1 /****************************************************************************** 2 * xenstore.c 3 * 4 * Low-level kernel interface to the XenStore. 5 * 6 * Copyright (C) 2005 Rusty Russell, IBM Corporation 7 * Copyright (C) 2009,2010 Spectra Logic Corporation 8 * 9 * This file may be distributed separately from the Linux kernel, or 10 * incorporated into other software packages, subject to the following license: 11 * 12 * Permission is hereby granted, free of charge, to any person obtaining a copy 13 * of this source file (the "Software"), to deal in the Software without 14 * restriction, including without limitation the rights to use, copy, modify, 15 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 16 * and to permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice shall be included in 20 * all copies or substantial portions of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 25 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 28 * IN THE SOFTWARE. 29 */ 30 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bus.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/sx.h> 42 #include <sys/syslog.h> 43 #include <sys/malloc.h> 44 #include <sys/systm.h> 45 #include <sys/proc.h> 46 #include <sys/kthread.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/uio.h> 50 #include <sys/unistd.h> 51 #include <sys/queue.h> 52 #include <sys/taskqueue.h> 53 54 #include <machine/stdarg.h> 55 56 #include <xen/xen-os.h> 57 #include <xen/hypervisor.h> 58 #include <xen/xen_intr.h> 59 60 #include <xen/interface/hvm/params.h> 61 #include <xen/hvm.h> 62 63 #include <xen/xenstore/xenstorevar.h> 64 #include <xen/xenstore/xenstore_internal.h> 65 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 69 /** 70 * \file xenstore.c 71 * \brief XenStore interface 72 * 73 * The XenStore interface is a simple storage system that is a means of 74 * communicating state and configuration data between the Xen Domain 0 75 * and the various guest domains. All configuration data other than 76 * a small amount of essential information required during the early 77 * boot process of launching a Xen aware guest, is managed using the 78 * XenStore. 79 * 80 * The XenStore is ASCII string based, and has a structure and semantics 81 * similar to a filesystem. There are files and directories, the directories 82 * able to contain files or other directories. The depth of the hierarchy 83 * is only limited by the XenStore's maximum path length. 84 * 85 * The communication channel between the XenStore service and other 86 * domains is via two, guest specific, ring buffers in a shared memory 87 * area. One ring buffer is used for communicating in each direction. 88 * The grant table references for this shared memory are given to the 89 * guest either via the xen_start_info structure for a fully para- 90 * virtualized guest, or via HVM hypercalls for a hardware virtualized 91 * guest. 92 * 93 * The XenStore communication relies on an event channel and thus 94 * interrupts. For this reason, the attachment of the XenStore 95 * relies on an interrupt driven configuration hook to hold off 96 * boot processing until communication with the XenStore service 97 * can be established. 98 * 99 * Several Xen services depend on the XenStore, most notably the 100 * XenBus used to discover and manage Xen devices. These services 101 * are implemented as NewBus child attachments to a bus exported 102 * by this XenStore driver. 103 */ 104 105 static struct xs_watch *find_watch(const char *token); 106 107 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results"); 108 109 /** 110 * Pointer to shared memory communication structures allowing us 111 * to communicate with the XenStore service. 112 * 113 * When operating in full PV mode, this pointer is set early in kernel 114 * startup from within xen_machdep.c. In HVM mode, we use hypercalls 115 * to get the guest frame number for the shared page and then map it 116 * into kva. See xs_init() for details. 117 */ 118 struct xenstore_domain_interface *xen_store; 119 120 /*-------------------------- Private Data Structures ------------------------*/ 121 122 /** 123 * Structure capturing messages received from the XenStore service. 124 */ 125 struct xs_stored_msg { 126 TAILQ_ENTRY(xs_stored_msg) list; 127 128 struct xsd_sockmsg hdr; 129 130 union { 131 /* Queued replies. */ 132 struct { 133 char *body; 134 } reply; 135 136 /* Queued watch events. */ 137 struct { 138 struct xs_watch *handle; 139 const char **vec; 140 u_int vec_size; 141 } watch; 142 } u; 143 }; 144 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg); 145 146 /** 147 * Container for all XenStore related state. 148 */ 149 struct xs_softc { 150 /** Newbus device for the XenStore. */ 151 device_t xs_dev; 152 153 /** 154 * Lock serializing access to ring producer/consumer 155 * indexes. Use of this lock guarantees that wakeups 156 * of blocking readers/writers are not missed due to 157 * races with the XenStore service. 158 */ 159 struct mtx ring_lock; 160 161 /* 162 * Mutex used to insure exclusive access to the outgoing 163 * communication ring. We use a lock type that can be 164 * held while sleeping so that xs_write() can block waiting 165 * for space in the ring to free up, without allowing another 166 * writer to come in and corrupt a partial message write. 167 */ 168 struct sx request_mutex; 169 170 /** 171 * A list of replies to our requests. 172 * 173 * The reply list is filled by xs_rcv_thread(). It 174 * is consumed by the context that issued the request 175 * to which a reply is made. The requester blocks in 176 * xs_read_reply(). 177 * 178 * /note Only one requesting context can be active at a time. 179 * This is guaranteed by the request_mutex and insures 180 * that the requester sees replies matching the order 181 * of its requests. 182 */ 183 struct xs_stored_msg_list reply_list; 184 185 /** Lock protecting the reply list. */ 186 struct mtx reply_lock; 187 188 /** 189 * List of registered watches. 190 */ 191 struct xs_watch_list registered_watches; 192 193 /** Lock protecting the registered watches list. */ 194 struct mtx registered_watches_lock; 195 196 /** 197 * List of pending watch callback events. 198 */ 199 struct xs_stored_msg_list watch_events; 200 201 /** Lock protecting the watch calback list. */ 202 struct mtx watch_events_lock; 203 204 /** 205 * The processid of the xenwatch thread. 206 */ 207 pid_t xenwatch_pid; 208 209 /** 210 * Sleepable mutex used to gate the execution of XenStore 211 * watch event callbacks. 212 * 213 * xenwatch_thread holds an exclusive lock on this mutex 214 * while delivering event callbacks, and xenstore_unregister_watch() 215 * uses an exclusive lock of this mutex to guarantee that no 216 * callbacks of the just unregistered watch are pending 217 * before returning to its caller. 218 */ 219 struct sx xenwatch_mutex; 220 221 /** 222 * The HVM guest pseudo-physical frame number. This is Xen's mapping 223 * of the true machine frame number into our "physical address space". 224 */ 225 unsigned long gpfn; 226 227 /** 228 * The event channel for communicating with the 229 * XenStore service. 230 */ 231 int evtchn; 232 233 /** Handle for XenStore interrupts. */ 234 xen_intr_handle_t xen_intr_handle; 235 236 /** 237 * Interrupt driven config hook allowing us to defer 238 * attaching children until interrupts (and thus communication 239 * with the XenStore service) are available. 240 */ 241 struct intr_config_hook xs_attachcb; 242 243 /** 244 * Xenstore is a user-space process that usually runs in Dom0, 245 * so if this domain is booting as Dom0, xenstore wont we accessible, 246 * and we have to defer the initialization of xenstore related 247 * devices to later (when xenstore is started). 248 */ 249 bool initialized; 250 251 /** 252 * Task to run when xenstore is initialized (Dom0 only), will 253 * take care of attaching xenstore related devices. 254 */ 255 struct task xs_late_init; 256 }; 257 258 /*-------------------------------- Global Data ------------------------------*/ 259 static struct xs_softc xs; 260 261 /*------------------------- Private Utility Functions -----------------------*/ 262 263 /** 264 * Count and optionally record pointers to a number of NUL terminated 265 * strings in a buffer. 266 * 267 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 268 * \param dest An array to store pointers to each string found in strings. 269 * \param len The length of the buffer pointed to by strings. 270 * 271 * \return A count of the number of strings found. 272 */ 273 static u_int 274 extract_strings(const char *strings, const char **dest, u_int len) 275 { 276 u_int num; 277 const char *p; 278 279 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) { 280 if (dest != NULL) 281 *dest++ = p; 282 num++; 283 } 284 285 return (num); 286 } 287 288 /** 289 * Convert a contiguous buffer containing a series of NUL terminated 290 * strings into an array of pointers to strings. 291 * 292 * The returned pointer references the array of string pointers which 293 * is followed by the storage for the string data. It is the client's 294 * responsibility to free this storage. 295 * 296 * The storage addressed by strings is free'd prior to split returning. 297 * 298 * \param strings A pointer to a contiguous buffer of NUL terminated strings. 299 * \param len The length of the buffer pointed to by strings. 300 * \param num The number of strings found and returned in the strings 301 * array. 302 * 303 * \return An array of pointers to the strings found in the input buffer. 304 */ 305 static const char ** 306 split(char *strings, u_int len, u_int *num) 307 { 308 const char **ret; 309 310 /* Protect against unterminated buffers. */ 311 if (len > 0) 312 strings[len - 1] = '\0'; 313 314 /* Count the strings. */ 315 *num = extract_strings(strings, /*dest*/NULL, len); 316 317 /* Transfer to one big alloc for easy freeing by the caller. */ 318 ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK); 319 memcpy(&ret[*num], strings, len); 320 free(strings, M_XENSTORE); 321 322 /* Extract pointers to newly allocated array. */ 323 strings = (char *)&ret[*num]; 324 (void)extract_strings(strings, /*dest*/ret, len); 325 326 return (ret); 327 } 328 329 /*------------------------- Public Utility Functions -------------------------*/ 330 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 331 struct sbuf * 332 xs_join(const char *dir, const char *name) 333 { 334 struct sbuf *sb; 335 336 sb = sbuf_new_auto(); 337 sbuf_cat(sb, dir); 338 if (name[0] != '\0') { 339 sbuf_putc(sb, '/'); 340 sbuf_cat(sb, name); 341 } 342 sbuf_finish(sb); 343 344 return (sb); 345 } 346 347 /*-------------------- Low Level Communication Management --------------------*/ 348 /** 349 * Interrupt handler for the XenStore event channel. 350 * 351 * XenStore reads and writes block on "xen_store" for buffer 352 * space. Wakeup any blocking operations when the XenStore 353 * service has modified the queues. 354 */ 355 static void 356 xs_intr(void * arg __unused /*__attribute__((unused))*/) 357 { 358 359 /* If xenstore has not been initialized, initialize it now */ 360 if (!xs.initialized) { 361 xs.initialized = true; 362 /* 363 * Since this task is probing and attaching devices we 364 * have to hold the Giant lock. 365 */ 366 taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init); 367 } 368 369 /* 370 * Hold ring lock across wakeup so that clients 371 * cannot miss a wakeup. 372 */ 373 mtx_lock(&xs.ring_lock); 374 wakeup(xen_store); 375 mtx_unlock(&xs.ring_lock); 376 } 377 378 /** 379 * Verify that the indexes for a ring are valid. 380 * 381 * The difference between the producer and consumer cannot 382 * exceed the size of the ring. 383 * 384 * \param cons The consumer index for the ring to test. 385 * \param prod The producer index for the ring to test. 386 * 387 * \retval 1 If indexes are in range. 388 * \retval 0 If the indexes are out of range. 389 */ 390 static int 391 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod) 392 { 393 394 return ((prod - cons) <= XENSTORE_RING_SIZE); 395 } 396 397 /** 398 * Return a pointer to, and the length of, the contiguous 399 * free region available for output in a ring buffer. 400 * 401 * \param cons The consumer index for the ring. 402 * \param prod The producer index for the ring. 403 * \param buf The base address of the ring's storage. 404 * \param len The amount of contiguous storage available. 405 * 406 * \return A pointer to the start location of the free region. 407 */ 408 static void * 409 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 410 char *buf, uint32_t *len) 411 { 412 413 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod); 414 if ((XENSTORE_RING_SIZE - (prod - cons)) < *len) 415 *len = XENSTORE_RING_SIZE - (prod - cons); 416 return (buf + MASK_XENSTORE_IDX(prod)); 417 } 418 419 /** 420 * Return a pointer to, and the length of, the contiguous 421 * data available to read from a ring buffer. 422 * 423 * \param cons The consumer index for the ring. 424 * \param prod The producer index for the ring. 425 * \param buf The base address of the ring's storage. 426 * \param len The amount of contiguous data available to read. 427 * 428 * \return A pointer to the start location of the available data. 429 */ 430 static const void * 431 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod, 432 const char *buf, uint32_t *len) 433 { 434 435 *len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons); 436 if ((prod - cons) < *len) 437 *len = prod - cons; 438 return (buf + MASK_XENSTORE_IDX(cons)); 439 } 440 441 /** 442 * Transmit data to the XenStore service. 443 * 444 * \param tdata A pointer to the contiguous data to send. 445 * \param len The amount of data to send. 446 * 447 * \return On success 0, otherwise an errno value indicating the 448 * cause of failure. 449 * 450 * \invariant Called from thread context. 451 * \invariant The buffer pointed to by tdata is at least len bytes 452 * in length. 453 * \invariant xs.request_mutex exclusively locked. 454 */ 455 static int 456 xs_write_store(const void *tdata, unsigned len) 457 { 458 XENSTORE_RING_IDX cons, prod; 459 const char *data = (const char *)tdata; 460 int error; 461 462 sx_assert(&xs.request_mutex, SX_XLOCKED); 463 while (len != 0) { 464 void *dst; 465 u_int avail; 466 467 /* Hold lock so we can't miss wakeups should we block. */ 468 mtx_lock(&xs.ring_lock); 469 cons = xen_store->req_cons; 470 prod = xen_store->req_prod; 471 if ((prod - cons) == XENSTORE_RING_SIZE) { 472 /* 473 * Output ring is full. Wait for a ring event. 474 * 475 * Note that the events from both queues 476 * are combined, so being woken does not 477 * guarantee that data exist in the read 478 * ring. 479 * 480 * To simplify error recovery and the retry, 481 * we specify PDROP so our lock is *not* held 482 * when msleep returns. 483 */ 484 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 485 "xbwrite", /*timeout*/0); 486 if (error && error != EWOULDBLOCK) 487 return (error); 488 489 /* Try again. */ 490 continue; 491 } 492 mtx_unlock(&xs.ring_lock); 493 494 /* Verify queue sanity. */ 495 if (!xs_check_indexes(cons, prod)) { 496 xen_store->req_cons = xen_store->req_prod = 0; 497 return (EIO); 498 } 499 500 dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail); 501 if (avail > len) 502 avail = len; 503 504 memcpy(dst, data, avail); 505 data += avail; 506 len -= avail; 507 508 /* 509 * The store to the producer index, which indicates 510 * to the other side that new data has arrived, must 511 * be visible only after our copy of the data into the 512 * ring has completed. 513 */ 514 wmb(); 515 xen_store->req_prod += avail; 516 517 /* 518 * xen_intr_signal() implies mb(). The other side will see 519 * the change to req_prod at the time of the interrupt. 520 */ 521 xen_intr_signal(xs.xen_intr_handle); 522 } 523 524 return (0); 525 } 526 527 /** 528 * Receive data from the XenStore service. 529 * 530 * \param tdata A pointer to the contiguous buffer to receive the data. 531 * \param len The amount of data to receive. 532 * 533 * \return On success 0, otherwise an errno value indicating the 534 * cause of failure. 535 * 536 * \invariant Called from thread context. 537 * \invariant The buffer pointed to by tdata is at least len bytes 538 * in length. 539 * 540 * \note xs_read does not perform any internal locking to guarantee 541 * serial access to the incoming ring buffer. However, there 542 * is only one context processing reads: xs_rcv_thread(). 543 */ 544 static int 545 xs_read_store(void *tdata, unsigned len) 546 { 547 XENSTORE_RING_IDX cons, prod; 548 char *data = (char *)tdata; 549 int error; 550 551 while (len != 0) { 552 u_int avail; 553 const char *src; 554 555 /* Hold lock so we can't miss wakeups should we block. */ 556 mtx_lock(&xs.ring_lock); 557 cons = xen_store->rsp_cons; 558 prod = xen_store->rsp_prod; 559 if (cons == prod) { 560 /* 561 * Nothing to read. Wait for a ring event. 562 * 563 * Note that the events from both queues 564 * are combined, so being woken does not 565 * guarantee that data exist in the read 566 * ring. 567 * 568 * To simplify error recovery and the retry, 569 * we specify PDROP so our lock is *not* held 570 * when msleep returns. 571 */ 572 error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP, 573 "xbread", /*timeout*/0); 574 if (error && error != EWOULDBLOCK) 575 return (error); 576 continue; 577 } 578 mtx_unlock(&xs.ring_lock); 579 580 /* Verify queue sanity. */ 581 if (!xs_check_indexes(cons, prod)) { 582 xen_store->rsp_cons = xen_store->rsp_prod = 0; 583 return (EIO); 584 } 585 586 src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail); 587 if (avail > len) 588 avail = len; 589 590 /* 591 * Insure the data we read is related to the indexes 592 * we read above. 593 */ 594 rmb(); 595 596 memcpy(data, src, avail); 597 data += avail; 598 len -= avail; 599 600 /* 601 * Insure that the producer of this ring does not see 602 * the ring space as free until after we have copied it 603 * out. 604 */ 605 mb(); 606 xen_store->rsp_cons += avail; 607 608 /* 609 * xen_intr_signal() implies mb(). The producer will see 610 * the updated consumer index when the event is delivered. 611 */ 612 xen_intr_signal(xs.xen_intr_handle); 613 } 614 615 return (0); 616 } 617 618 /*----------------------- Received Message Processing ------------------------*/ 619 /** 620 * Block reading the next message from the XenStore service and 621 * process the result. 622 * 623 * \param type The returned type of the XenStore message received. 624 * 625 * \return 0 on success. Otherwise an errno value indicating the 626 * type of failure encountered. 627 */ 628 static int 629 xs_process_msg(enum xsd_sockmsg_type *type) 630 { 631 struct xs_stored_msg *msg; 632 char *body; 633 int error; 634 635 msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK); 636 error = xs_read_store(&msg->hdr, sizeof(msg->hdr)); 637 if (error) { 638 free(msg, M_XENSTORE); 639 return (error); 640 } 641 642 body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK); 643 error = xs_read_store(body, msg->hdr.len); 644 if (error) { 645 free(body, M_XENSTORE); 646 free(msg, M_XENSTORE); 647 return (error); 648 } 649 body[msg->hdr.len] = '\0'; 650 651 *type = msg->hdr.type; 652 if (msg->hdr.type == XS_WATCH_EVENT) { 653 msg->u.watch.vec = split(body, msg->hdr.len, 654 &msg->u.watch.vec_size); 655 656 mtx_lock(&xs.registered_watches_lock); 657 msg->u.watch.handle = find_watch( 658 msg->u.watch.vec[XS_WATCH_TOKEN]); 659 if (msg->u.watch.handle != NULL) { 660 mtx_lock(&xs.watch_events_lock); 661 TAILQ_INSERT_TAIL(&xs.watch_events, msg, list); 662 wakeup(&xs.watch_events); 663 mtx_unlock(&xs.watch_events_lock); 664 } else { 665 free(msg->u.watch.vec, M_XENSTORE); 666 free(msg, M_XENSTORE); 667 } 668 mtx_unlock(&xs.registered_watches_lock); 669 } else { 670 msg->u.reply.body = body; 671 mtx_lock(&xs.reply_lock); 672 TAILQ_INSERT_TAIL(&xs.reply_list, msg, list); 673 wakeup(&xs.reply_list); 674 mtx_unlock(&xs.reply_lock); 675 } 676 677 return (0); 678 } 679 680 /** 681 * Thread body of the XenStore receive thread. 682 * 683 * This thread blocks waiting for data from the XenStore service 684 * and processes and received messages. 685 */ 686 static void 687 xs_rcv_thread(void *arg __unused) 688 { 689 int error; 690 enum xsd_sockmsg_type type; 691 692 for (;;) { 693 error = xs_process_msg(&type); 694 if (error) 695 printf("XENSTORE error %d while reading message\n", 696 error); 697 } 698 } 699 700 /*---------------- XenStore Message Request/Reply Processing -----------------*/ 701 #define xsd_error_count (sizeof(xsd_errors) / sizeof(xsd_errors[0])) 702 703 /** 704 * Convert a XenStore error string into an errno number. 705 * 706 * \param errorstring The error string to convert. 707 * 708 * \return The errno best matching the input string. 709 * 710 * \note Unknown error strings are converted to EINVAL. 711 */ 712 static int 713 xs_get_error(const char *errorstring) 714 { 715 u_int i; 716 717 for (i = 0; i < xsd_error_count; i++) { 718 if (!strcmp(errorstring, xsd_errors[i].errstring)) 719 return (xsd_errors[i].errnum); 720 } 721 log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s", 722 errorstring); 723 return (EINVAL); 724 } 725 726 /** 727 * Block waiting for a reply to a message request. 728 * 729 * \param type The returned type of the reply. 730 * \param len The returned body length of the reply. 731 * \param result The returned body of the reply. 732 * 733 * \return 0 on success. Otherwise an errno indicating the 734 * cause of failure. 735 */ 736 static int 737 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result) 738 { 739 struct xs_stored_msg *msg; 740 char *body; 741 int error; 742 743 mtx_lock(&xs.reply_lock); 744 while (TAILQ_EMPTY(&xs.reply_list)) { 745 error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 746 PCATCH, "xswait", hz/10); 747 if (error && error != EWOULDBLOCK) { 748 mtx_unlock(&xs.reply_lock); 749 return (error); 750 } 751 } 752 msg = TAILQ_FIRST(&xs.reply_list); 753 TAILQ_REMOVE(&xs.reply_list, msg, list); 754 mtx_unlock(&xs.reply_lock); 755 756 *type = msg->hdr.type; 757 if (len) 758 *len = msg->hdr.len; 759 body = msg->u.reply.body; 760 761 free(msg, M_XENSTORE); 762 *result = body; 763 return (0); 764 } 765 766 /** 767 * Pass-thru interface for XenStore access by userland processes 768 * via the XenStore device. 769 * 770 * Reply type and length data are returned by overwriting these 771 * fields in the passed in request message. 772 * 773 * \param msg A properly formatted message to transmit to 774 * the XenStore service. 775 * \param result The returned body of the reply. 776 * 777 * \return 0 on success. Otherwise an errno indicating the cause 778 * of failure. 779 * 780 * \note The returned result is provided in malloced storage and thus 781 * must be free'd by the caller with 'free(result, M_XENSTORE); 782 */ 783 int 784 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result) 785 { 786 uint32_t request_type; 787 int error; 788 789 request_type = msg->type; 790 791 sx_xlock(&xs.request_mutex); 792 if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0) 793 error = xs_read_reply(&msg->type, &msg->len, result); 794 sx_xunlock(&xs.request_mutex); 795 796 return (error); 797 } 798 799 /** 800 * Send a message with an optionally muti-part body to the XenStore service. 801 * 802 * \param t The transaction to use for this request. 803 * \param request_type The type of message to send. 804 * \param iovec Pointers to the body sections of the request. 805 * \param num_vecs The number of body sections in the request. 806 * \param len The returned length of the reply. 807 * \param result The returned body of the reply. 808 * 809 * \return 0 on success. Otherwise an errno indicating 810 * the cause of failure. 811 * 812 * \note The returned result is provided in malloced storage and thus 813 * must be free'd by the caller with 'free(*result, M_XENSTORE); 814 */ 815 static int 816 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type, 817 const struct iovec *iovec, u_int num_vecs, u_int *len, void **result) 818 { 819 struct xsd_sockmsg msg; 820 void *ret = NULL; 821 u_int i; 822 int error; 823 824 msg.tx_id = t.id; 825 msg.req_id = 0; 826 msg.type = request_type; 827 msg.len = 0; 828 for (i = 0; i < num_vecs; i++) 829 msg.len += iovec[i].iov_len; 830 831 sx_xlock(&xs.request_mutex); 832 error = xs_write_store(&msg, sizeof(msg)); 833 if (error) { 834 printf("xs_talkv failed %d\n", error); 835 goto error_lock_held; 836 } 837 838 for (i = 0; i < num_vecs; i++) { 839 error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len); 840 if (error) { 841 printf("xs_talkv failed %d\n", error); 842 goto error_lock_held; 843 } 844 } 845 846 error = xs_read_reply(&msg.type, len, &ret); 847 848 error_lock_held: 849 sx_xunlock(&xs.request_mutex); 850 if (error) 851 return (error); 852 853 if (msg.type == XS_ERROR) { 854 error = xs_get_error(ret); 855 free(ret, M_XENSTORE); 856 return (error); 857 } 858 859 /* Reply is either error or an echo of our request message type. */ 860 KASSERT(msg.type == request_type, ("bad xenstore message type")); 861 862 if (result) 863 *result = ret; 864 else 865 free(ret, M_XENSTORE); 866 867 return (0); 868 } 869 870 /** 871 * Wrapper for xs_talkv allowing easy transmission of a message with 872 * a single, contiguous, message body. 873 * 874 * \param t The transaction to use for this request. 875 * \param request_type The type of message to send. 876 * \param body The body of the request. 877 * \param len The returned length of the reply. 878 * \param result The returned body of the reply. 879 * 880 * \return 0 on success. Otherwise an errno indicating 881 * the cause of failure. 882 * 883 * \note The returned result is provided in malloced storage and thus 884 * must be free'd by the caller with 'free(*result, M_XENSTORE); 885 */ 886 static int 887 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type, 888 const char *body, u_int *len, void **result) 889 { 890 struct iovec iovec; 891 892 iovec.iov_base = (void *)(uintptr_t)body; 893 iovec.iov_len = strlen(body) + 1; 894 895 return (xs_talkv(t, request_type, &iovec, 1, len, result)); 896 } 897 898 /*------------------------- XenStore Watch Support ---------------------------*/ 899 /** 900 * Transmit a watch request to the XenStore service. 901 * 902 * \param path The path in the XenStore to watch. 903 * \param tocken A unique identifier for this watch. 904 * 905 * \return 0 on success. Otherwise an errno indicating the 906 * cause of failure. 907 */ 908 static int 909 xs_watch(const char *path, const char *token) 910 { 911 struct iovec iov[2]; 912 913 iov[0].iov_base = (void *)(uintptr_t) path; 914 iov[0].iov_len = strlen(path) + 1; 915 iov[1].iov_base = (void *)(uintptr_t) token; 916 iov[1].iov_len = strlen(token) + 1; 917 918 return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL)); 919 } 920 921 /** 922 * Transmit an uwatch request to the XenStore service. 923 * 924 * \param path The path in the XenStore to watch. 925 * \param tocken A unique identifier for this watch. 926 * 927 * \return 0 on success. Otherwise an errno indicating the 928 * cause of failure. 929 */ 930 static int 931 xs_unwatch(const char *path, const char *token) 932 { 933 struct iovec iov[2]; 934 935 iov[0].iov_base = (void *)(uintptr_t) path; 936 iov[0].iov_len = strlen(path) + 1; 937 iov[1].iov_base = (void *)(uintptr_t) token; 938 iov[1].iov_len = strlen(token) + 1; 939 940 return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL)); 941 } 942 943 /** 944 * Convert from watch token (unique identifier) to the associated 945 * internal tracking structure for this watch. 946 * 947 * \param tocken The unique identifier for the watch to find. 948 * 949 * \return A pointer to the found watch structure or NULL. 950 */ 951 static struct xs_watch * 952 find_watch(const char *token) 953 { 954 struct xs_watch *i, *cmp; 955 956 cmp = (void *)strtoul(token, NULL, 16); 957 958 LIST_FOREACH(i, &xs.registered_watches, list) 959 if (i == cmp) 960 return (i); 961 962 return (NULL); 963 } 964 965 /** 966 * Thread body of the XenStore watch event dispatch thread. 967 */ 968 static void 969 xenwatch_thread(void *unused) 970 { 971 struct xs_stored_msg *msg; 972 973 for (;;) { 974 975 mtx_lock(&xs.watch_events_lock); 976 while (TAILQ_EMPTY(&xs.watch_events)) 977 mtx_sleep(&xs.watch_events, 978 &xs.watch_events_lock, 979 PWAIT | PCATCH, "waitev", hz/10); 980 981 mtx_unlock(&xs.watch_events_lock); 982 sx_xlock(&xs.xenwatch_mutex); 983 984 mtx_lock(&xs.watch_events_lock); 985 msg = TAILQ_FIRST(&xs.watch_events); 986 if (msg) 987 TAILQ_REMOVE(&xs.watch_events, msg, list); 988 mtx_unlock(&xs.watch_events_lock); 989 990 if (msg != NULL) { 991 /* 992 * XXX There are messages coming in with a NULL 993 * XXX callback. This deserves further investigation; 994 * XXX the workaround here simply prevents the kernel 995 * XXX from panic'ing on startup. 996 */ 997 if (msg->u.watch.handle->callback != NULL) 998 msg->u.watch.handle->callback( 999 msg->u.watch.handle, 1000 (const char **)msg->u.watch.vec, 1001 msg->u.watch.vec_size); 1002 free(msg->u.watch.vec, M_XENSTORE); 1003 free(msg, M_XENSTORE); 1004 } 1005 1006 sx_xunlock(&xs.xenwatch_mutex); 1007 } 1008 } 1009 1010 /*----------- XenStore Configuration, Initialization, and Control ------------*/ 1011 /** 1012 * Setup communication channels with the XenStore service. 1013 * 1014 * \return On success, 0. Otherwise an errno value indicating the 1015 * type of failure. 1016 */ 1017 static int 1018 xs_init_comms(void) 1019 { 1020 int error; 1021 1022 if (xen_store->rsp_prod != xen_store->rsp_cons) { 1023 log(LOG_WARNING, "XENSTORE response ring is not quiescent " 1024 "(%08x:%08x): fixing up\n", 1025 xen_store->rsp_cons, xen_store->rsp_prod); 1026 xen_store->rsp_cons = xen_store->rsp_prod; 1027 } 1028 1029 xen_intr_unbind(&xs.xen_intr_handle); 1030 1031 error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn, 1032 /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE, 1033 &xs.xen_intr_handle); 1034 if (error) { 1035 log(LOG_WARNING, "XENSTORE request irq failed %i\n", error); 1036 return (error); 1037 } 1038 1039 return (0); 1040 } 1041 1042 /*------------------ Private Device Attachment Functions --------------------*/ 1043 static void 1044 xs_identify(driver_t *driver, device_t parent) 1045 { 1046 1047 BUS_ADD_CHILD(parent, 0, "xenstore", 0); 1048 } 1049 1050 /** 1051 * Probe for the existence of the XenStore. 1052 * 1053 * \param dev 1054 */ 1055 static int 1056 xs_probe(device_t dev) 1057 { 1058 /* 1059 * We are either operating within a PV kernel or being probed 1060 * as the child of the successfully attached xenpci device. 1061 * Thus we are in a Xen environment and there will be a XenStore. 1062 * Unconditionally return success. 1063 */ 1064 device_set_desc(dev, "XenStore"); 1065 return (BUS_PROBE_NOWILDCARD); 1066 } 1067 1068 static void 1069 xs_attach_deferred(void *arg) 1070 { 1071 1072 bus_generic_probe(xs.xs_dev); 1073 bus_generic_attach(xs.xs_dev); 1074 1075 config_intrhook_disestablish(&xs.xs_attachcb); 1076 } 1077 1078 static void 1079 xs_attach_late(void *arg, int pending) 1080 { 1081 1082 KASSERT((pending == 1), ("xs late attach queued several times")); 1083 bus_generic_probe(xs.xs_dev); 1084 bus_generic_attach(xs.xs_dev); 1085 } 1086 1087 /** 1088 * Attach to the XenStore. 1089 * 1090 * This routine also prepares for the probe/attach of drivers that rely 1091 * on the XenStore. 1092 */ 1093 static int 1094 xs_attach(device_t dev) 1095 { 1096 int error; 1097 1098 /* Allow us to get device_t from softc and vice-versa. */ 1099 xs.xs_dev = dev; 1100 device_set_softc(dev, &xs); 1101 1102 /* Initialize the interface to xenstore. */ 1103 struct proc *p; 1104 1105 xs.initialized = false; 1106 if (xen_hvm_domain()) { 1107 xs.evtchn = hvm_get_parameter(HVM_PARAM_STORE_EVTCHN); 1108 xs.gpfn = hvm_get_parameter(HVM_PARAM_STORE_PFN); 1109 xen_store = pmap_mapdev(xs.gpfn * PAGE_SIZE, PAGE_SIZE); 1110 xs.initialized = true; 1111 } else if (xen_pv_domain()) { 1112 if (HYPERVISOR_start_info->store_evtchn == 0) { 1113 struct evtchn_alloc_unbound alloc_unbound; 1114 1115 /* Allocate a local event channel for xenstore */ 1116 alloc_unbound.dom = DOMID_SELF; 1117 alloc_unbound.remote_dom = DOMID_SELF; 1118 error = HYPERVISOR_event_channel_op( 1119 EVTCHNOP_alloc_unbound, &alloc_unbound); 1120 if (error != 0) 1121 panic( 1122 "unable to alloc event channel for Dom0: %d", 1123 error); 1124 1125 HYPERVISOR_start_info->store_evtchn = 1126 alloc_unbound.port; 1127 xs.evtchn = alloc_unbound.port; 1128 1129 /* Allocate memory for the xs shared ring */ 1130 xen_store = malloc(PAGE_SIZE, M_XENSTORE, 1131 M_WAITOK | M_ZERO); 1132 } else { 1133 xs.evtchn = HYPERVISOR_start_info->store_evtchn; 1134 xs.initialized = true; 1135 } 1136 } else { 1137 panic("Unknown domain type, cannot initialize xenstore."); 1138 } 1139 1140 TAILQ_INIT(&xs.reply_list); 1141 TAILQ_INIT(&xs.watch_events); 1142 1143 mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF); 1144 mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF); 1145 sx_init(&xs.xenwatch_mutex, "xenwatch"); 1146 sx_init(&xs.request_mutex, "xenstore request"); 1147 mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF); 1148 mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF); 1149 1150 /* Initialize the shared memory rings to talk to xenstored */ 1151 error = xs_init_comms(); 1152 if (error) 1153 return (error); 1154 1155 error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID, 1156 0, "xenwatch"); 1157 if (error) 1158 return (error); 1159 xs.xenwatch_pid = p->p_pid; 1160 1161 error = kproc_create(xs_rcv_thread, NULL, NULL, 1162 RFHIGHPID, 0, "xenstore_rcv"); 1163 1164 xs.xs_attachcb.ich_func = xs_attach_deferred; 1165 xs.xs_attachcb.ich_arg = NULL; 1166 if (xs.initialized) { 1167 config_intrhook_establish(&xs.xs_attachcb); 1168 } else { 1169 TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL); 1170 } 1171 1172 return (error); 1173 } 1174 1175 /** 1176 * Prepare for suspension of this VM by halting XenStore access after 1177 * all transactions and individual requests have completed. 1178 */ 1179 static int 1180 xs_suspend(device_t dev) 1181 { 1182 int error; 1183 1184 /* Suspend child Xen devices. */ 1185 error = bus_generic_suspend(dev); 1186 if (error != 0) 1187 return (error); 1188 1189 sx_xlock(&xs.request_mutex); 1190 1191 return (0); 1192 } 1193 1194 /** 1195 * Resume XenStore operations after this VM is resumed. 1196 */ 1197 static int 1198 xs_resume(device_t dev __unused) 1199 { 1200 struct xs_watch *watch; 1201 char token[sizeof(watch) * 2 + 1]; 1202 1203 xs_init_comms(); 1204 1205 sx_xunlock(&xs.request_mutex); 1206 1207 /* 1208 * NB: since xenstore childs have not been resumed yet, there's 1209 * no need to hold any watch mutex. Having clients try to add or 1210 * remove watches at this point (before xenstore is resumed) is 1211 * clearly a violantion of the resume order. 1212 */ 1213 LIST_FOREACH(watch, &xs.registered_watches, list) { 1214 sprintf(token, "%lX", (long)watch); 1215 xs_watch(watch->node, token); 1216 } 1217 1218 /* Resume child Xen devices. */ 1219 bus_generic_resume(dev); 1220 1221 return (0); 1222 } 1223 1224 /*-------------------- Private Device Attachment Data -----------------------*/ 1225 static device_method_t xenstore_methods[] = { 1226 /* Device interface */ 1227 DEVMETHOD(device_identify, xs_identify), 1228 DEVMETHOD(device_probe, xs_probe), 1229 DEVMETHOD(device_attach, xs_attach), 1230 DEVMETHOD(device_detach, bus_generic_detach), 1231 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1232 DEVMETHOD(device_suspend, xs_suspend), 1233 DEVMETHOD(device_resume, xs_resume), 1234 1235 /* Bus interface */ 1236 DEVMETHOD(bus_add_child, bus_generic_add_child), 1237 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 1238 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 1239 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1240 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1241 1242 DEVMETHOD_END 1243 }; 1244 1245 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0); 1246 static devclass_t xenstore_devclass; 1247 1248 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0); 1249 1250 /*------------------------------- Sysctl Data --------------------------------*/ 1251 /* XXX Shouldn't the node be somewhere else? */ 1252 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD, NULL, "Xen"); 1253 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, ""); 1254 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, ""); 1255 1256 /*-------------------------------- Public API --------------------------------*/ 1257 /*------- API comments for these methods can be found in xenstorevar.h -------*/ 1258 int 1259 xs_directory(struct xs_transaction t, const char *dir, const char *node, 1260 u_int *num, const char ***result) 1261 { 1262 struct sbuf *path; 1263 char *strings; 1264 u_int len = 0; 1265 int error; 1266 1267 path = xs_join(dir, node); 1268 error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len, 1269 (void **)&strings); 1270 sbuf_delete(path); 1271 if (error) 1272 return (error); 1273 1274 *result = split(strings, len, num); 1275 1276 return (0); 1277 } 1278 1279 int 1280 xs_exists(struct xs_transaction t, const char *dir, const char *node) 1281 { 1282 const char **d; 1283 int error, dir_n; 1284 1285 error = xs_directory(t, dir, node, &dir_n, &d); 1286 if (error) 1287 return (0); 1288 free(d, M_XENSTORE); 1289 return (1); 1290 } 1291 1292 int 1293 xs_read(struct xs_transaction t, const char *dir, const char *node, 1294 u_int *len, void **result) 1295 { 1296 struct sbuf *path; 1297 void *ret; 1298 int error; 1299 1300 path = xs_join(dir, node); 1301 error = xs_single(t, XS_READ, sbuf_data(path), len, &ret); 1302 sbuf_delete(path); 1303 if (error) 1304 return (error); 1305 *result = ret; 1306 return (0); 1307 } 1308 1309 int 1310 xs_write(struct xs_transaction t, const char *dir, const char *node, 1311 const char *string) 1312 { 1313 struct sbuf *path; 1314 struct iovec iovec[2]; 1315 int error; 1316 1317 path = xs_join(dir, node); 1318 1319 iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path); 1320 iovec[0].iov_len = sbuf_len(path) + 1; 1321 iovec[1].iov_base = (void *)(uintptr_t) string; 1322 iovec[1].iov_len = strlen(string); 1323 1324 error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 1325 sbuf_delete(path); 1326 1327 return (error); 1328 } 1329 1330 int 1331 xs_mkdir(struct xs_transaction t, const char *dir, const char *node) 1332 { 1333 struct sbuf *path; 1334 int ret; 1335 1336 path = xs_join(dir, node); 1337 ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL); 1338 sbuf_delete(path); 1339 1340 return (ret); 1341 } 1342 1343 int 1344 xs_rm(struct xs_transaction t, const char *dir, const char *node) 1345 { 1346 struct sbuf *path; 1347 int ret; 1348 1349 path = xs_join(dir, node); 1350 ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL); 1351 sbuf_delete(path); 1352 1353 return (ret); 1354 } 1355 1356 int 1357 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node) 1358 { 1359 struct xs_transaction local_xbt; 1360 struct sbuf *root_path_sbuf; 1361 struct sbuf *cur_path_sbuf; 1362 char *root_path; 1363 char *cur_path; 1364 const char **dir; 1365 int error; 1366 1367 retry: 1368 root_path_sbuf = xs_join(base, node); 1369 cur_path_sbuf = xs_join(base, node); 1370 root_path = sbuf_data(root_path_sbuf); 1371 cur_path = sbuf_data(cur_path_sbuf); 1372 dir = NULL; 1373 local_xbt.id = 0; 1374 1375 if (xbt.id == 0) { 1376 error = xs_transaction_start(&local_xbt); 1377 if (error != 0) 1378 goto out; 1379 xbt = local_xbt; 1380 } 1381 1382 while (1) { 1383 u_int count; 1384 u_int i; 1385 1386 error = xs_directory(xbt, cur_path, "", &count, &dir); 1387 if (error) 1388 goto out; 1389 1390 for (i = 0; i < count; i++) { 1391 error = xs_rm(xbt, cur_path, dir[i]); 1392 if (error == ENOTEMPTY) { 1393 struct sbuf *push_dir; 1394 1395 /* 1396 * Descend to clear out this sub directory. 1397 * We'll return to cur_dir once push_dir 1398 * is empty. 1399 */ 1400 push_dir = xs_join(cur_path, dir[i]); 1401 sbuf_delete(cur_path_sbuf); 1402 cur_path_sbuf = push_dir; 1403 cur_path = sbuf_data(cur_path_sbuf); 1404 break; 1405 } else if (error != 0) { 1406 goto out; 1407 } 1408 } 1409 1410 free(dir, M_XENSTORE); 1411 dir = NULL; 1412 1413 if (i == count) { 1414 char *last_slash; 1415 1416 /* Directory is empty. It is now safe to remove. */ 1417 error = xs_rm(xbt, cur_path, ""); 1418 if (error != 0) 1419 goto out; 1420 1421 if (!strcmp(cur_path, root_path)) 1422 break; 1423 1424 /* Return to processing the parent directory. */ 1425 last_slash = strrchr(cur_path, '/'); 1426 KASSERT(last_slash != NULL, 1427 ("xs_rm_tree: mangled path %s", cur_path)); 1428 *last_slash = '\0'; 1429 } 1430 } 1431 1432 out: 1433 sbuf_delete(cur_path_sbuf); 1434 sbuf_delete(root_path_sbuf); 1435 if (dir != NULL) 1436 free(dir, M_XENSTORE); 1437 1438 if (local_xbt.id != 0) { 1439 int terror; 1440 1441 terror = xs_transaction_end(local_xbt, /*abort*/error != 0); 1442 xbt.id = 0; 1443 if (terror == EAGAIN && error == 0) 1444 goto retry; 1445 } 1446 return (error); 1447 } 1448 1449 int 1450 xs_transaction_start(struct xs_transaction *t) 1451 { 1452 char *id_str; 1453 int error; 1454 1455 error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL, 1456 (void **)&id_str); 1457 if (error == 0) { 1458 t->id = strtoul(id_str, NULL, 0); 1459 free(id_str, M_XENSTORE); 1460 } 1461 return (error); 1462 } 1463 1464 int 1465 xs_transaction_end(struct xs_transaction t, int abort) 1466 { 1467 char abortstr[2]; 1468 1469 if (abort) 1470 strcpy(abortstr, "F"); 1471 else 1472 strcpy(abortstr, "T"); 1473 1474 return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL)); 1475 } 1476 1477 int 1478 xs_scanf(struct xs_transaction t, const char *dir, const char *node, 1479 int *scancountp, const char *fmt, ...) 1480 { 1481 va_list ap; 1482 int error, ns; 1483 char *val; 1484 1485 error = xs_read(t, dir, node, NULL, (void **) &val); 1486 if (error) 1487 return (error); 1488 1489 va_start(ap, fmt); 1490 ns = vsscanf(val, fmt, ap); 1491 va_end(ap); 1492 free(val, M_XENSTORE); 1493 /* Distinctive errno. */ 1494 if (ns == 0) 1495 return (ERANGE); 1496 if (scancountp) 1497 *scancountp = ns; 1498 return (0); 1499 } 1500 1501 int 1502 xs_vprintf(struct xs_transaction t, 1503 const char *dir, const char *node, const char *fmt, va_list ap) 1504 { 1505 struct sbuf *sb; 1506 int error; 1507 1508 sb = sbuf_new_auto(); 1509 sbuf_vprintf(sb, fmt, ap); 1510 sbuf_finish(sb); 1511 error = xs_write(t, dir, node, sbuf_data(sb)); 1512 sbuf_delete(sb); 1513 1514 return (error); 1515 } 1516 1517 int 1518 xs_printf(struct xs_transaction t, const char *dir, const char *node, 1519 const char *fmt, ...) 1520 { 1521 va_list ap; 1522 int error; 1523 1524 va_start(ap, fmt); 1525 error = xs_vprintf(t, dir, node, fmt, ap); 1526 va_end(ap); 1527 1528 return (error); 1529 } 1530 1531 int 1532 xs_gather(struct xs_transaction t, const char *dir, ...) 1533 { 1534 va_list ap; 1535 const char *name; 1536 int error; 1537 1538 va_start(ap, dir); 1539 error = 0; 1540 while (error == 0 && (name = va_arg(ap, char *)) != NULL) { 1541 const char *fmt = va_arg(ap, char *); 1542 void *result = va_arg(ap, void *); 1543 char *p; 1544 1545 error = xs_read(t, dir, name, NULL, (void **) &p); 1546 if (error) 1547 break; 1548 1549 if (fmt) { 1550 if (sscanf(p, fmt, result) == 0) 1551 error = EINVAL; 1552 free(p, M_XENSTORE); 1553 } else 1554 *(char **)result = p; 1555 } 1556 va_end(ap); 1557 1558 return (error); 1559 } 1560 1561 int 1562 xs_register_watch(struct xs_watch *watch) 1563 { 1564 /* Pointer in ascii is the token. */ 1565 char token[sizeof(watch) * 2 + 1]; 1566 int error; 1567 1568 sprintf(token, "%lX", (long)watch); 1569 1570 mtx_lock(&xs.registered_watches_lock); 1571 KASSERT(find_watch(token) == NULL, ("watch already registered")); 1572 LIST_INSERT_HEAD(&xs.registered_watches, watch, list); 1573 mtx_unlock(&xs.registered_watches_lock); 1574 1575 error = xs_watch(watch->node, token); 1576 1577 /* Ignore errors due to multiple registration. */ 1578 if (error == EEXIST) 1579 error = 0; 1580 1581 if (error != 0) { 1582 mtx_lock(&xs.registered_watches_lock); 1583 LIST_REMOVE(watch, list); 1584 mtx_unlock(&xs.registered_watches_lock); 1585 } 1586 1587 return (error); 1588 } 1589 1590 void 1591 xs_unregister_watch(struct xs_watch *watch) 1592 { 1593 struct xs_stored_msg *msg, *tmp; 1594 char token[sizeof(watch) * 2 + 1]; 1595 int error; 1596 1597 sprintf(token, "%lX", (long)watch); 1598 1599 mtx_lock(&xs.registered_watches_lock); 1600 if (find_watch(token) == NULL) { 1601 mtx_unlock(&xs.registered_watches_lock); 1602 return; 1603 } 1604 LIST_REMOVE(watch, list); 1605 mtx_unlock(&xs.registered_watches_lock); 1606 1607 error = xs_unwatch(watch->node, token); 1608 if (error) 1609 log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n", 1610 watch->node, error); 1611 1612 /* Cancel pending watch events. */ 1613 mtx_lock(&xs.watch_events_lock); 1614 TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) { 1615 if (msg->u.watch.handle != watch) 1616 continue; 1617 TAILQ_REMOVE(&xs.watch_events, msg, list); 1618 free(msg->u.watch.vec, M_XENSTORE); 1619 free(msg, M_XENSTORE); 1620 } 1621 mtx_unlock(&xs.watch_events_lock); 1622 1623 /* Flush any currently-executing callback, unless we are it. :-) */ 1624 if (curproc->p_pid != xs.xenwatch_pid) { 1625 sx_xlock(&xs.xenwatch_mutex); 1626 sx_xunlock(&xs.xenwatch_mutex); 1627 } 1628 } 1629 1630 void 1631 xs_lock(void) 1632 { 1633 1634 sx_xlock(&xs.request_mutex); 1635 return; 1636 } 1637 1638 void 1639 xs_unlock(void) 1640 { 1641 1642 sx_xunlock(&xs.request_mutex); 1643 return; 1644 } 1645 1646