xref: /freebsd/sys/dev/vt/hw/vga/vt_vga.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*-
2  * Copyright (c) 2005 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Copyright (c) 2009 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Ed Schouten
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 
43 #include <dev/vt/vt.h>
44 #include <dev/vt/hw/vga/vt_vga_reg.h>
45 
46 #include <machine/bus.h>
47 
48 #if defined(__amd64__) || defined(__i386__)
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <machine/pmap.h>
52 #include <machine/vmparam.h>
53 #endif /* __amd64__ || __i386__ */
54 
55 struct vga_softc {
56 	bus_space_tag_t		 vga_fb_tag;
57 	bus_space_handle_t	 vga_fb_handle;
58 	bus_space_tag_t		 vga_reg_tag;
59 	bus_space_handle_t	 vga_reg_handle;
60 	int			 vga_wmode;
61 	term_color_t		 vga_curfg, vga_curbg;
62 	boolean_t		 vga_enabled;
63 };
64 
65 /* Convenience macros. */
66 #define	MEM_READ1(sc, ofs) \
67 	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
68 #define	MEM_WRITE1(sc, ofs, val) \
69 	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
70 #define	REG_READ1(sc, reg) \
71 	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
72 #define	REG_WRITE1(sc, reg, val) \
73 	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
74 
75 #define	VT_VGA_WIDTH	640
76 #define	VT_VGA_HEIGHT	480
77 #define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
78 
79 /*
80  * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
81  * memory).
82  */
83 #define	VT_VGA_PIXELS_BLOCK	8
84 
85 /*
86  * We use an off-screen addresses to:
87  *     o  store the background color;
88  *     o  store pixels pattern.
89  * Those addresses are then loaded in the latches once.
90  */
91 #define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
92 
93 static vd_probe_t	vga_probe;
94 static vd_init_t	vga_init;
95 static vd_blank_t	vga_blank;
96 static vd_bitblt_text_t	vga_bitblt_text;
97 static vd_bitblt_bmp_t	vga_bitblt_bitmap;
98 static vd_drawrect_t	vga_drawrect;
99 static vd_setpixel_t	vga_setpixel;
100 static vd_postswitch_t	vga_postswitch;
101 
102 static const struct vt_driver vt_vga_driver = {
103 	.vd_name	= "vga",
104 	.vd_probe	= vga_probe,
105 	.vd_init	= vga_init,
106 	.vd_blank	= vga_blank,
107 	.vd_bitblt_text	= vga_bitblt_text,
108 	.vd_bitblt_bmp	= vga_bitblt_bitmap,
109 	.vd_drawrect	= vga_drawrect,
110 	.vd_setpixel	= vga_setpixel,
111 	.vd_postswitch	= vga_postswitch,
112 	.vd_priority	= VD_PRIORITY_GENERIC,
113 };
114 
115 /*
116  * Driver supports both text mode and graphics mode.  Make sure the
117  * buffer is always big enough to support both.
118  */
119 static struct vga_softc vga_conssoftc;
120 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
121 
122 static inline void
123 vga_setwmode(struct vt_device *vd, int wmode)
124 {
125 	struct vga_softc *sc = vd->vd_softc;
126 
127 	if (sc->vga_wmode == wmode)
128 		return;
129 
130 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
131 	REG_WRITE1(sc, VGA_GC_DATA, wmode);
132 	sc->vga_wmode = wmode;
133 
134 	switch (wmode) {
135 	case 3:
136 		/* Re-enable all plans. */
137 		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
138 		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
139 		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
140 		break;
141 	}
142 }
143 
144 static inline void
145 vga_setfg(struct vt_device *vd, term_color_t color)
146 {
147 	struct vga_softc *sc = vd->vd_softc;
148 
149 	vga_setwmode(vd, 3);
150 
151 	if (sc->vga_curfg == color)
152 		return;
153 
154 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
155 	REG_WRITE1(sc, VGA_GC_DATA, color);
156 	sc->vga_curfg = color;
157 }
158 
159 static inline void
160 vga_setbg(struct vt_device *vd, term_color_t color)
161 {
162 	struct vga_softc *sc = vd->vd_softc;
163 
164 	vga_setwmode(vd, 3);
165 
166 	if (sc->vga_curbg == color)
167 		return;
168 
169 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
170 	REG_WRITE1(sc, VGA_GC_DATA, color);
171 
172 	/*
173 	 * Write 8 pixels using the background color to an off-screen
174 	 * byte in the video memory.
175 	 */
176 	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
177 
178 	/*
179 	 * Read those 8 pixels back to load the background color in the
180 	 * latches register.
181 	 */
182 	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
183 
184 	sc->vga_curbg = color;
185 
186 	/*
187          * The Set/Reset register doesn't contain the fg color anymore,
188          * store an invalid color.
189 	 */
190 	sc->vga_curfg = 0xff;
191 }
192 
193 /*
194  * Binary searchable table for Unicode to CP437 conversion.
195  */
196 
197 struct unicp437 {
198 	uint16_t	unicode_base;
199 	uint8_t		cp437_base;
200 	uint8_t		length;
201 };
202 
203 static const struct unicp437 cp437table[] = {
204 	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
205 	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
206 	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
207 	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
208 	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
209 	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
210 	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
211 	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
212 	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
213 	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
214 	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
215 	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
216 	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
217 	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
218 	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
219 	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
220 	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
221 	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
222 	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
223 	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
224 	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
225 	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
226 	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
227 	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
228 	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
229 	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
230 	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
231 	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
232 	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
233 	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
234 	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
235 	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
236 	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
237 	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
238 	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
239 	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
240 	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
241 	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
242 	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
243 	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
244 	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
245 	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
246 	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
247 	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
248 	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
249 	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
250 	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
251 	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
252 	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
253 	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
254 	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
255 	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
256 	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
257 	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
258 	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
259 	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
260 	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
261 	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
262 	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
263 	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
264 	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
265 	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
266 	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
267 	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
268 	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
269 	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
270 	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
271 	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
272 	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
273 	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
274 	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
275 	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
276 	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
277 	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
278 	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
279 	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
280 	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
281 	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
282 	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
283 	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
284 	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
285 	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
286 	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
287 	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
288 	{ 0x266c, 0x0e, 0x00 },
289 };
290 
291 static uint8_t
292 vga_get_cp437(term_char_t c)
293 {
294 	int min, mid, max;
295 
296 	min = 0;
297 	max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1;
298 
299 	if (c < cp437table[0].unicode_base ||
300 	    c > cp437table[max].unicode_base + cp437table[max].length)
301 		return '?';
302 
303 	while (max >= min) {
304 		mid = (min + max) / 2;
305 		if (c < cp437table[mid].unicode_base)
306 			max = mid - 1;
307 		else if (c > cp437table[mid].unicode_base +
308 		    cp437table[mid].length)
309 			min = mid + 1;
310 		else
311 			return (c - cp437table[mid].unicode_base +
312 			    cp437table[mid].cp437_base);
313 	}
314 
315 	return '?';
316 }
317 
318 static void
319 vga_blank(struct vt_device *vd, term_color_t color)
320 {
321 	struct vga_softc *sc = vd->vd_softc;
322 	u_int ofs;
323 
324 	vga_setfg(vd, color);
325 	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
326 		MEM_WRITE1(sc, ofs, 0xff);
327 }
328 
329 static inline void
330 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
331     uint8_t v)
332 {
333 	struct vga_softc *sc = vd->vd_softc;
334 
335 	/* Skip empty writes, in order to avoid palette changes. */
336 	if (v != 0x00) {
337 		vga_setfg(vd, color);
338 		/*
339 		 * When this MEM_READ1() gets disabled, all sorts of
340 		 * artifacts occur.  This is because this read loads the
341 		 * set of 8 pixels that are about to be changed.  There
342 		 * is one scenario where we can avoid the read, namely
343 		 * if all pixels are about to be overwritten anyway.
344 		 */
345 		if (v != 0xff) {
346 			MEM_READ1(sc, dst);
347 
348 			/* The bg color was trashed by the reads. */
349 			sc->vga_curbg = 0xff;
350 		}
351 		MEM_WRITE1(sc, dst, v);
352 	}
353 }
354 
355 static void
356 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
357 {
358 
359 	if (vd->vd_flags & VDF_TEXTMODE)
360 		return;
361 
362 	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
363 	    0x80 >> (x % 8));
364 }
365 
366 static void
367 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
368     term_color_t color)
369 {
370 	int x, y;
371 
372 	if (vd->vd_flags & VDF_TEXTMODE)
373 		return;
374 
375 	for (y = y1; y <= y2; y++) {
376 		if (fill || (y == y1) || (y == y2)) {
377 			for (x = x1; x <= x2; x++)
378 				vga_setpixel(vd, x, y, color);
379 		} else {
380 			vga_setpixel(vd, x1, y, color);
381 			vga_setpixel(vd, x2, y, color);
382 		}
383 	}
384 }
385 
386 static void
387 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
388     unsigned int src_x, unsigned int x_count, unsigned int dst_x,
389     uint8_t *pattern, uint8_t *mask)
390 {
391 	unsigned int n;
392 
393 	n = src_x / 8;
394 
395 	/*
396 	 * This mask has bits set, where a pixel (ether 0 or 1)
397 	 * comes from the source bitmap.
398 	 */
399 	if (mask != NULL) {
400 		*mask = (0xff
401 		    >> (8 - x_count))
402 		    << (8 - x_count - dst_x);
403 	}
404 
405 	if (n == (src_x + x_count - 1) / 8) {
406 		/* All the pixels we want are in the same byte. */
407 		*pattern = src[n];
408 		if (dst_x >= src_x)
409 			*pattern >>= (dst_x - src_x % 8);
410 		else
411 			*pattern <<= (src_x % 8 - dst_x);
412 	} else {
413 		/* The pixels we want are split into two bytes. */
414 		if (dst_x >= src_x % 8) {
415 			*pattern =
416 			    src[n] << (8 - dst_x - src_x % 8) |
417 			    src[n + 1] >> (dst_x - src_x % 8);
418 		} else {
419 			*pattern =
420 			    src[n] << (src_x % 8 - dst_x) |
421 			    src[n + 1] >> (8 - src_x % 8 - dst_x);
422 		}
423 	}
424 }
425 
426 static void
427 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
428     const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
429     unsigned int src_x, unsigned int dst_x, unsigned int x_count,
430     unsigned int src_y, unsigned int dst_y, unsigned int y_count,
431     term_color_t fg, term_color_t bg, int overwrite)
432 {
433 	unsigned int i, bytes;
434 	uint8_t pattern, relevant_bits, mask;
435 
436 	bytes = (src_width + 7) / 8;
437 
438 	for (i = 0; i < y_count; ++i) {
439 		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
440 		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
441 
442 		if (src_mask == NULL) {
443 			/*
444 			 * No src mask. Consider that all wanted bits
445 			 * from the source are "authoritative".
446 			 */
447 			mask = relevant_bits;
448 		} else {
449 			/*
450 			 * There's an src mask. We shift it the same way
451 			 * we shifted the source pattern.
452 			 */
453 			vga_compute_shifted_pattern(
454 			    src_mask + (src_y + i) * bytes,
455 			    bytes, src_x, x_count, dst_x,
456 			    &mask, NULL);
457 
458 			/* Now, only keep the wanted bits among them. */
459 			mask &= relevant_bits;
460 		}
461 
462 		/*
463 		 * Clear bits from the pattern which must be
464 		 * transparent, according to the source mask.
465 		 */
466 		pattern &= mask;
467 
468 		/* Set the bits in the 2-colors array. */
469 		if (overwrite)
470 			pattern_2colors[dst_y + i] &= ~mask;
471 		pattern_2colors[dst_y + i] |= pattern;
472 
473 		if (pattern_ncolors == NULL)
474 			continue;
475 
476 		/*
477 		 * Set the same bits in the n-colors array. This one
478 		 * supports transparency, when a given bit is cleared in
479 		 * all colors.
480 		 */
481 		if (overwrite) {
482 			/*
483 			 * Ensure that the pixels used by this bitmap are
484 			 * cleared in other colors.
485 			 */
486 			for (int j = 0; j < 16; ++j)
487 				pattern_ncolors[(dst_y + i) * 16 + j] &=
488 				    ~mask;
489 		}
490 		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
491 		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
492 	}
493 }
494 
495 static void
496 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
497     term_color_t fg, term_color_t bg,
498     unsigned int x, unsigned int y, unsigned int height)
499 {
500 	unsigned int i, offset;
501 	struct vga_softc *sc;
502 
503 	/*
504 	 * The great advantage of Write Mode 3 is that we just need
505 	 * to load the foreground in the Set/Reset register, load the
506 	 * background color in the latches register (this is done
507 	 * through a write in offscreen memory followed by a read of
508 	 * that data), then write the pattern to video memory. This
509 	 * pattern indicates if the pixel should use the foreground
510 	 * color (bit set) or the background color (bit cleared).
511 	 */
512 
513 	vga_setbg(vd, bg);
514 	vga_setfg(vd, fg);
515 
516 	sc = vd->vd_softc;
517 	offset = (VT_VGA_WIDTH * y + x) / 8;
518 
519 	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
520 		MEM_WRITE1(sc, offset, masks[i]);
521 	}
522 }
523 
524 static void
525 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
526     unsigned int x, unsigned int y, unsigned int height)
527 {
528 	unsigned int i, j, plan, color, offset;
529 	struct vga_softc *sc;
530 	uint8_t mask, plans[height * 4];
531 
532 	sc = vd->vd_softc;
533 
534 	memset(plans, 0, sizeof(plans));
535 
536 	/*
537          * To write a group of pixels using 3 or more colors, we select
538          * Write Mode 0 and write one byte to each plan separately.
539 	 */
540 
541 	/*
542 	 * We first compute each byte: each plan contains one bit of the
543 	 * color code for each of the 8 pixels.
544 	 *
545 	 * For example, if the 8 pixels are like this:
546 	 *     GBBBBBBY
547 	 * where:
548 	 *     G (gray)   = 0b0111
549 	 *     B (black)  = 0b0000
550 	 *     Y (yellow) = 0b0011
551 	 *
552 	 * The corresponding for bytes are:
553 	 *             GBBBBBBY
554 	 *     Plan 0: 10000001 = 0x81
555 	 *     Plan 1: 10000001 = 0x81
556 	 *     Plan 2: 10000000 = 0x80
557 	 *     Plan 3: 00000000 = 0x00
558 	 *             |  |   |
559 	 *             |  |   +-> 0b0011 (Y)
560 	 *             |  +-----> 0b0000 (B)
561 	 *             +--------> 0b0111 (G)
562 	 */
563 
564 	for (i = 0; i < height; ++i) {
565 		for (color = 0; color < 16; ++color) {
566 			mask = masks[i * 16 + color];
567 			if (mask == 0x00)
568 				continue;
569 
570 			for (j = 0; j < 8; ++j) {
571 				if (!((mask >> (7 - j)) & 0x1))
572 					continue;
573 
574 				/* The pixel "j" uses color "color". */
575 				for (plan = 0; plan < 4; ++plan)
576 					plans[i * 4 + plan] |=
577 					    ((color >> plan) & 0x1) << (7 - j);
578 			}
579 		}
580 	}
581 
582 	/*
583 	 * The bytes are ready: we now switch to Write Mode 0 and write
584 	 * all bytes, one plan at a time.
585 	 */
586 	vga_setwmode(vd, 0);
587 
588 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
589 	for (plan = 0; plan < 4; ++plan) {
590 		/* Select plan. */
591 		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
592 
593 		/* Write all bytes for this plan, from Y to Y+height. */
594 		for (i = 0; i < height; ++i) {
595 			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
596 			MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
597 		}
598 	}
599 }
600 
601 static void
602 vga_bitblt_one_text_pixels_block(struct vt_device *vd,
603     const struct vt_window *vw, unsigned int x, unsigned int y)
604 {
605 	const struct vt_buf *vb;
606 	const struct vt_font *vf;
607 	unsigned int i, col, row, src_x, x_count;
608 	unsigned int used_colors_list[16], used_colors;
609 	uint8_t pattern_2colors[vw->vw_font->vf_height];
610 	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
611 	term_char_t c;
612 	term_color_t fg, bg;
613 	const uint8_t *src;
614 
615 	vb = &vw->vw_buf;
616 	vf = vw->vw_font;
617 
618 	/*
619 	 * The current pixels block.
620 	 *
621 	 * We fill it with portions of characters, because both "grids"
622 	 * may not match.
623 	 *
624 	 * i is the index in this pixels block.
625 	 */
626 
627 	i = x;
628 	used_colors = 0;
629 	memset(used_colors_list, 0, sizeof(used_colors_list));
630 	memset(pattern_2colors, 0, sizeof(pattern_2colors));
631 	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
632 
633 	if (i < vw->vw_draw_area.tr_begin.tp_col) {
634 		/*
635 		 * i is in the margin used to center the text area on
636 		 * the screen.
637 		 */
638 
639 		i = vw->vw_draw_area.tr_begin.tp_col;
640 	}
641 
642 	while (i < x + VT_VGA_PIXELS_BLOCK &&
643 	    i < vw->vw_draw_area.tr_end.tp_col) {
644 		/*
645 		 * Find which character is drawn on this pixel in the
646 		 * pixels block.
647 		 *
648 		 * While here, record what colors it uses.
649 		 */
650 
651 		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
652 		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
653 
654 		c = VTBUF_GET_FIELD(vb, row, col);
655 		src = vtfont_lookup(vf, c);
656 
657 		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
658 		if ((used_colors_list[fg] & 0x1) != 0x1)
659 			used_colors++;
660 		if ((used_colors_list[bg] & 0x2) != 0x2)
661 			used_colors++;
662 		used_colors_list[fg] |= 0x1;
663 		used_colors_list[bg] |= 0x2;
664 
665 		/*
666 		 * Compute the portion of the character we want to draw,
667 		 * because the pixels block may start in the middle of a
668 		 * character.
669 		 *
670 		 * The first pixel to draw in the character is
671 		 *     the current position -
672 		 *     the start position of the character
673 		 *
674 		 * The last pixel to draw is either
675 		 *     - the last pixel of the character, or
676 		 *     - the pixel of the character matching the end of
677 		 *       the pixels block
678 		 * whichever comes first. This position is then
679 		 * changed to be relative to the start position of the
680 		 * character.
681 		 */
682 
683 		src_x = i -
684 		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
685 		x_count = min(min(
686 		    (col + 1) * vf->vf_width +
687 		    vw->vw_draw_area.tr_begin.tp_col,
688 		    x + VT_VGA_PIXELS_BLOCK),
689 		    vw->vw_draw_area.tr_end.tp_col);
690 		x_count -= col * vf->vf_width +
691 		    vw->vw_draw_area.tr_begin.tp_col;
692 		x_count -= src_x;
693 
694 		/* Copy a portion of the character. */
695 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
696 		    src, NULL, vf->vf_width,
697 		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
698 		    0, 0, vf->vf_height, fg, bg, 0);
699 
700 		/* We move to the next portion. */
701 		i += x_count;
702 	}
703 
704 #ifndef SC_NO_CUTPASTE
705 	/*
706 	 * Copy the mouse pointer bitmap if it's over the current pixels
707 	 * block.
708 	 *
709 	 * We use the saved cursor position (saved in vt_flush()), because
710 	 * the current position could be different than the one used
711 	 * to mark the area dirty.
712 	 */
713 	term_rect_t drawn_area;
714 
715 	drawn_area.tr_begin.tp_col = x;
716 	drawn_area.tr_begin.tp_row = y;
717 	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
718 	drawn_area.tr_end.tp_row = y + vf->vf_height;
719 	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
720 		struct vt_mouse_cursor *cursor;
721 		unsigned int mx, my;
722 		unsigned int dst_x, src_y, dst_y, y_count;
723 
724 		cursor = vd->vd_mcursor;
725 		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
726 		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
727 
728 		/* Compute the portion of the cursor we want to copy. */
729 		src_x = x > mx ? x - mx : 0;
730 		dst_x = mx > x ? mx - x : 0;
731 		x_count = min(min(min(
732 		    cursor->width - src_x,
733 		    x + VT_VGA_PIXELS_BLOCK - mx),
734 		    vw->vw_draw_area.tr_end.tp_col - mx),
735 		    VT_VGA_PIXELS_BLOCK);
736 
737 		/*
738 		 * The cursor isn't aligned on the Y-axis with
739 		 * characters, so we need to compute the vertical
740 		 * start/count.
741 		 */
742 		src_y = y > my ? y - my : 0;
743 		dst_y = my > y ? my - y : 0;
744 		y_count = min(
745 		    min(cursor->height - src_y, y + vf->vf_height - my),
746 		    vf->vf_height);
747 
748 		/* Copy the cursor portion. */
749 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
750 		    cursor->map, cursor->mask, cursor->width,
751 		    src_x, dst_x, x_count, src_y, dst_y, y_count,
752 		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
753 
754 		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
755 			used_colors++;
756 		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
757 			used_colors++;
758 	}
759 #endif
760 
761 	/*
762 	 * The pixels block is completed, we can now draw it on the
763 	 * screen.
764 	 */
765 	if (used_colors == 2)
766 		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
767 		    x, y, vf->vf_height);
768 	else
769 		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
770 		    x, y, vf->vf_height);
771 }
772 
773 static void
774 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
775     const term_rect_t *area)
776 {
777 	const struct vt_font *vf;
778 	unsigned int col, row;
779 	unsigned int x1, y1, x2, y2, x, y;
780 
781 	vf = vw->vw_font;
782 
783 	/*
784 	 * Compute the top-left pixel position aligned with the video
785 	 * adapter pixels block size.
786 	 *
787 	 * This is calculated from the top-left column of te dirty area:
788 	 *
789 	 *     1. Compute the top-left pixel of the character:
790 	 *        col * font width + x offset
791 	 *
792 	 *        NOTE: x offset is used to center the text area on the
793 	 *        screen. It's expressed in pixels, not in characters
794 	 *        col/row!
795 	 *
796 	 *     2. Find the pixel further on the left marking the start of
797 	 *        an aligned pixels block (eg. chunk of 8 pixels):
798 	 *        character's x / blocksize * blocksize
799 	 *
800 	 *        The division, being made on integers, achieves the
801 	 *        alignment.
802 	 *
803 	 * For the Y-axis, we need to compute the character's y
804 	 * coordinate, but we don't need to align it.
805 	 */
806 
807 	col = area->tr_begin.tp_col;
808 	row = area->tr_begin.tp_row;
809 	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
810 	     / VT_VGA_PIXELS_BLOCK)
811 	    * VT_VGA_PIXELS_BLOCK;
812 	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
813 
814 	/*
815 	 * Compute the bottom right pixel position, again, aligned with
816 	 * the pixels block size.
817 	 *
818 	 * The same rules apply, we just add 1 to base the computation
819 	 * on the "right border" of the dirty area.
820 	 */
821 
822 	col = area->tr_end.tp_col;
823 	row = area->tr_end.tp_row;
824 	x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col
825 	      + VT_VGA_PIXELS_BLOCK - 1)
826 	     / VT_VGA_PIXELS_BLOCK)
827 	    * VT_VGA_PIXELS_BLOCK;
828 	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
829 
830 	/* Clip the area to the screen size. */
831 	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
832 	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
833 
834 	/*
835 	 * Now, we take care of N pixels line at a time (the first for
836 	 * loop, N = font height), and for these lines, draw one pixels
837 	 * block at a time (the second for loop), not a character at a
838 	 * time.
839 	 *
840 	 * Therefore, on the X-axis, characters my be drawn partially if
841 	 * they are not aligned on 8-pixels boundary.
842 	 *
843 	 * However, the operation is repeated for the full height of the
844 	 * font before moving to the next character, because it allows
845 	 * to keep the color settings and write mode, before perhaps
846 	 * changing them with the next one.
847 	 */
848 
849 	for (y = y1; y < y2; y += vf->vf_height) {
850 		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
851 			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
852 		}
853 	}
854 }
855 
856 static void
857 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
858     const term_rect_t *area)
859 {
860 	struct vga_softc *sc;
861 	const struct vt_buf *vb;
862 	unsigned int col, row;
863 	term_char_t c;
864 	term_color_t fg, bg;
865 	uint8_t ch, attr;
866 
867 	sc = vd->vd_softc;
868 	vb = &vw->vw_buf;
869 
870 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
871 		for (col = area->tr_begin.tp_col;
872 		    col < area->tr_end.tp_col;
873 		    ++col) {
874 			/*
875 			 * Get next character and its associated fg/bg
876 			 * colors.
877 			 */
878 			c = VTBUF_GET_FIELD(vb, row, col);
879 			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
880 			    &fg, &bg);
881 
882 			/*
883 			 * Convert character to CP437, which is the
884 			 * character set used by the VGA hardware by
885 			 * default.
886 			 */
887 			ch = vga_get_cp437(TCHAR_CHARACTER(c));
888 
889 			/* Convert colors to VGA attributes. */
890 			attr = bg << 4 | fg;
891 
892 			MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0,
893 			    ch);
894 			MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1,
895 			    attr);
896 		}
897 	}
898 }
899 
900 static void
901 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
902     const term_rect_t *area)
903 {
904 
905 	if (!(vd->vd_flags & VDF_TEXTMODE)) {
906 		vga_bitblt_text_gfxmode(vd, vw, area);
907 	} else {
908 		vga_bitblt_text_txtmode(vd, vw, area);
909 	}
910 }
911 
912 static void
913 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
914     const uint8_t *pattern, const uint8_t *mask,
915     unsigned int width, unsigned int height,
916     unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
917 {
918 	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
919 	uint8_t pattern_2colors;
920 
921 	/* Align coordinates with the 8-pxels grid. */
922 	x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
923 	y1 = y;
924 
925 	x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) /
926 	    VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
927 	y2 = y + height;
928 	x2 = min(x2, vd->vd_width - 1);
929 	y2 = min(y2, vd->vd_height - 1);
930 
931 	for (j = y1; j < y2; ++j) {
932 		src_x = 0;
933 		dst_x = x - x1;
934 		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
935 
936 		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
937 			pattern_2colors = 0;
938 
939 			vga_copy_bitmap_portion(
940 			    &pattern_2colors, NULL,
941 			    pattern, mask, width,
942 			    src_x, dst_x, x_count,
943 			    j - y1, 0, 1, fg, bg, 0);
944 
945 			vga_bitblt_pixels_block_2colors(vd,
946 			    &pattern_2colors, fg, bg,
947 			    i, j, 1);
948 
949 			src_x += x_count;
950 			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
951 			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
952 		}
953 	}
954 }
955 
956 static void
957 vga_initialize_graphics(struct vt_device *vd)
958 {
959 	struct vga_softc *sc = vd->vd_softc;
960 
961 	/* Clock select. */
962 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
963 	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
964 	/* Set sequencer clocking and memory mode. */
965 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
966 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
967 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
968 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
969 
970 	/* Set the graphics controller in graphics mode. */
971 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
972 	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
973 	/* Program the CRT controller. */
974 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
975 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
976 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
977 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
978 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
979 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
980 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
981 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
982 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
983 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
984 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
985 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
986 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
987 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
988 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
989 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
990 	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
991 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
992 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
993 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
994 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
995 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
996 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
997 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
998 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
999 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
1000 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
1001 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
1002 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
1003 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1004 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1005 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1006 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1007 	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1008 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1009 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1010 
1011 	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1012 
1013 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1014 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1015 	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1016 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1017 	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1018 
1019 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1020 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1021 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1022 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1023 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1024 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1025 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1026 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1027 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1028 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1029 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1030 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1031 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1032 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1033 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1034 	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1035 }
1036 
1037 static void
1038 vga_initialize(struct vt_device *vd, int textmode)
1039 {
1040 	struct vga_softc *sc = vd->vd_softc;
1041 	uint8_t x;
1042 
1043 	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1044 	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1045 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1046 
1047 	/* Unprotect CRTC registers 0-7. */
1048 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1049 	x = REG_READ1(sc, VGA_CRTC_DATA);
1050 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1051 
1052 	/*
1053 	 * Wait for the vertical retrace.
1054 	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1055 	 * the side-effect of clearing the internal flip-flip of the attribute
1056 	 * controller's write register. This means that because this code is
1057 	 * here, we know for sure that the first write to the attribute
1058 	 * controller will be a write to the address register. Removing this
1059 	 * code therefore also removes that guarantee and appropriate measures
1060 	 * need to be taken.
1061 	 */
1062 	do {
1063 		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1064 		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1065 	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE));
1066 
1067 	/* Now, disable the sync. signals. */
1068 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1069 	x = REG_READ1(sc, VGA_CRTC_DATA);
1070 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1071 
1072 	/* Asynchronous sequencer reset. */
1073 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1074 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1075 
1076 	if (!textmode)
1077 		vga_initialize_graphics(vd);
1078 
1079 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1080 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1081 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1082 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1083 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1084 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1085 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1086 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1087 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1088 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1089 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1090 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1091 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1092 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1093 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1094 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1095 
1096 	if (textmode) {
1097 		/* Set the attribute controller to blink disable. */
1098 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1099 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1100 	} else {
1101 		/* Set the attribute controller in graphics mode. */
1102 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1103 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1104 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1105 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1106 	}
1107 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1108 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1109 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1110 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1111 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1112 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1113 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1114 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1115 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1116 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1117 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1118 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1119 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1120 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1121 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1122 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1123 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1124 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1125 	    VGA_AC_PAL_SB);
1126 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1127 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1128 	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1129 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1130 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1131 	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1132 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1133 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1134 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1135 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1136 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1137 	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1138 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1139 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1140 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1141 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1142 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1143 	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1144 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1145 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1146 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1147 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1148 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1149 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1150 	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1151 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1152 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1153 
1154 	if (!textmode) {
1155 		u_int ofs;
1156 
1157 		/*
1158 		 * Done.  Clear the frame buffer.  All bit planes are
1159 		 * enabled, so a single-paged loop should clear all
1160 		 * planes.
1161 		 */
1162 		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1163 			MEM_WRITE1(sc, ofs, 0);
1164 		}
1165 	}
1166 
1167 	/* Re-enable the sequencer. */
1168 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1169 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1170 	/* Re-enable the sync signals. */
1171 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1172 	x = REG_READ1(sc, VGA_CRTC_DATA);
1173 	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1174 
1175 	if (!textmode) {
1176 		/* Switch to write mode 3, because we'll mainly do bitblt. */
1177 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1178 		REG_WRITE1(sc, VGA_GC_DATA, 3);
1179 		sc->vga_wmode = 3;
1180 
1181 		/*
1182 		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1183 		 * use Write Mode 0 to write a group of 8 pixels using
1184 		 * 3 or more colors. In this case, we want to disable
1185 		 * Set/Reset: set Enable Set/Reset to 0.
1186 		 */
1187 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1188 		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1189 
1190 		/*
1191 		 * Clear the colors we think are loaded into Set/Reset or
1192 		 * the latches.
1193 		 */
1194 		sc->vga_curfg = sc->vga_curbg = 0xff;
1195 	}
1196 }
1197 
1198 static int
1199 vga_probe(struct vt_device *vd)
1200 {
1201 
1202 	return (CN_INTERNAL);
1203 }
1204 
1205 static int
1206 vga_init(struct vt_device *vd)
1207 {
1208 	struct vga_softc *sc;
1209 	int textmode;
1210 
1211 	if (vd->vd_softc == NULL)
1212 		vd->vd_softc = (void *)&vga_conssoftc;
1213 	sc = vd->vd_softc;
1214 	textmode = 0;
1215 
1216 #if defined(__amd64__) || defined(__i386__)
1217 	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1218 	sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE;
1219 	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1220 	sc->vga_reg_handle = VGA_REG_BASE;
1221 #else
1222 # error "Architecture not yet supported!"
1223 #endif
1224 
1225 	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1226 	if (textmode) {
1227 		vd->vd_flags |= VDF_TEXTMODE;
1228 		vd->vd_width = 80;
1229 		vd->vd_height = 25;
1230 	} else {
1231 		vd->vd_width = VT_VGA_WIDTH;
1232 		vd->vd_height = VT_VGA_HEIGHT;
1233 	}
1234 	vga_initialize(vd, textmode);
1235 	sc->vga_enabled = true;
1236 
1237 	return (CN_INTERNAL);
1238 }
1239 
1240 static void
1241 vga_postswitch(struct vt_device *vd)
1242 {
1243 
1244 	/* Reinit VGA mode, to restore view after app which change mode. */
1245 	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1246 	/* Ask vt(9) to update chars on visible area. */
1247 	vd->vd_flags |= VDF_INVALID;
1248 }
1249 
1250 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1251 static void
1252 vtvga_identify(driver_t *driver, device_t parent)
1253 {
1254 
1255 	if (!vga_conssoftc.vga_enabled)
1256 		return;
1257 
1258 	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1259 		panic("Unable to attach vt_vga console");
1260 }
1261 
1262 static int
1263 vtvga_probe(device_t dev)
1264 {
1265 
1266 	device_set_desc(dev, "vt_vga driver");
1267 	return (BUS_PROBE_NOWILDCARD);
1268 }
1269 
1270 static int
1271 vtvga_attach(device_t dev)
1272 {
1273 	struct resource *pseudo_phys_res;
1274 	int res_id;
1275 
1276 	res_id = 0;
1277 	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1278 	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1279 	    VGA_MEM_SIZE, RF_ACTIVE);
1280 	if (pseudo_phys_res == NULL)
1281 		panic("Unable to reserve vt_vga memory");
1282 	return (0);
1283 }
1284 
1285 /*-------------------- Private Device Attachment Data  -----------------------*/
1286 static device_method_t vtvga_methods[] = {
1287 	/* Device interface */
1288 	DEVMETHOD(device_identify,	vtvga_identify),
1289 	DEVMETHOD(device_probe,         vtvga_probe),
1290 	DEVMETHOD(device_attach,        vtvga_attach),
1291 
1292 	DEVMETHOD_END
1293 };
1294 
1295 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1296 devclass_t vtvga_devclass;
1297 
1298 DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL);
1299