov_base = (void *)(uintptr_t) token; 937 iov[1].iov_len = strlen(token) + 1; 938 939 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 940 } 941 942 /** 943 * Convert from watch token (unique identifier) to the associated 944 * internal tracking structure for this watch. 945 * 946 * \param tocken The unique identifier for the watch to find. 947 * 948 * \return A pointer to the found watch structure or NULL. 949 */ 950 static struct xs_watch * 951 find_watch(const char *token) 952 { 953 struct xs_watch *i, *cmp; 954 955 cmp = (void *)strtoul(token, NULL, 16); 956 957 LIST_FOREACH(i, &xs.registered_watches, list) 958 if (i == cmp) 959 return (i); 960 961 return (NULL); 962 } 963 964 /** 965 * Thread body of the XenStore watch event dispatch thread. 966 */ 967 static void 968 xenwatch_thread(void *unused) 969 { 970 struct xs_stored_msg *msg; 971 972 for (;;) { 973 mtx_lock(&xs.watch_events_lock); 974 while (TAILQ_EMPTY(&xs.watch_events)) 975 mtx_sleep(&xs.watch_events, 976 &xs.watch_events_lock, 977 PWAIT | PCATCH, "waitev", hz/10); 978 979 mtx_unlock(&xs.watch_events_lock); 980 sx_xlock(&xs.xenwatch_mutex); 981 982 mtx_lock(&xs.watch_events_lock); 983 msg = TAILQ_FIRST(&xs.watch_events); 984 if (msg) 985 TAILQ_REMOVE(&xs.watch_events, msg, list); 986 mtx_unlock(&xs.watch_events_lock); 987 988 if (msg != NULL) { 989 /* 990 * XXX There are messages coming in with a NULL 991 * XXX callback. This deserves further investigation; 992 * XXX the workaround here simply prevents the kernel 993 * XXX from panic'ing on startup. 994 */ 995 if (msg->u.watch.handle->callback != NULL) 996 msg->u.watch.handle->callback( 997 msg->u.watch.handle, 998 (const char **)msg->u.watch.vec, 999 msg->u.watch.vec_size); 1000 free(msg->u.watch.vec, M_XENSTORE); 1001 free(msg, M_XENSTORE); 1002 } 1003 1004 sx_xunlock(&xs.xenwatch_mutex); 1005 } 1006 } 1007 1008 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1009 /** 1010 * Setup communication channels with the XenStore service. 1011 * 1012 * \return On success, 0. Otherwise an errno value indicating the 1013 * type of failure. 1014 */ 1015 static int 1016 xs_init_comms(void) 1017 { 1018 int error; 1019 1020 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1021 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1022 "(%08x:%08x): fixing up\n", 1023 xen_store->rsp_cons, xen_store->rsp_prod); 1024 xen_store->rsp_cons = xen_store->rsp_prod; 1025 } 1026 1027 xen_intr_unbind(&xs.xen_intr_handle); 1028 1029 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1030 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1031 &xs.xen_intr_handle); 1032 if (error) { 1033 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1034 return (error); 1035 } 1036 1037 return (0); 1038 } 1039 1040 /*------------------ Private Device Attachment Functions --------------------*/ 1041 static void 1042 xs_identify(driver_t *driver, device_t parent) 1043 { 1044 1045 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1046 } 1047 1048 /** 1049 * Probe for the existence of the XenStore. 1050 * 1051 * \param dev 1052 */ 1053 static int 1054 xs_probe(device_t dev) 1055 { 1056 /* 1057 * We are either operating within a PV kernel or being probed 1058 * as the child of the successfully attached xenpci device. 1059 * Thus we are in a Xen environment and there will be a XenStore. 1060 * Unconditionally return success. 1061 */ 1062 device_set_desc(dev, "XenStore"); 1063 return (BUS_PROBE_NOWILDCARD); 1064 } 1065 1066 static void 1067 xs_attach_deferred(void *arg) 1068 { 1069 1070 bus_generic_probe(xs.xs_dev); 1071 bus_generic_attach(xs.xs_dev); 1072 1073 config_intrhook_disestablish(&xs.xs_attachcb); 1074 } 1075 1076 static void 1077 xs_attach_late(void *arg, int pending) 1078 { 1079 1080 KASSERT((pending == 1), ("xs late attach queued several times")); 1081 bus_generic_probe(xs.xs_dev); 1082 bus_generic_attach(xs.xs_dev); 1083 } 1084 1085 /** 1086 * Attach to the XenStore. 1087 * 1088 * This routine also prepares for the probe/attach of drivers that rely 1089 * on the XenStore. 1090 */ 1091 static int 1092 xs_attach(device_t dev) 1093 { 1094 int error; 1095 1096 /* Allow us to get device_t from softc and vice-versa. */ 1097 xs.xs_dev = dev; 1098 device_set_softc(dev, &xs); 1099 1100 /* Initialize the interface to xenstore. */ 1101 struct proc *p; 1102 1103 xs.initialized = false; 1104 xs.evtchn = xen_get_xenstore_evtchn(); 1105 if (xs.evtchn == 0) { 1106 struct evtchn_alloc_unbound alloc_unbound; 1107 1108 /* Allocate a local event channel for xenstore */ 1109 alloc_unbound.dom = DOMID_SELF; 1110 alloc_unbound.remote_dom = DOMID_SELF; 1111 error = HYPERVISOR_event_channel_op( 1112 EVTCHNOP_alloc_unbound, &alloc_unbound); 1113 if (error != 0) 1114 panic( 1115 "unable to alloc event channel for Dom0: %d", 1116 error); 1117 1118 xs.evtchn = alloc_unbound.port; 1119 1120 /* Allocate memory for the xs shared ring */ 1121 xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO); 1122 xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store)); 1123 } else { 1124 xs.gpfn = xen_get_xenstore_mfn(); 1125 xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE, 1126 PAT_WRITE_BACK); 1127 xs.initialized = true; 1128 } 1129 1130 TAILQ_INIT(&xs.reply_list); 1131 TAILQ_INIT(&xs.watch_events); 1132 1133 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1134 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1135 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1136 sx_init(&xs.request_mutex, "xenstore request"); 1137 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1138 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1139 1140 /* Initialize the shared memory rings to talk to xenstored */ 1141 error = xs_init_comms(); 1142 if (error) 1143 return (error); 1144 1145 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1146 0, "xenwatch"); 1147 if (error) 1148 return (error); 1149 xs.xenwatch_pid = p->p_pid; 1150 1151 error = kproc_create(xs_rcv_thread, NULL, NULL, 1152 RFHIGHPID, 0, "xenstore_rcv"); 1153 1154 xs.xs_attachcb.ich_func = xs_attach_deferred; 1155 xs.xs_attachcb.ich_arg = NULL; 1156 if (xs.initialized) { 1157 config_intrhook_establish(&xs.xs_attachcb); 1158 } else { 1159 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1160 } 1161 1162 return (error); 1163 } 1164 1165 /** 1166 * Prepare for suspension of this VM by halting XenStore access after 1167 * all transactions and individual requests have completed. 1168 */ 1169 static int 1170 xs_suspend(device_t dev) 1171 { 1172 int error; 1173 1174 /* Suspend child Xen devices. */ 1175 error = bus_generic_suspend(dev); 1176 if (error != 0) 1177 return (error); 1178 1179 sx_xlock(&xs.request_mutex); 1180 1181 return (0); 1182 } 1183 1184 /** 1185 * Resume XenStore operations after this VM is resumed. 1186 */ 1187 static int 1188 xs_resume(device_t dev __unused) 1189 { 1190 struct xs_watch *watch; 1191 char token[sizeof(watch) * 2 + 1]; 1192 1193 xs_init_comms(); 1194 1195 sx_xunlock(&xs.request_mutex); 1196 1197 /* 1198 * NB: since xenstore childs have not been resumed yet, there's 1199 * no need to hold any watch mutex. Having clients try to add or 1200 * remove watches at this point (before xenstore is resumed) is 1201 * clearly a violantion of the resume order. 1202 */ 1203 LIST_FOREACH(watch, &xs.registered_watches, list) { 1204 sprintf(token, "%lX", (long)watch); 1205 xs_watch(watch->node, token); 1206 } 1207 1208 /* Resume child Xen devices. */ 1209 bus_generic_resume(dev); 1210 1211 return (0); 1212 } 1213 1214 /*-------------------- Private Device Attachment Data -----------------------*/ 1215 static device_method_t xenstore_methods[] = { 1216 /* Device interface */ 1217 DEVMETHOD(device_identify, xs_identify), 1218 DEVMETHOD(device_probe, xs_probe), 1219 DEVMETHOD(device_attach, xs_attach), 1220 DEVMETHOD(device_detach, bus_generic_detach), 1221 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1222 DEVMETHOD(device_suspend, xs_suspend), 1223 DEVMETHOD(device_resume, xs_resume), 1224 1225 /* Bus interface */ 1226 DEVMETHOD(bus_add_child, bus_generic_add_child), 1227 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1228 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1229 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1230 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1231 1232 DEVMETHOD_END 1233 }; 1234 1235 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1236 static devclass_t xenstore_devclass; 1237 1238 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0); 1239 1240 /*------------------------------- Sysctl Data --------------------------------*/ 1241 /* XXX Shouldn't the node be somewhere else? */ 1242 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 1243 "Xen"); 1244 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1245 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1246 1247 /*-------------------------------- Public API --------------------------------*/ 1248 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1249 bool 1250 xs_initialized(void) 1251 { 1252 1253 return (xs.initialized); 1254 } 1255 1256 evtchn_port_t 1257 xs_evtchn(void) 1258 { 1259 1260 return (xs.evtchn); 1261 } 1262 1263 vm_paddr_t 1264 xs_address(void) 1265 { 1266 1267 return (ptoa(xs.gpfn)); 1268 } 1269 1270 int 1271 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1272 u_int *num, const char ***result) 1273 { 1274 struct sbuf *path; 1275 char *strings; 1276 u_int len = 0; 1277 int error; 1278 1279 path = xs_join(dir, node); 1280 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1281 (void **)&strings); 1282 sbuf_delete(path); 1283 if (error) 1284 return (error); 1285 1286 *result = split(strings, len, num); 1287 1288 return (0); 1289 } 1290 1291 int 1292 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1293 { 1294 const char **d; 1295 int error, dir_n; 1296 1297 error = xs_directory(t, dir, node, &dir_n, &d); 1298 if (error) 1299 return (0); 1300 free(d, M_XENSTORE); 1301 return (1); 1302 } 1303 1304 int 1305 xs_read(struct xs_transaction t, const char *dir, const char *node, 1306 u_int *len, void **result) 1307 { 1308 struct sbuf *path; 1309 void *ret; 1310 int error; 1311 1312 path = xs_join(dir, node); 1313 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1314 sbuf_delete(path); 1315 if (error) 1316 return (error); 1317 *result = ret; 1318 return (0); 1319 } 1320 1321 int 1322 xs_write(struct xs_transaction t, const char *dir, const char *node, 1323 const char *string) 1324 { 1325 struct sbuf *path; 1326 struct iovec iovec[2]; 1327 int error; 1328 1329 path = xs_join(dir, node); 1330 1331 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1332 iovec[0].iov_len = sbuf_len(path) + 1; 1333 iovec[1].iov_base = (void *)(uintptr_t) string; 1334 iovec[1].iov_len = strlen(string); 1335 1336 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1337 sbuf_delete(path); 1338 1339 return (error); 1340 } 1341 1342 int 1343 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1344 { 1345 struct sbuf *path; 1346 int ret; 1347 1348 path = xs_join(dir, node); 1349 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1350 sbuf_delete(path); 1351 1352 return (ret); 1353 } 1354 1355 int 1356 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1357 { 1358 struct sbuf *path; 1359 int ret; 1360 1361 path = xs_join(dir, node); 1362 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1363 sbuf_delete(path); 1364 1365 return (ret); 1366 } 1367 1368 int 1369 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1370 { 1371 struct xs_transaction local_xbt; 1372 struct sbuf *root_path_sbuf; 1373 struct sbuf *cur_path_sbuf; 1374 char *root_path; 1375 char *cur_path; 1376 const char **dir; 1377 int error; 1378 1379 retry: 1380 root_path_sbuf = xs_join(base, node); 1381 cur_path_sbuf = xs_join(base, node); 1382 root_path = sbuf_data(root_path_sbuf); 1383 cur_path = sbuf_data(cur_path_sbuf); 1384 dir = NULL; 1385 local_xbt.id = 0; 1386 1387 if (xbt.id == 0) { 1388 error = xs_transaction_start(&local_xbt); 1389 if (error != 0) 1390 goto out; 1391 xbt = local_xbt; 1392 } 1393 1394 while (1) { 1395 u_int count; 1396 u_int i; 1397 1398 error = xs_directory(xbt, cur_path, "", &count, &dir); 1399 if (error) 1400 goto out; 1401 1402 for (i = 0; i < count; i++) { 1403 error = xs_rm(xbt, cur_path, dir[i]); 1404 if (error == ENOTEMPTY) { 1405 struct sbuf *push_dir; 1406 1407 /* 1408 * Descend to clear out this sub directory. 1409 * We'll return to cur_dir once push_dir 1410 * is empty. 1411 */ 1412 push_dir = xs_join(cur_path, dir[i]); 1413 sbuf_delete(cur_path_sbuf); 1414 cur_path_sbuf = push_dir; 1415 cur_path = sbuf_data(cur_path_sbuf); 1416 break; 1417 } else if (error != 0) { 1418 goto out; 1419 } 1420 } 1421 1422 free(dir, M_XENSTORE); 1423 dir = NULL; 1424 1425 if (i == count) { 1426 char *last_slash; 1427 1428 /* Directory is empty. It is now safe to remove. */ 1429 error = xs_rm(xbt, cur_path, ""); 1430 if (error != 0) 1431 goto out; 1432 1433 if (!strcmp(cur_path, root_path)) 1434 break; 1435 1436 /* Return to processing the parent directory. */ 1437 last_slash = strrchr(cur_path, '/'); 1438 KASSERT(last_slash != NULL, 1439 ("xs_rm_tree: mangled path %s", cur_path)); 1440 *last_slash = '\0'; 1441 } 1442 } 1443 1444 out: 1445 sbuf_delete(cur_path_sbuf); 1446 sbuf_delete(root_path_sbuf); 1447 if (dir != NULL) 1448 free(dir, M_XENSTORE); 1449 1450 if (local_xbt.id != 0) { 1451 int terror; 1452 1453 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1454 xbt.id = 0; 1455 if (terror == EAGAIN && error == 0) 1456 goto retry; 1457 } 1458 return (error); 1459 } 1460 1461 int 1462 xs_transaction_start(struct xs_transaction *t) 1463 { 1464 char *id_str; 1465 int error; 1466 1467 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1468 (void **)&id_str); 1469 if (error == 0) { 1470 t->id = strtoul(id_str, NULL, 0); 1471 free(id_str, M_XENSTORE); 1472 } 1473 return (error); 1474 } 1475 1476 int 1477 xs_transaction_end(struct xs_transaction t, int abort) 1478 { 1479 char abortstr[2]; 1480 1481 if (abort) 1482 strcpy(abortstr, "F"); 1483 else 1484 strcpy(abortstr, "T"); 1485 1486 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1487 } 1488 1489 int 1490 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1491 int *scancountp, const char *fmt, ...) 1492 { 1493 va_list ap; 1494 int error, ns; 1495 char *val; 1496 1497 error = xs_read(t, dir, node, NULL, (void **) &val); 1498 if (error) 1499 return (error); 1500 1501 va_start(ap, fmt); 1502 ns = vsscanf(val, fmt, ap); 1503 va_end(ap); 1504 free(val, M_XENSTORE); 1505 /* Distinctive errno. */ 1506 if (ns == 0) 1507 return (ERANGE); 1508 if (scancountp) 1509 *scancountp = ns; 1510 return (0); 1511 } 1512 1513 int 1514 xs_vprintf(struct xs_transaction t, 1515 const char *dir, const char *node, const char *fmt, va_list ap) 1516 { 1517 struct sbuf *sb; 1518 int error; 1519 1520 sb = sbuf_new_auto(); 1521 sbuf_vprintf(sb, fmt, ap); 1522 sbuf_finish(sb); 1523 error = xs_write(t, dir, node, sbuf_data(sb)); 1524 sbuf_delete(sb); 1525 1526 return (error); 1527 } 1528 1529 int 1530 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1531 const char *fmt, ...) 1532 { 1533 va_list ap; 1534 int error; 1535 1536 va_start(ap, fmt); 1537 error = xs_vprintf(t, dir, node, fmt, ap); 1538 va_end(ap); 1539 1540 return (error); 1541 } 1542 1543 int 1544 xs_gather(struct xs_transaction t, const char *dir, ...) 1545 { 1546 va_list ap; 1547 const char *name; 1548 int error; 1549 1550 va_start(ap, dir); 1551 error = 0; 1552 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1553 const char *fmt = va_arg(ap, char *); 1554 void *result = va_arg(ap, void *); 1555 char *p; 1556 1557 error = xs_read(t, dir, name, NULL, (void **) &p); 1558 if (error) 1559 break; 1560 1561 if (fmt) { 1562 if (sscanf(p, fmt, result) == 0) 1563 error = EINVAL; 1564 free(p, M_XENSTORE); 1565 } else 1566 *(char **)result = p; 1567 } 1568 va_end(ap); 1569 1570 return (error); 1571 } 1572 1573 int 1574 xs_register_watch(struct xs_watch *watch) 1575 { 1576 /* Pointer in ascii is the token. */ 1577 char token[sizeof(watch) * 2 + 1]; 1578 int error; 1579 1580 sprintf(token, "%lX", (long)watch); 1581 1582 mtx_lock(&xs.registered_watches_lock); 1583 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1584 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1585 mtx_unlock(&xs.registered_watches_lock); 1586 1587 error = xs_watch(watch->node, token); 1588 1589 /* Ignore errors due to multiple registration. */ 1590 if (error == EEXIST) 1591 error = 0; 1592 1593 if (error != 0) { 1594 mtx_lock(&xs.registered_watches_lock); 1595 LIST_REMOVE(watch, list); 1596 mtx_unlock(&xs.registered_watches_lock); 1597 } 1598 1599 return (error); 1600 } 1601 1602 void 1603 xs_unregister_watch(struct xs_watch *watch) 1604 { 1605 struct xs_stored_msg *msg, *tmp; 1606 char token[sizeof(watch) * 2 + 1]; 1607 int error; 1608 1609 sprintf(token, "%lX", (long)watch); 1610 1611 mtx_lock(&xs.registered_watches_lock); 1612 if (find_watch(token) == NULL) { 1613 mtx_unlock(&xs.registered_watches_lock); 1614 return; 1615 } 1616 LIST_REMOVE(watch, list); 1617 mtx_unlock(&xs.registered_watches_lock); 1618 1619 error = xs_unwatch(watch->node, token); 1620 if (error) 1621 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1622 watch->node, error); 1623 1624 /* Cancel pending watch events. */ 1625 mtx_lock(&xs.watch_events_lock); 1626 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1627 if (msg->u.watch.handle != watch) 1628 continue; 1629 TAILQ_REMOVE(&xs.watch_events, msg, list); 1630 free(msg->u.watch.vec, M_XENSTORE); 1631 free(msg, M_XENSTORE); 1632 } 1633 mtx_unlock(&xs.watch_events_lock); 1634 1635 /* Flush any currently-executing callback, unless we are it. :-) */ 1636 if (curproc->p_pid != xs.xenwatch_pid) { 1637 sx_xlock(&xs.xenwatch_mutex); 1638 sx_xunlock(&xs.xenwatch_mutex); 1639 } 1640 } 1641 1642 void 1643 xs_lock(void) 1644 { 1645 1646 sx_xlock(&xs.request_mutex); 1647 return; 1648 } 1649 1650 void 1651 xs_unlock(void) 1652 { 1653 1654 sx_xunlock(&xs.request_mutex); 1655 return; 1656 } 1657