/*- * Copyright (c) 2005 Marcel Moolenaar * All rights reserved. * * Copyright (c) 2009 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Ed Schouten * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #if defined(__amd64__) || defined(__i386__) #include #include #include #include #endif /* __amd64__ || __i386__ */ struct vga_softc { bus_space_tag_t vga_fb_tag; bus_space_handle_t vga_fb_handle; bus_space_tag_t vga_reg_tag; bus_space_handle_t vga_reg_handle; int vga_wmode; term_color_t vga_curfg, vga_curbg; boolean_t vga_enabled; }; /* Convenience macros. */ #define MEM_READ1(sc, ofs) \ bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs) #define MEM_WRITE1(sc, ofs, val) \ bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) #define REG_READ1(sc, reg) \ bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg) #define REG_WRITE1(sc, reg, val) \ bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val) #define VT_VGA_WIDTH 640 #define VT_VGA_HEIGHT 480 #define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8) /* * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of * memory). */ #define VT_VGA_PIXELS_BLOCK 8 /* * We use an off-screen addresses to: * o store the background color; * o store pixels pattern. * Those addresses are then loaded in the latches once. */ #define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE static vd_probe_t vga_probe; static vd_init_t vga_init; static vd_blank_t vga_blank; static vd_bitblt_text_t vga_bitblt_text; static vd_bitblt_bmp_t vga_bitblt_bitmap; static vd_drawrect_t vga_drawrect; static vd_setpixel_t vga_setpixel; static vd_postswitch_t vga_postswitch; static const struct vt_driver vt_vga_driver = { .vd_name = "vga", .vd_probe = vga_probe, .vd_init = vga_init, .vd_blank = vga_blank, .vd_bitblt_text = vga_bitblt_text, .vd_bitblt_bmp = vga_bitblt_bitmap, .vd_drawrect = vga_drawrect, .vd_setpixel = vga_setpixel, .vd_postswitch = vga_postswitch, .vd_priority = VD_PRIORITY_GENERIC, }; /* * Driver supports both text mode and graphics mode. Make sure the * buffer is always big enough to support both. */ static struct vga_softc vga_conssoftc; VT_DRIVER_DECLARE(vt_vga, vt_vga_driver); static inline void vga_setwmode(struct vt_device *vd, int wmode) { struct vga_softc *sc = vd->vd_softc; if (sc->vga_wmode == wmode) return; REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); REG_WRITE1(sc, VGA_GC_DATA, wmode); sc->vga_wmode = wmode; switch (wmode) { case 3: /* Re-enable all plans. */ REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); break; } } static inline void vga_setfg(struct vt_device *vd, term_color_t color) { struct vga_softc *sc = vd->vd_softc; vga_setwmode(vd, 3); if (sc->vga_curfg == color) return; REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); REG_WRITE1(sc, VGA_GC_DATA, color); sc->vga_curfg = color; } static inline void vga_setbg(struct vt_device *vd, term_color_t color) { struct vga_softc *sc = vd->vd_softc; vga_setwmode(vd, 3); if (sc->vga_curbg == color) return; REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); REG_WRITE1(sc, VGA_GC_DATA, color); /* * Write 8 pixels using the background color to an off-screen * byte in the video memory. */ MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff); /* * Read those 8 pixels back to load the background color in the * latches register. */ MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET); sc->vga_curbg = color; /* * The Set/Reset register doesn't contain the fg color anymore, * store an invalid color. */ sc->vga_curfg = 0xff; } /* * Binary searchable table for Unicode to CP437 conversion. */ struct unicp437 { uint16_t unicode_base; uint8_t cp437_base; uint8_t length; }; static const struct unicp437 cp437table[] = { { 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 }, { 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 }, { 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 }, { 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 }, { 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 }, { 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 }, { 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 }, { 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 }, { 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 }, { 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 }, { 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 }, { 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 }, { 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 }, { 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 }, { 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 }, { 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 }, { 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 }, { 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 }, { 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 }, { 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 }, { 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 }, { 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 }, { 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 }, { 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 }, { 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 }, { 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 }, { 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 }, { 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 }, { 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 }, { 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 }, { 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 }, { 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 }, { 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 }, { 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 }, { 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 }, { 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 }, { 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 }, { 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 }, { 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 }, { 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 }, { 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 }, { 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 }, { 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 }, { 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 }, { 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 }, { 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 }, { 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 }, { 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 }, { 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 }, { 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 }, { 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 }, { 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 }, { 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 }, { 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 }, { 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 }, { 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 }, { 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 }, { 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 }, { 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 }, { 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 }, { 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 }, { 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 }, { 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 }, { 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 }, { 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 }, { 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 }, { 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 }, { 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 }, { 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 }, { 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 }, { 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 }, { 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 }, { 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 }, { 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 }, { 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 }, { 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 }, { 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 }, { 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 }, { 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 }, { 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 }, { 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 }, { 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 }, { 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 }, { 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 }, { 0x266c, 0x0e, 0x00 }, }; static uint8_t vga_get_cp437(term_char_t c) { int min, mid, max; min = 0; max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1; if (c < cp437table[0].unicode_base || c > cp437table[max].unicode_base + cp437table[max].length) return '?'; while (max >= min) { mid = (min + max) / 2; if (c < cp437table[mid].unicode_base) max = mid - 1; else if (c > cp437table[mid].unicode_base + cp437table[mid].length) min = mid + 1; else return (c - cp437table[mid].unicode_base + cp437table[mid].cp437_base); } return '?'; } static void vga_blank(struct vt_device *vd, term_color_t color) { struct vga_softc *sc = vd->vd_softc; u_int ofs; vga_setfg(vd, color); for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) MEM_WRITE1(sc, ofs, 0xff); } static inline void vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color, uint8_t v) { struct vga_softc *sc = vd->vd_softc; /* Skip empty writes, in order to avoid palette changes. */ if (v != 0x00) { vga_setfg(vd, color); /* * When this MEM_READ1() gets disabled, all sorts of * artifacts occur. This is because this read loads the * set of 8 pixels that are about to be changed. There * is one scenario where we can avoid the read, namely * if all pixels are about to be overwritten anyway. */ if (v != 0xff) { MEM_READ1(sc, dst); /* The bg color was trashed by the reads. */ sc->vga_curbg = 0xff; } MEM_WRITE1(sc, dst, v); } } static void vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color) { if (vd->vd_flags & VDF_TEXTMODE) return; vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color, 0x80 >> (x % 8)); } static void vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill, term_color_t color) { int x, y; if (vd->vd_flags & VDF_TEXTMODE) return; for (y = y1; y <= y2; y++) { if (fill || (y == y1) || (y == y2)) { for (x = x1; x <= x2; x++) vga_setpixel(vd, x, y, color); } else { vga_setpixel(vd, x1, y, color); vga_setpixel(vd, x2, y, color); } } } static void vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes, unsigned int src_x, unsigned int x_count, unsigned int dst_x, uint8_t *pattern, uint8_t *mask) { unsigned int n; n = src_x / 8; /* * This mask has bits set, where a pixel (ether 0 or 1) * comes from the source bitmap. */ if (mask != NULL) { *mask = (0xff >> (8 - x_count)) << (8 - x_count - dst_x); } if (n == (src_x + x_count - 1) / 8) { /* All the pixels we want are in the same byte. */ *pattern = src[n]; if (dst_x >= src_x) *pattern >>= (dst_x - src_x % 8); else *pattern <<= (src_x % 8 - dst_x); } else { /* The pixels we want are split into two bytes. */ if (dst_x >= src_x % 8) { *pattern = src[n] << (8 - dst_x - src_x % 8) | src[n + 1] >> (dst_x - src_x % 8); } else { *pattern = src[n] << (src_x % 8 - dst_x) | src[n + 1] >> (8 - src_x % 8 - dst_x); } } } static void vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors, const uint8_t *src, const uint8_t *src_mask, unsigned int src_width, unsigned int src_x, unsigned int dst_x, unsigned int x_count, unsigned int src_y, unsigned int dst_y, unsigned int y_count, term_color_t fg, term_color_t bg, int overwrite) { unsigned int i, bytes; uint8_t pattern, relevant_bits, mask; bytes = (src_width + 7) / 8; for (i = 0; i < y_count; ++i) { vga_compute_shifted_pattern(src + (src_y + i) * bytes, bytes, src_x, x_count, dst_x, &pattern, &relevant_bits); if (src_mask == NULL) { /* * No src mask. Consider that all wanted bits * from the source are "authoritative". */ mask = relevant_bits; } else { /* * There's an src mask. We shift it the same way * we shifted the source pattern. */ vga_compute_shifted_pattern( src_mask + (src_y + i) * bytes, bytes, src_x, x_count, dst_x, &mask, NULL); /* Now, only keep the wanted bits among them. */ mask &= relevant_bits; } /* * Clear bits from the pattern which must be * transparent, according to the source mask. */ pattern &= mask; /* Set the bits in the 2-colors array. */ if (overwrite) pattern_2colors[dst_y + i] &= ~mask; pattern_2colors[dst_y + i] |= pattern; if (pattern_ncolors == NULL) continue; /* * Set the same bits in the n-colors array. This one * supports transparency, when a given bit is cleared in * all colors. */ if (overwrite) { /* * Ensure that the pixels used by this bitmap are * cleared in other colors. */ for (int j = 0; j < 16; ++j) pattern_ncolors[(dst_y + i) * 16 + j] &= ~mask; } pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern; pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask); } } static void vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks, term_color_t fg, term_color_t bg, unsigned int x, unsigned int y, unsigned int height) { unsigned int i, offset; struct vga_softc *sc; /* * The great advantage of Write Mode 3 is that we just need * to load the foreground in the Set/Reset register, load the * background color in the latches register (this is done * through a write in offscreen memory followed by a read of * that data), then write the pattern to video memory. This * pattern indicates if the pixel should use the foreground * color (bit set) or the background color (bit cleared). */ vga_setbg(vd, bg); vga_setfg(vd, fg); sc = vd->vd_softc; offset = (VT_VGA_WIDTH * y + x) / 8; for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) { MEM_WRITE1(sc, offset, masks[i]); } } static void vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks, unsigned int x, unsigned int y, unsigned int height) { unsigned int i, j, plan, color, offset; struct vga_softc *sc; uint8_t mask, plans[height * 4]; sc = vd->vd_softc; memset(plans, 0, sizeof(plans)); /* * To write a group of pixels using 3 or more colors, we select * Write Mode 0 and write one byte to each plan separately. */ /* * We first compute each byte: each plan contains one bit of the * color code for each of the 8 pixels. * * For example, if the 8 pixels are like this: * GBBBBBBY * where: * G (gray) = 0b0111 * B (black) = 0b0000 * Y (yellow) = 0b0011 * * The corresponding for bytes are: * GBBBBBBY * Plan 0: 10000001 = 0x81 * Plan 1: 10000001 = 0x81 * Plan 2: 10000000 = 0x80 * Plan 3: 00000000 = 0x00 * | | | * | | +-> 0b0011 (Y) * | +-----> 0b0000 (B) * +--------> 0b0111 (G) */ for (i = 0; i < height; ++i) { for (color = 0; color < 16; ++color) { mask = masks[i * 16 + color]; if (mask == 0x00) continue; for (j = 0; j < 8; ++j) { if (!((mask >> (7 - j)) & 0x1)) continue; /* The pixel "j" uses color "color". */ for (plan = 0; plan < 4; ++plan) plans[i * 4 + plan] |= ((color >> plan) & 0x1) << (7 - j); } } } /* * The bytes are ready: we now switch to Write Mode 0 and write * all bytes, one plan at a time. */ vga_setwmode(vd, 0); REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); for (plan = 0; plan < 4; ++plan) { /* Select plan. */ REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan); /* Write all bytes for this plan, from Y to Y+height. */ for (i = 0; i < height; ++i) { offset = (VT_VGA_WIDTH * (y + i) + x) / 8; MEM_WRITE1(sc, offset, plans[i * 4 + plan]); } } } static void vga_bitblt_one_text_pixels_block(struct vt_device *vd, const struct vt_window *vw, unsigned int x, unsigned int y) { const struct vt_buf *vb; const struct vt_font *vf; unsigned int i, col, row, src_x, x_count; unsigned int used_colors_list[16], used_colors; uint8_t pattern_2colors[vw->vw_font->vf_height]; uint8_t pattern_ncolors[vw->vw_font->vf_height * 16]; term_char_t c; term_color_t fg, bg; const uint8_t *src; vb = &vw->vw_buf; vf = vw->vw_font; /* * The current pixels block. * * We fill it with portions of characters, because both "grids" * may not match. * * i is the index in this pixels block. */ i = x; used_colors = 0; memset(used_colors_list, 0, sizeof(used_colors_list)); memset(pattern_2colors, 0, sizeof(pattern_2colors)); memset(pattern_ncolors, 0, sizeof(pattern_ncolors)); if (i < vw->vw_draw_area.tr_begin.tp_col) { /* * i is in the margin used to center the text area on * the screen. */ i = vw->vw_draw_area.tr_begin.tp_col; } while (i < x + VT_VGA_PIXELS_BLOCK && i < vw->vw_draw_area.tr_end.tp_col) { /* * Find which character is drawn on this pixel in the * pixels block. * * While here, record what colors it uses. */ col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width; row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height; c = VTBUF_GET_FIELD(vb, row, col); src = vtfont_lookup(vf, c); vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg); if ((used_colors_list[fg] & 0x1) != 0x1) used_colors++; if ((used_colors_list[bg] & 0x2) != 0x2) used_colors++; used_colors_list[fg] |= 0x1; used_colors_list[bg] |= 0x2; /* * Compute the portion of the character we want to draw, * because the pixels block may start in the middle of a * character. * * The first pixel to draw in the character is * the current position - * the start position of the character * * The last pixel to draw is either * - the last pixel of the character, or * - the pixel of the character matching the end of * the pixels block * whichever comes first. This position is then * changed to be relative to the start position of the * character. */ src_x = i - (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col); x_count = min(min( (col + 1) * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col, x + VT_VGA_PIXELS_BLOCK), vw->vw_draw_area.tr_end.tp_col); x_count -= col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col; x_count -= src_x; /* Copy a portion of the character. */ vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, src, NULL, vf->vf_width, src_x, i % VT_VGA_PIXELS_BLOCK, x_count, 0, 0, vf->vf_height, fg, bg, 0); /* We move to the next portion. */ i += x_count; } #ifndef SC_NO_CUTPASTE /* * Copy the mouse pointer bitmap if it's over the current pixels * block. * * We use the saved cursor position (saved in vt_flush()), because * the current position could be different than the one used * to mark the area dirty. */ term_rect_t drawn_area; drawn_area.tr_begin.tp_col = x; drawn_area.tr_begin.tp_row = y; drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK; drawn_area.tr_end.tp_row = y + vf->vf_height; if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) { struct vt_mouse_cursor *cursor; unsigned int mx, my; unsigned int dst_x, src_y, dst_y, y_count; cursor = vd->vd_mcursor; mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col; my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row; /* Compute the portion of the cursor we want to copy. */ src_x = x > mx ? x - mx : 0; dst_x = mx > x ? mx - x : 0; x_count = min(min(min( cursor->width - src_x, x + VT_VGA_PIXELS_BLOCK - mx), vw->vw_draw_area.tr_end.tp_col - mx), VT_VGA_PIXELS_BLOCK); /* * The cursor isn't aligned on the Y-axis with * characters, so we need to compute the vertical * start/count. */ src_y = y > my ? y - my : 0; dst_y = my > y ? my - y : 0; y_count = min( min(cursor->height - src_y, y + vf->vf_height - my), vf->vf_height); /* Copy the cursor portion. */ vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, cursor->map, cursor->mask, cursor->width, src_x, dst_x, x_count, src_y, dst_y, y_count, vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1); if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1) used_colors++; if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2) used_colors++; } #endif /* * The pixels block is completed, we can now draw it on the * screen. */ if (used_colors == 2) vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg, x, y, vf->vf_height); else vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors, x, y, vf->vf_height); } static void vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw, const term_rect_t *area) { const struct vt_font *vf; unsigned int col, row; unsigned int x1, y1, x2, y2, x, y; vf = vw->vw_font; /* * Compute the top-left pixel position aligned with the video * adapter pixels block size. * * This is calculated from the top-left column of te dirty area: * * 1. Compute the top-left pixel of the character: * col * font width + x offset * * NOTE: x offset is used to center the text area on the * screen. It's expressed in pixels, not in characters * col/row! * * 2. Find the pixel further on the left marking the start of * an aligned pixels block (eg. chunk of 8 pixels): * character's x / blocksize * blocksize * * The division, being made on integers, achieves the * alignment. * * For the Y-axis, we need to compute the character's y * coordinate, but we don't need to align it. */ col = area->tr_begin.tp_col; row = area->tr_begin.tp_row; x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col) / VT_VGA_PIXELS_BLOCK) * VT_VGA_PIXELS_BLOCK; y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; /* * Compute the bottom right pixel position, again, aligned with * the pixels block size. * * The same rules apply, we just add 1 to base the computation * on the "right border" of the dirty area. */ col = area->tr_end.tp_col; row = area->tr_end.tp_row; x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col + VT_VGA_PIXELS_BLOCK - 1) / VT_VGA_PIXELS_BLOCK) * VT_VGA_PIXELS_BLOCK; y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; /* Clip the area to the screen size. */ x2 = min(x2, vw->vw_draw_area.tr_end.tp_col); y2 = min(y2, vw->vw_draw_area.tr_end.tp_row); /* * Now, we take care of N pixels line at a time (the first for * loop, N = font height), and for these lines, draw one pixels * block at a time (the second for loop), not a character at a * time. * * Therefore, on the X-axis, characters my be drawn partially if * they are not aligned on 8-pixels boundary. * * However, the operation is repeated for the full height of the * font before moving to the next character, because it allows * to keep the color settings and write mode, before perhaps * changing them with the next one. */ for (y = y1; y < y2; y += vf->vf_height) { for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) { vga_bitblt_one_text_pixels_block(vd, vw, x, y); } } } static void vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw, const term_rect_t *area) { struct vga_softc *sc; const struct vt_buf *vb; unsigned int col, row; term_char_t c; term_color_t fg, bg; uint8_t ch, attr; sc = vd->vd_softc; vb = &vw->vw_buf; for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { for (col = area->tr_begin.tp_col; col < area->tr_end.tp_col; ++col) { /* * Get next character and its associated fg/bg * colors. */ c = VTBUF_GET_FIELD(vb, row, col); vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg); /* * Convert character to CP437, which is the * character set used by the VGA hardware by * default. */ ch = vga_get_cp437(TCHAR_CHARACTER(c)); /* Convert colors to VGA attributes. */ attr = bg << 4 | fg; MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0, ch); MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1, attr); } } } static void vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw, const term_rect_t *area) { if (!(vd->vd_flags & VDF_TEXTMODE)) { vga_bitblt_text_gfxmode(vd, vw, area); } else { vga_bitblt_text_txtmode(vd, vw, area); } } static void vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw, const uint8_t *pattern, const uint8_t *mask, unsigned int width, unsigned int height, unsigned int x, unsigned int y, term_color_t fg, term_color_t bg) { unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count; uint8_t pattern_2colors; /* Align coordinates with the 8-pxels grid. */ x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK; y1 = y; x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK; y2 = y + height; x2 = min(x2, vd->vd_width - 1); y2 = min(y2, vd->vd_height - 1); for (j = y1; j < y2; ++j) { src_x = 0; dst_x = x - x1; x_count = VT_VGA_PIXELS_BLOCK - dst_x; for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) { pattern_2colors = 0; vga_copy_bitmap_portion( &pattern_2colors, NULL, pattern, mask, width, src_x, dst_x, x_count, j - y1, 0, 1, fg, bg, 0); vga_bitblt_pixels_block_2colors(vd, &pattern_2colors, fg, bg, i, j, 1); src_x += x_count; dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK; x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK); } } } static void vga_initialize_graphics(struct vt_device *vd) { struct vga_softc *sc = vd->vd_softc; /* Clock select. */ REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP | VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA); /* Set sequencer clocking and memory mode. */ REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89); REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM); /* Set the graphics controller in graphics mode. */ REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS); REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA); /* Program the CRT controller. */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL); REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END); REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK); REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE); REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL); REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 | VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START); REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END); REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET); REG_WRITE1(sc, VGA_CRTC_DATA, 0x28); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK); REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK); REG_WRITE1(sc, VGA_CRTC_DATA, 0x04); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW | VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE); REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */ REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0); REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT); REG_WRITE1(sc, VGA_SEQ_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); REG_WRITE1(sc, VGA_GC_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); REG_WRITE1(sc, VGA_GC_DATA, 0x0f); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE); REG_WRITE1(sc, VGA_GC_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE); REG_WRITE1(sc, VGA_GC_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT); REG_WRITE1(sc, VGA_GC_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); REG_WRITE1(sc, VGA_GC_DATA, 0); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE); REG_WRITE1(sc, VGA_GC_DATA, 0x0f); REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK); REG_WRITE1(sc, VGA_GC_DATA, 0xff); } static void vga_initialize(struct vt_device *vd, int textmode) { struct vga_softc *sc = vd->vd_softc; uint8_t x; /* Make sure the VGA adapter is not in monochrome emulation mode. */ x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R); REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA); /* Unprotect CRTC registers 0-7. */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); x = REG_READ1(sc, VGA_CRTC_DATA); REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR); /* * Wait for the vertical retrace. * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has * the side-effect of clearing the internal flip-flip of the attribute * controller's write register. This means that because this code is * here, we know for sure that the first write to the attribute * controller will be a write to the address register. Removing this * code therefore also removes that guarantee and appropriate measures * need to be taken. */ do { x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1); x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE; } while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE)); /* Now, disable the sync. signals. */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); x = REG_READ1(sc, VGA_CRTC_DATA); REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR); /* Asynchronous sequencer reset. */ REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR); if (!textmode) vga_initialize_graphics(vd); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN); REG_WRITE1(sc, VGA_CRTC_DATA, 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END); REG_WRITE1(sc, VGA_CRTC_DATA, 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH); REG_WRITE1(sc, VGA_CRTC_DATA, 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW); REG_WRITE1(sc, VGA_CRTC_DATA, 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH); REG_WRITE1(sc, VGA_CRTC_DATA, 0); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW); REG_WRITE1(sc, VGA_CRTC_DATA, 0x59); REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC); REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL); if (textmode) { /* Set the attribute controller to blink disable. */ REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); REG_WRITE1(sc, VGA_AC_WRITE, 0); } else { /* Set the attribute controller in graphics mode. */ REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING); REG_WRITE1(sc, VGA_AC_WRITE, 0); } REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0)); REG_WRITE1(sc, VGA_AC_WRITE, 0); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_R); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_G); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15)); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR); REG_WRITE1(sc, VGA_AC_WRITE, 0); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE); REG_WRITE1(sc, VGA_AC_WRITE, 0x0f); REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT); REG_WRITE1(sc, VGA_AC_WRITE, 0); if (!textmode) { u_int ofs; /* * Done. Clear the frame buffer. All bit planes are * enabled, so a single-paged loop should clear all * planes. */ for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) { MEM_WRITE1(sc, ofs, 0); } } /* Re-enable the sequencer. */ REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR); /* Re-enable the sync signals. */ REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); x = REG_READ1(sc, VGA_CRTC_DATA); REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR); if (!textmode) { /* Switch to write mode 3, because we'll mainly do bitblt. */ REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); REG_WRITE1(sc, VGA_GC_DATA, 3); sc->vga_wmode = 3; /* * In Write Mode 3, Enable Set/Reset is ignored, but we * use Write Mode 0 to write a group of 8 pixels using * 3 or more colors. In this case, we want to disable * Set/Reset: set Enable Set/Reset to 0. */ REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); REG_WRITE1(sc, VGA_GC_DATA, 0x00); /* * Clear the colors we think are loaded into Set/Reset or * the latches. */ sc->vga_curfg = sc->vga_curbg = 0xff; } } static int vga_probe(struct vt_device *vd) { return (CN_INTERNAL); } static int vga_init(struct vt_device *vd) { struct vga_softc *sc; int textmode; if (vd->vd_softc == NULL) vd->vd_softc = (void *)&vga_conssoftc; sc = vd->vd_softc; textmode = 0; #if defined(__amd64__) || defined(__i386__) sc->vga_fb_tag = X86_BUS_SPACE_MEM; sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE; sc->vga_reg_tag = X86_BUS_SPACE_IO; sc->vga_reg_handle = VGA_REG_BASE; #else # error "Architecture not yet supported!" #endif TUNABLE_INT_FETCH("hw.vga.textmode", &textmode); if (textmode) { vd->vd_flags |= VDF_TEXTMODE; vd->vd_width = 80; vd->vd_height = 25; } else { vd->vd_width = VT_VGA_WIDTH; vd->vd_height = VT_VGA_HEIGHT; } vga_initialize(vd, textmode); sc->vga_enabled = true; return (CN_INTERNAL); } static void vga_postswitch(struct vt_device *vd) { /* Reinit VGA mode, to restore view after app which change mode. */ vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE)); /* Ask vt(9) to update chars on visible area. */ vd->vd_flags |= VDF_INVALID; } /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */ static void vtvga_identify(driver_t *driver, device_t parent) { if (!vga_conssoftc.vga_enabled) return; if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL) panic("Unable to attach vt_vga console"); } static int vtvga_probe(device_t dev) { device_set_desc(dev, "vt_vga driver"); return (BUS_PROBE_NOWILDCARD); } static int vtvga_attach(device_t dev) { struct resource *pseudo_phys_res; int res_id; res_id = 0; pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1, VGA_MEM_SIZE, RF_ACTIVE); if (pseudo_phys_res == NULL) panic("Unable to reserve vt_vga memory"); return (0); } /*-------------------- Private Device Attachment Data -----------------------*/ static device_method_t vtvga_methods[] = { /* Device interface */ DEVMETHOD(device_identify, vtvga_identify), DEVMETHOD(device_probe, vtvga_probe), DEVMETHOD(device_attach, vtvga_attach), DEVMETHOD_END }; DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0); devclass_t vtvga_devclass; DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL);