xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision fba3cde907930eed2adb8a320524bc250338c729)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75 
76 #define	USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78 
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81 
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84 
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
87     "Debug level");
88 #endif
89 
90 #define URAL_RSSI(rssi)					\
91 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
92 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93 
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97 	URAL_DEV(ASUS, WL167G),
98 	URAL_DEV(ASUS, RT2570),
99 	URAL_DEV(BELKIN, F5D7050),
100 	URAL_DEV(BELKIN, F5D7051),
101 	URAL_DEV(CISCOLINKSYS, HU200TS),
102 	URAL_DEV(CISCOLINKSYS, WUSB54G),
103 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
104 	URAL_DEV(CONCEPTRONIC2, C54RU),
105 	URAL_DEV(DLINK, DWLG122),
106 	URAL_DEV(GIGABYTE, GN54G),
107 	URAL_DEV(GIGABYTE, GNWBKG),
108 	URAL_DEV(GUILLEMOT, HWGUSB254),
109 	URAL_DEV(MELCO, KG54),
110 	URAL_DEV(MELCO, KG54AI),
111 	URAL_DEV(MELCO, KG54YB),
112 	URAL_DEV(MELCO, NINWIFI),
113 	URAL_DEV(MSI, RT2570),
114 	URAL_DEV(MSI, RT2570_2),
115 	URAL_DEV(MSI, RT2570_3),
116 	URAL_DEV(NOVATECH, NV902),
117 	URAL_DEV(RALINK, RT2570),
118 	URAL_DEV(RALINK, RT2570_2),
119 	URAL_DEV(RALINK, RT2570_3),
120 	URAL_DEV(SIEMENS2, WL54G),
121 	URAL_DEV(SMC, 2862WG),
122 	URAL_DEV(SPHAIRON, UB801R),
123 	URAL_DEV(SURECOM, RT2570),
124 	URAL_DEV(VTECH, RT2570),
125 	URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128 
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131 
132 static usb_error_t	ural_do_request(struct ural_softc *sc,
133 			    struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
136 			    int, const uint8_t [IEEE80211_ADDR_LEN],
137 			    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void		ural_vap_delete(struct ieee80211vap *);
139 static void		ural_tx_free(struct ural_tx_data *, int);
140 static void		ural_setup_tx_list(struct ural_softc *);
141 static void		ural_unsetup_tx_list(struct ural_softc *);
142 static int		ural_newstate(struct ieee80211vap *,
143 			    enum ieee80211_state, int);
144 static void		ural_setup_tx_desc(struct ural_softc *,
145 			    struct ural_tx_desc *, uint32_t, int, int);
146 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
147 			    struct ieee80211_node *);
148 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
149 			    struct ieee80211_node *);
150 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
151 			    struct ieee80211_node *);
152 static void		ural_start(struct ifnet *);
153 static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
154 static void		ural_set_testmode(struct ural_softc *);
155 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
156 			    int);
157 static uint16_t		ural_read(struct ural_softc *, uint16_t);
158 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
159 			    int);
160 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
161 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
162 			    int) __unused;
163 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
164 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
165 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
166 static void		ural_scan_start(struct ieee80211com *);
167 static void		ural_scan_end(struct ieee80211com *);
168 static void		ural_set_channel(struct ieee80211com *);
169 static void		ural_set_chan(struct ural_softc *,
170 			    struct ieee80211_channel *);
171 static void		ural_disable_rf_tune(struct ural_softc *);
172 static void		ural_enable_tsf_sync(struct ural_softc *);
173 static void 		ural_enable_tsf(struct ural_softc *);
174 static void		ural_update_slot(struct ifnet *);
175 static void		ural_set_txpreamble(struct ural_softc *);
176 static void		ural_set_basicrates(struct ural_softc *,
177 			    const struct ieee80211_channel *);
178 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
179 static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
180 static void		ural_update_promisc(struct ifnet *);
181 static void		ural_setpromisc(struct ural_softc *);
182 static const char	*ural_get_rf(int);
183 static void		ural_read_eeprom(struct ural_softc *);
184 static int		ural_bbp_init(struct ural_softc *);
185 static void		ural_set_txantenna(struct ural_softc *, int);
186 static void		ural_set_rxantenna(struct ural_softc *, int);
187 static void		ural_init_locked(struct ural_softc *);
188 static void		ural_init(void *);
189 static void		ural_stop(struct ural_softc *);
190 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191 			    const struct ieee80211_bpf_params *);
192 static void		ural_ratectl_start(struct ural_softc *,
193 			    struct ieee80211_node *);
194 static void		ural_ratectl_timeout(void *);
195 static void		ural_ratectl_task(void *, int);
196 static int		ural_pause(struct ural_softc *sc, int timeout);
197 
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202 	uint16_t	reg;
203 	uint16_t	val;
204 } ural_def_mac[] = {
205 	{ RAL_TXRX_CSR5,  0x8c8d },
206 	{ RAL_TXRX_CSR6,  0x8b8a },
207 	{ RAL_TXRX_CSR7,  0x8687 },
208 	{ RAL_TXRX_CSR8,  0x0085 },
209 	{ RAL_MAC_CSR13,  0x1111 },
210 	{ RAL_MAC_CSR14,  0x1e11 },
211 	{ RAL_TXRX_CSR21, 0xe78f },
212 	{ RAL_MAC_CSR9,   0xff1d },
213 	{ RAL_MAC_CSR11,  0x0002 },
214 	{ RAL_MAC_CSR22,  0x0053 },
215 	{ RAL_MAC_CSR15,  0x0000 },
216 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217 	{ RAL_TXRX_CSR19, 0x0000 },
218 	{ RAL_TXRX_CSR18, 0x005a },
219 	{ RAL_PHY_CSR2,   0x0000 },
220 	{ RAL_TXRX_CSR0,  0x1ec0 },
221 	{ RAL_PHY_CSR4,   0x000f }
222 };
223 
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228 	uint8_t	reg;
229 	uint8_t	val;
230 } ural_def_bbp[] = {
231 	{  3, 0x02 },
232 	{  4, 0x19 },
233 	{ 14, 0x1c },
234 	{ 15, 0x30 },
235 	{ 16, 0xac },
236 	{ 17, 0x48 },
237 	{ 18, 0x18 },
238 	{ 19, 0xff },
239 	{ 20, 0x1e },
240 	{ 21, 0x08 },
241 	{ 22, 0x08 },
242 	{ 23, 0x08 },
243 	{ 24, 0x80 },
244 	{ 25, 0x50 },
245 	{ 26, 0x08 },
246 	{ 27, 0x23 },
247 	{ 30, 0x10 },
248 	{ 31, 0x2b },
249 	{ 32, 0xb9 },
250 	{ 34, 0x12 },
251 	{ 35, 0x50 },
252 	{ 39, 0xc4 },
253 	{ 40, 0x02 },
254 	{ 41, 0x60 },
255 	{ 53, 0x10 },
256 	{ 54, 0x18 },
257 	{ 56, 0x08 },
258 	{ 57, 0x10 },
259 	{ 58, 0x08 },
260 	{ 61, 0x60 },
261 	{ 62, 0x10 },
262 	{ 75, 0xff }
263 };
264 
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272 
273 static const uint32_t ural_rf2523_r2[] = {
274 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277 
278 static const uint32_t ural_rf2524_r2[] = {
279 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282 
283 static const uint32_t ural_rf2525_r2[] = {
284 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287 
288 static const uint32_t ural_rf2525_hi_r2[] = {
289 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292 
293 static const uint32_t ural_rf2525e_r2[] = {
294 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297 
298 static const uint32_t ural_rf2526_hi_r2[] = {
299 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302 
303 static const uint32_t ural_rf2526_r2[] = {
304 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307 
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313 	uint8_t		chan;
314 	uint32_t	r1;
315 	uint32_t	r2;
316 	uint32_t	r4;
317 } ural_rf5222[] = {
318 	{   1, 0x08808, 0x0044d, 0x00282 },
319 	{   2, 0x08808, 0x0044e, 0x00282 },
320 	{   3, 0x08808, 0x0044f, 0x00282 },
321 	{   4, 0x08808, 0x00460, 0x00282 },
322 	{   5, 0x08808, 0x00461, 0x00282 },
323 	{   6, 0x08808, 0x00462, 0x00282 },
324 	{   7, 0x08808, 0x00463, 0x00282 },
325 	{   8, 0x08808, 0x00464, 0x00282 },
326 	{   9, 0x08808, 0x00465, 0x00282 },
327 	{  10, 0x08808, 0x00466, 0x00282 },
328 	{  11, 0x08808, 0x00467, 0x00282 },
329 	{  12, 0x08808, 0x00468, 0x00282 },
330 	{  13, 0x08808, 0x00469, 0x00282 },
331 	{  14, 0x08808, 0x0046b, 0x00286 },
332 
333 	{  36, 0x08804, 0x06225, 0x00287 },
334 	{  40, 0x08804, 0x06226, 0x00287 },
335 	{  44, 0x08804, 0x06227, 0x00287 },
336 	{  48, 0x08804, 0x06228, 0x00287 },
337 	{  52, 0x08804, 0x06229, 0x00287 },
338 	{  56, 0x08804, 0x0622a, 0x00287 },
339 	{  60, 0x08804, 0x0622b, 0x00287 },
340 	{  64, 0x08804, 0x0622c, 0x00287 },
341 
342 	{ 100, 0x08804, 0x02200, 0x00283 },
343 	{ 104, 0x08804, 0x02201, 0x00283 },
344 	{ 108, 0x08804, 0x02202, 0x00283 },
345 	{ 112, 0x08804, 0x02203, 0x00283 },
346 	{ 116, 0x08804, 0x02204, 0x00283 },
347 	{ 120, 0x08804, 0x02205, 0x00283 },
348 	{ 124, 0x08804, 0x02206, 0x00283 },
349 	{ 128, 0x08804, 0x02207, 0x00283 },
350 	{ 132, 0x08804, 0x02208, 0x00283 },
351 	{ 136, 0x08804, 0x02209, 0x00283 },
352 	{ 140, 0x08804, 0x0220a, 0x00283 },
353 
354 	{ 149, 0x08808, 0x02429, 0x00281 },
355 	{ 153, 0x08808, 0x0242b, 0x00281 },
356 	{ 157, 0x08808, 0x0242d, 0x00281 },
357 	{ 161, 0x08808, 0x0242f, 0x00281 }
358 };
359 
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361 	[URAL_BULK_WR] = {
362 		.type = UE_BULK,
363 		.endpoint = UE_ADDR_ANY,
364 		.direction = UE_DIR_OUT,
365 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367 		.callback = ural_bulk_write_callback,
368 		.timeout = 5000,	/* ms */
369 	},
370 	[URAL_BULK_RD] = {
371 		.type = UE_BULK,
372 		.endpoint = UE_ADDR_ANY,
373 		.direction = UE_DIR_IN,
374 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376 		.callback = ural_bulk_read_callback,
377 	},
378 };
379 
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383 
384 static device_method_t ural_methods[] = {
385 	/* Device interface */
386 	DEVMETHOD(device_probe,		ural_match),
387 	DEVMETHOD(device_attach,	ural_attach),
388 	DEVMETHOD(device_detach,	ural_detach),
389 	DEVMETHOD_END
390 };
391 
392 static driver_t ural_driver = {
393 	.name = "ural",
394 	.methods = ural_methods,
395 	.size = sizeof(struct ural_softc),
396 };
397 
398 static devclass_t ural_devclass;
399 
400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 MODULE_VERSION(ural, 1);
404 
405 static int
406 ural_match(device_t self)
407 {
408 	struct usb_attach_arg *uaa = device_get_ivars(self);
409 
410 	if (uaa->usb_mode != USB_MODE_HOST)
411 		return (ENXIO);
412 	if (uaa->info.bConfigIndex != 0)
413 		return (ENXIO);
414 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
415 		return (ENXIO);
416 
417 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
418 }
419 
420 static int
421 ural_attach(device_t self)
422 {
423 	struct usb_attach_arg *uaa = device_get_ivars(self);
424 	struct ural_softc *sc = device_get_softc(self);
425 	struct ifnet *ifp;
426 	struct ieee80211com *ic;
427 	uint8_t iface_index, bands;
428 	int error;
429 
430 	device_set_usb_desc(self);
431 	sc->sc_udev = uaa->device;
432 	sc->sc_dev = self;
433 
434 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435 	    MTX_NETWORK_LOCK, MTX_DEF);
436 
437 	iface_index = RAL_IFACE_INDEX;
438 	error = usbd_transfer_setup(uaa->device,
439 	    &iface_index, sc->sc_xfer, ural_config,
440 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
441 	if (error) {
442 		device_printf(self, "could not allocate USB transfers, "
443 		    "err=%s\n", usbd_errstr(error));
444 		goto detach;
445 	}
446 
447 	RAL_LOCK(sc);
448 	/* retrieve RT2570 rev. no */
449 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
450 
451 	/* retrieve MAC address and various other things from EEPROM */
452 	ural_read_eeprom(sc);
453 	RAL_UNLOCK(sc);
454 
455 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
456 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
457 
458 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
459 	if (ifp == NULL) {
460 		device_printf(sc->sc_dev, "can not if_alloc()\n");
461 		goto detach;
462 	}
463 	ic = ifp->if_l2com;
464 
465 	ifp->if_softc = sc;
466 	if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
467 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
468 	ifp->if_init = ural_init;
469 	ifp->if_ioctl = ural_ioctl;
470 	ifp->if_start = ural_start;
471 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
472 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
473 	IFQ_SET_READY(&ifp->if_snd);
474 
475 	ic->ic_ifp = ifp;
476 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
477 
478 	/* set device capabilities */
479 	ic->ic_caps =
480 	      IEEE80211_C_STA		/* station mode supported */
481 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
482 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
483 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
484 	    | IEEE80211_C_TXPMGT	/* tx power management */
485 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
486 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
487 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
488 	    | IEEE80211_C_WPA		/* 802.11i */
489 	    ;
490 
491 	bands = 0;
492 	setbit(&bands, IEEE80211_MODE_11B);
493 	setbit(&bands, IEEE80211_MODE_11G);
494 	if (sc->rf_rev == RAL_RF_5222)
495 		setbit(&bands, IEEE80211_MODE_11A);
496 	ieee80211_init_channels(ic, NULL, &bands);
497 
498 	ieee80211_ifattach(ic, sc->sc_bssid);
499 	ic->ic_update_promisc = ural_update_promisc;
500 	ic->ic_raw_xmit = ural_raw_xmit;
501 	ic->ic_scan_start = ural_scan_start;
502 	ic->ic_scan_end = ural_scan_end;
503 	ic->ic_set_channel = ural_set_channel;
504 
505 	ic->ic_vap_create = ural_vap_create;
506 	ic->ic_vap_delete = ural_vap_delete;
507 
508 	ieee80211_radiotap_attach(ic,
509 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
510 		RAL_TX_RADIOTAP_PRESENT,
511 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
512 		RAL_RX_RADIOTAP_PRESENT);
513 
514 	if (bootverbose)
515 		ieee80211_announce(ic);
516 
517 	return (0);
518 
519 detach:
520 	ural_detach(self);
521 	return (ENXIO);			/* failure */
522 }
523 
524 static int
525 ural_detach(device_t self)
526 {
527 	struct ural_softc *sc = device_get_softc(self);
528 	struct ifnet *ifp = sc->sc_ifp;
529 	struct ieee80211com *ic;
530 
531 	/* prevent further ioctls */
532 	RAL_LOCK(sc);
533 	sc->sc_detached = 1;
534 	RAL_UNLOCK(sc);
535 
536 	/* stop all USB transfers */
537 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
538 
539 	/* free TX list, if any */
540 	RAL_LOCK(sc);
541 	ural_unsetup_tx_list(sc);
542 	RAL_UNLOCK(sc);
543 
544 	if (ifp) {
545 		ic = ifp->if_l2com;
546 		ieee80211_ifdetach(ic);
547 		if_free(ifp);
548 	}
549 	mtx_destroy(&sc->sc_mtx);
550 
551 	return (0);
552 }
553 
554 static usb_error_t
555 ural_do_request(struct ural_softc *sc,
556     struct usb_device_request *req, void *data)
557 {
558 	usb_error_t err;
559 	int ntries = 10;
560 
561 	while (ntries--) {
562 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
563 		    req, data, 0, NULL, 250 /* ms */);
564 		if (err == 0)
565 			break;
566 
567 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
568 		    usbd_errstr(err));
569 		if (ural_pause(sc, hz / 100))
570 			break;
571 	}
572 	return (err);
573 }
574 
575 static struct ieee80211vap *
576 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
577     enum ieee80211_opmode opmode, int flags,
578     const uint8_t bssid[IEEE80211_ADDR_LEN],
579     const uint8_t mac[IEEE80211_ADDR_LEN])
580 {
581 	struct ural_softc *sc = ic->ic_ifp->if_softc;
582 	struct ural_vap *uvp;
583 	struct ieee80211vap *vap;
584 
585 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
586 		return NULL;
587 	uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
588 	    M_80211_VAP, M_NOWAIT | M_ZERO);
589 	if (uvp == NULL)
590 		return NULL;
591 	vap = &uvp->vap;
592 	/* enable s/w bmiss handling for sta mode */
593 
594 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
595 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
596 		/* out of memory */
597 		free(uvp, M_80211_VAP);
598 		return (NULL);
599 	}
600 
601 	/* override state transition machine */
602 	uvp->newstate = vap->iv_newstate;
603 	vap->iv_newstate = ural_newstate;
604 
605 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
606 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
607 	ieee80211_ratectl_init(vap);
608 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
609 
610 	/* complete setup */
611 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
612 	ic->ic_opmode = opmode;
613 	return vap;
614 }
615 
616 static void
617 ural_vap_delete(struct ieee80211vap *vap)
618 {
619 	struct ural_vap *uvp = URAL_VAP(vap);
620 	struct ieee80211com *ic = vap->iv_ic;
621 
622 	usb_callout_drain(&uvp->ratectl_ch);
623 	ieee80211_draintask(ic, &uvp->ratectl_task);
624 	ieee80211_ratectl_deinit(vap);
625 	ieee80211_vap_detach(vap);
626 	free(uvp, M_80211_VAP);
627 }
628 
629 static void
630 ural_tx_free(struct ural_tx_data *data, int txerr)
631 {
632 	struct ural_softc *sc = data->sc;
633 
634 	if (data->m != NULL) {
635 		if (data->m->m_flags & M_TXCB)
636 			ieee80211_process_callback(data->ni, data->m,
637 			    txerr ? ETIMEDOUT : 0);
638 		m_freem(data->m);
639 		data->m = NULL;
640 
641 		ieee80211_free_node(data->ni);
642 		data->ni = NULL;
643 	}
644 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
645 	sc->tx_nfree++;
646 }
647 
648 static void
649 ural_setup_tx_list(struct ural_softc *sc)
650 {
651 	struct ural_tx_data *data;
652 	int i;
653 
654 	sc->tx_nfree = 0;
655 	STAILQ_INIT(&sc->tx_q);
656 	STAILQ_INIT(&sc->tx_free);
657 
658 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
659 		data = &sc->tx_data[i];
660 
661 		data->sc = sc;
662 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
663 		sc->tx_nfree++;
664 	}
665 }
666 
667 static void
668 ural_unsetup_tx_list(struct ural_softc *sc)
669 {
670 	struct ural_tx_data *data;
671 	int i;
672 
673 	/* make sure any subsequent use of the queues will fail */
674 	sc->tx_nfree = 0;
675 	STAILQ_INIT(&sc->tx_q);
676 	STAILQ_INIT(&sc->tx_free);
677 
678 	/* free up all node references and mbufs */
679 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
680 		data = &sc->tx_data[i];
681 
682 		if (data->m != NULL) {
683 			m_freem(data->m);
684 			data->m = NULL;
685 		}
686 		if (data->ni != NULL) {
687 			ieee80211_free_node(data->ni);
688 			data->ni = NULL;
689 		}
690 	}
691 }
692 
693 static int
694 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
695 {
696 	struct ural_vap *uvp = URAL_VAP(vap);
697 	struct ieee80211com *ic = vap->iv_ic;
698 	struct ural_softc *sc = ic->ic_ifp->if_softc;
699 	const struct ieee80211_txparam *tp;
700 	struct ieee80211_node *ni;
701 	struct mbuf *m;
702 
703 	DPRINTF("%s -> %s\n",
704 		ieee80211_state_name[vap->iv_state],
705 		ieee80211_state_name[nstate]);
706 
707 	IEEE80211_UNLOCK(ic);
708 	RAL_LOCK(sc);
709 	usb_callout_stop(&uvp->ratectl_ch);
710 
711 	switch (nstate) {
712 	case IEEE80211_S_INIT:
713 		if (vap->iv_state == IEEE80211_S_RUN) {
714 			/* abort TSF synchronization */
715 			ural_write(sc, RAL_TXRX_CSR19, 0);
716 
717 			/* force tx led to stop blinking */
718 			ural_write(sc, RAL_MAC_CSR20, 0);
719 		}
720 		break;
721 
722 	case IEEE80211_S_RUN:
723 		ni = ieee80211_ref_node(vap->iv_bss);
724 
725 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
726 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
727 				RAL_UNLOCK(sc);
728 				IEEE80211_LOCK(ic);
729 				ieee80211_free_node(ni);
730 				return (-1);
731 			}
732 			ural_update_slot(ic->ic_ifp);
733 			ural_set_txpreamble(sc);
734 			ural_set_basicrates(sc, ic->ic_bsschan);
735 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
736 			ural_set_bssid(sc, sc->sc_bssid);
737 		}
738 
739 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
740 		    vap->iv_opmode == IEEE80211_M_IBSS) {
741 			m = ieee80211_beacon_alloc(ni, &uvp->bo);
742 			if (m == NULL) {
743 				device_printf(sc->sc_dev,
744 				    "could not allocate beacon\n");
745 				RAL_UNLOCK(sc);
746 				IEEE80211_LOCK(ic);
747 				ieee80211_free_node(ni);
748 				return (-1);
749 			}
750 			ieee80211_ref_node(ni);
751 			if (ural_tx_bcn(sc, m, ni) != 0) {
752 				device_printf(sc->sc_dev,
753 				    "could not send beacon\n");
754 				RAL_UNLOCK(sc);
755 				IEEE80211_LOCK(ic);
756 				ieee80211_free_node(ni);
757 				return (-1);
758 			}
759 		}
760 
761 		/* make tx led blink on tx (controlled by ASIC) */
762 		ural_write(sc, RAL_MAC_CSR20, 1);
763 
764 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
765 			ural_enable_tsf_sync(sc);
766 		else
767 			ural_enable_tsf(sc);
768 
769 		/* enable automatic rate adaptation */
770 		/* XXX should use ic_bsschan but not valid until after newstate call below */
771 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
772 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
773 			ural_ratectl_start(sc, ni);
774 		ieee80211_free_node(ni);
775 		break;
776 
777 	default:
778 		break;
779 	}
780 	RAL_UNLOCK(sc);
781 	IEEE80211_LOCK(ic);
782 	return (uvp->newstate(vap, nstate, arg));
783 }
784 
785 
786 static void
787 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
788 {
789 	struct ural_softc *sc = usbd_xfer_softc(xfer);
790 	struct ifnet *ifp = sc->sc_ifp;
791 	struct ieee80211vap *vap;
792 	struct ural_tx_data *data;
793 	struct mbuf *m;
794 	struct usb_page_cache *pc;
795 	int len;
796 
797 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
798 
799 	switch (USB_GET_STATE(xfer)) {
800 	case USB_ST_TRANSFERRED:
801 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
802 
803 		/* free resources */
804 		data = usbd_xfer_get_priv(xfer);
805 		ural_tx_free(data, 0);
806 		usbd_xfer_set_priv(xfer, NULL);
807 
808 		ifp->if_opackets++;
809 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
810 
811 		/* FALLTHROUGH */
812 	case USB_ST_SETUP:
813 tr_setup:
814 		data = STAILQ_FIRST(&sc->tx_q);
815 		if (data) {
816 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
817 			m = data->m;
818 
819 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
820 				DPRINTFN(0, "data overflow, %u bytes\n",
821 				    m->m_pkthdr.len);
822 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
823 			}
824 			pc = usbd_xfer_get_frame(xfer, 0);
825 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
826 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
827 			    m->m_pkthdr.len);
828 
829 			vap = data->ni->ni_vap;
830 			if (ieee80211_radiotap_active_vap(vap)) {
831 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
832 
833 				tap->wt_flags = 0;
834 				tap->wt_rate = data->rate;
835 				tap->wt_antenna = sc->tx_ant;
836 
837 				ieee80211_radiotap_tx(vap, m);
838 			}
839 
840 			/* xfer length needs to be a multiple of two! */
841 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
842 			if ((len % 64) == 0)
843 				len += 2;
844 
845 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
846 			    m->m_pkthdr.len, len);
847 
848 			usbd_xfer_set_frame_len(xfer, 0, len);
849 			usbd_xfer_set_priv(xfer, data);
850 
851 			usbd_transfer_submit(xfer);
852 		}
853 		RAL_UNLOCK(sc);
854 		ural_start(ifp);
855 		RAL_LOCK(sc);
856 		break;
857 
858 	default:			/* Error */
859 		DPRINTFN(11, "transfer error, %s\n",
860 		    usbd_errstr(error));
861 
862 		ifp->if_oerrors++;
863 		data = usbd_xfer_get_priv(xfer);
864 		if (data != NULL) {
865 			ural_tx_free(data, error);
866 			usbd_xfer_set_priv(xfer, NULL);
867 		}
868 
869 		if (error == USB_ERR_STALLED) {
870 			/* try to clear stall first */
871 			usbd_xfer_set_stall(xfer);
872 			goto tr_setup;
873 		}
874 		if (error == USB_ERR_TIMEOUT)
875 			device_printf(sc->sc_dev, "device timeout\n");
876 		break;
877 	}
878 }
879 
880 static void
881 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
882 {
883 	struct ural_softc *sc = usbd_xfer_softc(xfer);
884 	struct ifnet *ifp = sc->sc_ifp;
885 	struct ieee80211com *ic = ifp->if_l2com;
886 	struct ieee80211_node *ni;
887 	struct mbuf *m = NULL;
888 	struct usb_page_cache *pc;
889 	uint32_t flags;
890 	int8_t rssi = 0, nf = 0;
891 	int len;
892 
893 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
894 
895 	switch (USB_GET_STATE(xfer)) {
896 	case USB_ST_TRANSFERRED:
897 
898 		DPRINTFN(15, "rx done, actlen=%d\n", len);
899 
900 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
901 			DPRINTF("%s: xfer too short %d\n",
902 			    device_get_nameunit(sc->sc_dev), len);
903 			ifp->if_ierrors++;
904 			goto tr_setup;
905 		}
906 
907 		len -= RAL_RX_DESC_SIZE;
908 		/* rx descriptor is located at the end */
909 		pc = usbd_xfer_get_frame(xfer, 0);
910 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
911 
912 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
913 		nf = RAL_NOISE_FLOOR;
914 		flags = le32toh(sc->sc_rx_desc.flags);
915 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
916 			/*
917 		         * This should not happen since we did not
918 		         * request to receive those frames when we
919 		         * filled RAL_TXRX_CSR2:
920 		         */
921 			DPRINTFN(5, "PHY or CRC error\n");
922 			ifp->if_ierrors++;
923 			goto tr_setup;
924 		}
925 
926 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
927 		if (m == NULL) {
928 			DPRINTF("could not allocate mbuf\n");
929 			ifp->if_ierrors++;
930 			goto tr_setup;
931 		}
932 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
933 
934 		/* finalize mbuf */
935 		m->m_pkthdr.rcvif = ifp;
936 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
937 
938 		if (ieee80211_radiotap_active(ic)) {
939 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
940 
941 			/* XXX set once */
942 			tap->wr_flags = 0;
943 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
944 			    (flags & RAL_RX_OFDM) ?
945 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
946 			tap->wr_antenna = sc->rx_ant;
947 			tap->wr_antsignal = nf + rssi;
948 			tap->wr_antnoise = nf;
949 		}
950 		/* Strip trailing 802.11 MAC FCS. */
951 		m_adj(m, -IEEE80211_CRC_LEN);
952 
953 		/* FALLTHROUGH */
954 	case USB_ST_SETUP:
955 tr_setup:
956 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
957 		usbd_transfer_submit(xfer);
958 
959 		/*
960 		 * At the end of a USB callback it is always safe to unlock
961 		 * the private mutex of a device! That is why we do the
962 		 * "ieee80211_input" here, and not some lines up!
963 		 */
964 		RAL_UNLOCK(sc);
965 		if (m) {
966 			ni = ieee80211_find_rxnode(ic,
967 			    mtod(m, struct ieee80211_frame_min *));
968 			if (ni != NULL) {
969 				(void) ieee80211_input(ni, m, rssi, nf);
970 				ieee80211_free_node(ni);
971 			} else
972 				(void) ieee80211_input_all(ic, m, rssi, nf);
973 		}
974 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
975 		    !IFQ_IS_EMPTY(&ifp->if_snd))
976 			ural_start(ifp);
977 		RAL_LOCK(sc);
978 		return;
979 
980 	default:			/* Error */
981 		if (error != USB_ERR_CANCELLED) {
982 			/* try to clear stall first */
983 			usbd_xfer_set_stall(xfer);
984 			goto tr_setup;
985 		}
986 		return;
987 	}
988 }
989 
990 static uint8_t
991 ural_plcp_signal(int rate)
992 {
993 	switch (rate) {
994 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
995 	case 12:	return 0xb;
996 	case 18:	return 0xf;
997 	case 24:	return 0xa;
998 	case 36:	return 0xe;
999 	case 48:	return 0x9;
1000 	case 72:	return 0xd;
1001 	case 96:	return 0x8;
1002 	case 108:	return 0xc;
1003 
1004 	/* CCK rates (NB: not IEEE std, device-specific) */
1005 	case 2:		return 0x0;
1006 	case 4:		return 0x1;
1007 	case 11:	return 0x2;
1008 	case 22:	return 0x3;
1009 	}
1010 	return 0xff;		/* XXX unsupported/unknown rate */
1011 }
1012 
1013 static void
1014 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1015     uint32_t flags, int len, int rate)
1016 {
1017 	struct ifnet *ifp = sc->sc_ifp;
1018 	struct ieee80211com *ic = ifp->if_l2com;
1019 	uint16_t plcp_length;
1020 	int remainder;
1021 
1022 	desc->flags = htole32(flags);
1023 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1024 	desc->flags |= htole32(len << 16);
1025 
1026 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1027 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1028 
1029 	/* setup PLCP fields */
1030 	desc->plcp_signal  = ural_plcp_signal(rate);
1031 	desc->plcp_service = 4;
1032 
1033 	len += IEEE80211_CRC_LEN;
1034 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1035 		desc->flags |= htole32(RAL_TX_OFDM);
1036 
1037 		plcp_length = len & 0xfff;
1038 		desc->plcp_length_hi = plcp_length >> 6;
1039 		desc->plcp_length_lo = plcp_length & 0x3f;
1040 	} else {
1041 		plcp_length = (16 * len + rate - 1) / rate;
1042 		if (rate == 22) {
1043 			remainder = (16 * len) % 22;
1044 			if (remainder != 0 && remainder < 7)
1045 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1046 		}
1047 		desc->plcp_length_hi = plcp_length >> 8;
1048 		desc->plcp_length_lo = plcp_length & 0xff;
1049 
1050 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1051 			desc->plcp_signal |= 0x08;
1052 	}
1053 
1054 	desc->iv = 0;
1055 	desc->eiv = 0;
1056 }
1057 
1058 #define RAL_TX_TIMEOUT	5000
1059 
1060 static int
1061 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1062 {
1063 	struct ieee80211vap *vap = ni->ni_vap;
1064 	struct ieee80211com *ic = ni->ni_ic;
1065 	struct ifnet *ifp = sc->sc_ifp;
1066 	const struct ieee80211_txparam *tp;
1067 	struct ural_tx_data *data;
1068 
1069 	if (sc->tx_nfree == 0) {
1070 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1071 		m_freem(m0);
1072 		ieee80211_free_node(ni);
1073 		return (EIO);
1074 	}
1075 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1076 		m_freem(m0);
1077 		ieee80211_free_node(ni);
1078 		return (ENXIO);
1079 	}
1080 	data = STAILQ_FIRST(&sc->tx_free);
1081 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1082 	sc->tx_nfree--;
1083 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1084 
1085 	data->m = m0;
1086 	data->ni = ni;
1087 	data->rate = tp->mgmtrate;
1088 
1089 	ural_setup_tx_desc(sc, &data->desc,
1090 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1091 	    tp->mgmtrate);
1092 
1093 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1094 	    m0->m_pkthdr.len, tp->mgmtrate);
1095 
1096 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1097 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1098 
1099 	return (0);
1100 }
1101 
1102 static int
1103 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1104 {
1105 	struct ieee80211vap *vap = ni->ni_vap;
1106 	struct ieee80211com *ic = ni->ni_ic;
1107 	const struct ieee80211_txparam *tp;
1108 	struct ural_tx_data *data;
1109 	struct ieee80211_frame *wh;
1110 	struct ieee80211_key *k;
1111 	uint32_t flags;
1112 	uint16_t dur;
1113 
1114 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1115 
1116 	data = STAILQ_FIRST(&sc->tx_free);
1117 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1118 	sc->tx_nfree--;
1119 
1120 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1121 
1122 	wh = mtod(m0, struct ieee80211_frame *);
1123 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1124 		k = ieee80211_crypto_encap(ni, m0);
1125 		if (k == NULL) {
1126 			m_freem(m0);
1127 			return ENOBUFS;
1128 		}
1129 		wh = mtod(m0, struct ieee80211_frame *);
1130 	}
1131 
1132 	data->m = m0;
1133 	data->ni = ni;
1134 	data->rate = tp->mgmtrate;
1135 
1136 	flags = 0;
1137 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1138 		flags |= RAL_TX_ACK;
1139 
1140 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1141 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1142 		*(uint16_t *)wh->i_dur = htole16(dur);
1143 
1144 		/* tell hardware to add timestamp for probe responses */
1145 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1146 		    IEEE80211_FC0_TYPE_MGT &&
1147 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1148 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1149 			flags |= RAL_TX_TIMESTAMP;
1150 	}
1151 
1152 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1153 
1154 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1155 	    m0->m_pkthdr.len, tp->mgmtrate);
1156 
1157 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1158 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1159 
1160 	return 0;
1161 }
1162 
1163 static int
1164 ural_sendprot(struct ural_softc *sc,
1165     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1166 {
1167 	struct ieee80211com *ic = ni->ni_ic;
1168 	const struct ieee80211_frame *wh;
1169 	struct ural_tx_data *data;
1170 	struct mbuf *mprot;
1171 	int protrate, ackrate, pktlen, flags, isshort;
1172 	uint16_t dur;
1173 
1174 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1175 	    ("protection %d", prot));
1176 
1177 	wh = mtod(m, const struct ieee80211_frame *);
1178 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1179 
1180 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1181 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1182 
1183 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1184 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1185 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1186 	flags = RAL_TX_RETRY(7);
1187 	if (prot == IEEE80211_PROT_RTSCTS) {
1188 		/* NB: CTS is the same size as an ACK */
1189 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1190 		flags |= RAL_TX_ACK;
1191 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1192 	} else {
1193 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1194 	}
1195 	if (mprot == NULL) {
1196 		/* XXX stat + msg */
1197 		return ENOBUFS;
1198 	}
1199 	data = STAILQ_FIRST(&sc->tx_free);
1200 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1201 	sc->tx_nfree--;
1202 
1203 	data->m = mprot;
1204 	data->ni = ieee80211_ref_node(ni);
1205 	data->rate = protrate;
1206 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1207 
1208 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1209 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1216     const struct ieee80211_bpf_params *params)
1217 {
1218 	struct ieee80211com *ic = ni->ni_ic;
1219 	struct ural_tx_data *data;
1220 	uint32_t flags;
1221 	int error;
1222 	int rate;
1223 
1224 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1225 	KASSERT(params != NULL, ("no raw xmit params"));
1226 
1227 	rate = params->ibp_rate0;
1228 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1229 		m_freem(m0);
1230 		return EINVAL;
1231 	}
1232 	flags = 0;
1233 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1234 		flags |= RAL_TX_ACK;
1235 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1236 		error = ural_sendprot(sc, m0, ni,
1237 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1238 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1239 		    rate);
1240 		if (error || sc->tx_nfree == 0) {
1241 			m_freem(m0);
1242 			return ENOBUFS;
1243 		}
1244 		flags |= RAL_TX_IFS_SIFS;
1245 	}
1246 
1247 	data = STAILQ_FIRST(&sc->tx_free);
1248 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1249 	sc->tx_nfree--;
1250 
1251 	data->m = m0;
1252 	data->ni = ni;
1253 	data->rate = rate;
1254 
1255 	/* XXX need to setup descriptor ourself */
1256 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1257 
1258 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1259 	    m0->m_pkthdr.len, rate);
1260 
1261 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1262 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1263 
1264 	return 0;
1265 }
1266 
1267 static int
1268 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1269 {
1270 	struct ieee80211vap *vap = ni->ni_vap;
1271 	struct ieee80211com *ic = ni->ni_ic;
1272 	struct ural_tx_data *data;
1273 	struct ieee80211_frame *wh;
1274 	const struct ieee80211_txparam *tp;
1275 	struct ieee80211_key *k;
1276 	uint32_t flags = 0;
1277 	uint16_t dur;
1278 	int error, rate;
1279 
1280 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1281 
1282 	wh = mtod(m0, struct ieee80211_frame *);
1283 
1284 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1285 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1286 		rate = tp->mcastrate;
1287 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1288 		rate = tp->ucastrate;
1289 	else
1290 		rate = ni->ni_txrate;
1291 
1292 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1293 		k = ieee80211_crypto_encap(ni, m0);
1294 		if (k == NULL) {
1295 			m_freem(m0);
1296 			return ENOBUFS;
1297 		}
1298 		/* packet header may have moved, reset our local pointer */
1299 		wh = mtod(m0, struct ieee80211_frame *);
1300 	}
1301 
1302 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1303 		int prot = IEEE80211_PROT_NONE;
1304 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1305 			prot = IEEE80211_PROT_RTSCTS;
1306 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1307 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1308 			prot = ic->ic_protmode;
1309 		if (prot != IEEE80211_PROT_NONE) {
1310 			error = ural_sendprot(sc, m0, ni, prot, rate);
1311 			if (error || sc->tx_nfree == 0) {
1312 				m_freem(m0);
1313 				return ENOBUFS;
1314 			}
1315 			flags |= RAL_TX_IFS_SIFS;
1316 		}
1317 	}
1318 
1319 	data = STAILQ_FIRST(&sc->tx_free);
1320 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1321 	sc->tx_nfree--;
1322 
1323 	data->m = m0;
1324 	data->ni = ni;
1325 	data->rate = rate;
1326 
1327 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1328 		flags |= RAL_TX_ACK;
1329 		flags |= RAL_TX_RETRY(7);
1330 
1331 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1332 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1333 		*(uint16_t *)wh->i_dur = htole16(dur);
1334 	}
1335 
1336 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1337 
1338 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1339 	    m0->m_pkthdr.len, rate);
1340 
1341 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1342 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1343 
1344 	return 0;
1345 }
1346 
1347 static void
1348 ural_start(struct ifnet *ifp)
1349 {
1350 	struct ural_softc *sc = ifp->if_softc;
1351 	struct ieee80211_node *ni;
1352 	struct mbuf *m;
1353 
1354 	RAL_LOCK(sc);
1355 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1356 		RAL_UNLOCK(sc);
1357 		return;
1358 	}
1359 	for (;;) {
1360 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1361 		if (m == NULL)
1362 			break;
1363 		if (sc->tx_nfree < RAL_TX_MINFREE) {
1364 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1365 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1366 			break;
1367 		}
1368 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1369 		if (ural_tx_data(sc, m, ni) != 0) {
1370 			ieee80211_free_node(ni);
1371 			ifp->if_oerrors++;
1372 			break;
1373 		}
1374 	}
1375 	RAL_UNLOCK(sc);
1376 }
1377 
1378 static int
1379 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1380 {
1381 	struct ural_softc *sc = ifp->if_softc;
1382 	struct ieee80211com *ic = ifp->if_l2com;
1383 	struct ifreq *ifr = (struct ifreq *) data;
1384 	int error;
1385 	int startall = 0;
1386 
1387 	RAL_LOCK(sc);
1388 	error = sc->sc_detached ? ENXIO : 0;
1389 	RAL_UNLOCK(sc);
1390 	if (error)
1391 		return (error);
1392 
1393 	switch (cmd) {
1394 	case SIOCSIFFLAGS:
1395 		RAL_LOCK(sc);
1396 		if (ifp->if_flags & IFF_UP) {
1397 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1398 				ural_init_locked(sc);
1399 				startall = 1;
1400 			} else
1401 				ural_setpromisc(sc);
1402 		} else {
1403 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1404 				ural_stop(sc);
1405 		}
1406 		RAL_UNLOCK(sc);
1407 		if (startall)
1408 			ieee80211_start_all(ic);
1409 		break;
1410 	case SIOCGIFMEDIA:
1411 	case SIOCSIFMEDIA:
1412 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1413 		break;
1414 	default:
1415 		error = ether_ioctl(ifp, cmd, data);
1416 		break;
1417 	}
1418 	return error;
1419 }
1420 
1421 static void
1422 ural_set_testmode(struct ural_softc *sc)
1423 {
1424 	struct usb_device_request req;
1425 	usb_error_t error;
1426 
1427 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1428 	req.bRequest = RAL_VENDOR_REQUEST;
1429 	USETW(req.wValue, 4);
1430 	USETW(req.wIndex, 1);
1431 	USETW(req.wLength, 0);
1432 
1433 	error = ural_do_request(sc, &req, NULL);
1434 	if (error != 0) {
1435 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1436 		    usbd_errstr(error));
1437 	}
1438 }
1439 
1440 static void
1441 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1442 {
1443 	struct usb_device_request req;
1444 	usb_error_t error;
1445 
1446 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1447 	req.bRequest = RAL_READ_EEPROM;
1448 	USETW(req.wValue, 0);
1449 	USETW(req.wIndex, addr);
1450 	USETW(req.wLength, len);
1451 
1452 	error = ural_do_request(sc, &req, buf);
1453 	if (error != 0) {
1454 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1455 		    usbd_errstr(error));
1456 	}
1457 }
1458 
1459 static uint16_t
1460 ural_read(struct ural_softc *sc, uint16_t reg)
1461 {
1462 	struct usb_device_request req;
1463 	usb_error_t error;
1464 	uint16_t val;
1465 
1466 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1467 	req.bRequest = RAL_READ_MAC;
1468 	USETW(req.wValue, 0);
1469 	USETW(req.wIndex, reg);
1470 	USETW(req.wLength, sizeof (uint16_t));
1471 
1472 	error = ural_do_request(sc, &req, &val);
1473 	if (error != 0) {
1474 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1475 		    usbd_errstr(error));
1476 		return 0;
1477 	}
1478 
1479 	return le16toh(val);
1480 }
1481 
1482 static void
1483 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1484 {
1485 	struct usb_device_request req;
1486 	usb_error_t error;
1487 
1488 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1489 	req.bRequest = RAL_READ_MULTI_MAC;
1490 	USETW(req.wValue, 0);
1491 	USETW(req.wIndex, reg);
1492 	USETW(req.wLength, len);
1493 
1494 	error = ural_do_request(sc, &req, buf);
1495 	if (error != 0) {
1496 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1497 		    usbd_errstr(error));
1498 	}
1499 }
1500 
1501 static void
1502 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1503 {
1504 	struct usb_device_request req;
1505 	usb_error_t error;
1506 
1507 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1508 	req.bRequest = RAL_WRITE_MAC;
1509 	USETW(req.wValue, val);
1510 	USETW(req.wIndex, reg);
1511 	USETW(req.wLength, 0);
1512 
1513 	error = ural_do_request(sc, &req, NULL);
1514 	if (error != 0) {
1515 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1516 		    usbd_errstr(error));
1517 	}
1518 }
1519 
1520 static void
1521 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1522 {
1523 	struct usb_device_request req;
1524 	usb_error_t error;
1525 
1526 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1527 	req.bRequest = RAL_WRITE_MULTI_MAC;
1528 	USETW(req.wValue, 0);
1529 	USETW(req.wIndex, reg);
1530 	USETW(req.wLength, len);
1531 
1532 	error = ural_do_request(sc, &req, buf);
1533 	if (error != 0) {
1534 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1535 		    usbd_errstr(error));
1536 	}
1537 }
1538 
1539 static void
1540 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1541 {
1542 	uint16_t tmp;
1543 	int ntries;
1544 
1545 	for (ntries = 0; ntries < 100; ntries++) {
1546 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1547 			break;
1548 		if (ural_pause(sc, hz / 100))
1549 			break;
1550 	}
1551 	if (ntries == 100) {
1552 		device_printf(sc->sc_dev, "could not write to BBP\n");
1553 		return;
1554 	}
1555 
1556 	tmp = reg << 8 | val;
1557 	ural_write(sc, RAL_PHY_CSR7, tmp);
1558 }
1559 
1560 static uint8_t
1561 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1562 {
1563 	uint16_t val;
1564 	int ntries;
1565 
1566 	val = RAL_BBP_WRITE | reg << 8;
1567 	ural_write(sc, RAL_PHY_CSR7, val);
1568 
1569 	for (ntries = 0; ntries < 100; ntries++) {
1570 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1571 			break;
1572 		if (ural_pause(sc, hz / 100))
1573 			break;
1574 	}
1575 	if (ntries == 100) {
1576 		device_printf(sc->sc_dev, "could not read BBP\n");
1577 		return 0;
1578 	}
1579 
1580 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1581 }
1582 
1583 static void
1584 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1585 {
1586 	uint32_t tmp;
1587 	int ntries;
1588 
1589 	for (ntries = 0; ntries < 100; ntries++) {
1590 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1591 			break;
1592 		if (ural_pause(sc, hz / 100))
1593 			break;
1594 	}
1595 	if (ntries == 100) {
1596 		device_printf(sc->sc_dev, "could not write to RF\n");
1597 		return;
1598 	}
1599 
1600 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1601 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1602 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1603 
1604 	/* remember last written value in sc */
1605 	sc->rf_regs[reg] = val;
1606 
1607 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1608 }
1609 
1610 static void
1611 ural_scan_start(struct ieee80211com *ic)
1612 {
1613 	struct ifnet *ifp = ic->ic_ifp;
1614 	struct ural_softc *sc = ifp->if_softc;
1615 
1616 	RAL_LOCK(sc);
1617 	ural_write(sc, RAL_TXRX_CSR19, 0);
1618 	ural_set_bssid(sc, ifp->if_broadcastaddr);
1619 	RAL_UNLOCK(sc);
1620 }
1621 
1622 static void
1623 ural_scan_end(struct ieee80211com *ic)
1624 {
1625 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1626 
1627 	RAL_LOCK(sc);
1628 	ural_enable_tsf_sync(sc);
1629 	ural_set_bssid(sc, sc->sc_bssid);
1630 	RAL_UNLOCK(sc);
1631 
1632 }
1633 
1634 static void
1635 ural_set_channel(struct ieee80211com *ic)
1636 {
1637 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1638 
1639 	RAL_LOCK(sc);
1640 	ural_set_chan(sc, ic->ic_curchan);
1641 	RAL_UNLOCK(sc);
1642 }
1643 
1644 static void
1645 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1646 {
1647 	struct ifnet *ifp = sc->sc_ifp;
1648 	struct ieee80211com *ic = ifp->if_l2com;
1649 	uint8_t power, tmp;
1650 	int i, chan;
1651 
1652 	chan = ieee80211_chan2ieee(ic, c);
1653 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1654 		return;
1655 
1656 	if (IEEE80211_IS_CHAN_2GHZ(c))
1657 		power = min(sc->txpow[chan - 1], 31);
1658 	else
1659 		power = 31;
1660 
1661 	/* adjust txpower using ifconfig settings */
1662 	power -= (100 - ic->ic_txpowlimit) / 8;
1663 
1664 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1665 
1666 	switch (sc->rf_rev) {
1667 	case RAL_RF_2522:
1668 		ural_rf_write(sc, RAL_RF1, 0x00814);
1669 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1670 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1671 		break;
1672 
1673 	case RAL_RF_2523:
1674 		ural_rf_write(sc, RAL_RF1, 0x08804);
1675 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1676 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1677 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1678 		break;
1679 
1680 	case RAL_RF_2524:
1681 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1682 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1683 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1684 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1685 		break;
1686 
1687 	case RAL_RF_2525:
1688 		ural_rf_write(sc, RAL_RF1, 0x08808);
1689 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1690 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1691 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1692 
1693 		ural_rf_write(sc, RAL_RF1, 0x08808);
1694 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1695 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1696 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1697 		break;
1698 
1699 	case RAL_RF_2525E:
1700 		ural_rf_write(sc, RAL_RF1, 0x08808);
1701 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1702 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1703 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1704 		break;
1705 
1706 	case RAL_RF_2526:
1707 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1708 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1709 		ural_rf_write(sc, RAL_RF1, 0x08804);
1710 
1711 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1712 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1713 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1714 		break;
1715 
1716 	/* dual-band RF */
1717 	case RAL_RF_5222:
1718 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1719 
1720 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1721 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1722 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1723 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1724 		break;
1725 	}
1726 
1727 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1728 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1729 		/* set Japan filter bit for channel 14 */
1730 		tmp = ural_bbp_read(sc, 70);
1731 
1732 		tmp &= ~RAL_JAPAN_FILTER;
1733 		if (chan == 14)
1734 			tmp |= RAL_JAPAN_FILTER;
1735 
1736 		ural_bbp_write(sc, 70, tmp);
1737 
1738 		/* clear CRC errors */
1739 		ural_read(sc, RAL_STA_CSR0);
1740 
1741 		ural_pause(sc, hz / 100);
1742 		ural_disable_rf_tune(sc);
1743 	}
1744 
1745 	/* XXX doesn't belong here */
1746 	/* update basic rate set */
1747 	ural_set_basicrates(sc, c);
1748 
1749 	/* give the hardware some time to do the switchover */
1750 	ural_pause(sc, hz / 100);
1751 }
1752 
1753 /*
1754  * Disable RF auto-tuning.
1755  */
1756 static void
1757 ural_disable_rf_tune(struct ural_softc *sc)
1758 {
1759 	uint32_t tmp;
1760 
1761 	if (sc->rf_rev != RAL_RF_2523) {
1762 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1763 		ural_rf_write(sc, RAL_RF1, tmp);
1764 	}
1765 
1766 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1767 	ural_rf_write(sc, RAL_RF3, tmp);
1768 
1769 	DPRINTFN(2, "disabling RF autotune\n");
1770 }
1771 
1772 /*
1773  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1774  * synchronization.
1775  */
1776 static void
1777 ural_enable_tsf_sync(struct ural_softc *sc)
1778 {
1779 	struct ifnet *ifp = sc->sc_ifp;
1780 	struct ieee80211com *ic = ifp->if_l2com;
1781 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1782 	uint16_t logcwmin, preload, tmp;
1783 
1784 	/* first, disable TSF synchronization */
1785 	ural_write(sc, RAL_TXRX_CSR19, 0);
1786 
1787 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1788 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1789 
1790 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1791 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1792 	tmp = logcwmin << 12 | preload;
1793 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1794 
1795 	/* finally, enable TSF synchronization */
1796 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1797 	if (ic->ic_opmode == IEEE80211_M_STA)
1798 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1799 	else
1800 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1801 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1802 
1803 	DPRINTF("enabling TSF synchronization\n");
1804 }
1805 
1806 static void
1807 ural_enable_tsf(struct ural_softc *sc)
1808 {
1809 	/* first, disable TSF synchronization */
1810 	ural_write(sc, RAL_TXRX_CSR19, 0);
1811 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1812 }
1813 
1814 #define RAL_RXTX_TURNAROUND	5	/* us */
1815 static void
1816 ural_update_slot(struct ifnet *ifp)
1817 {
1818 	struct ural_softc *sc = ifp->if_softc;
1819 	struct ieee80211com *ic = ifp->if_l2com;
1820 	uint16_t slottime, sifs, eifs;
1821 
1822 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1823 
1824 	/*
1825 	 * These settings may sound a bit inconsistent but this is what the
1826 	 * reference driver does.
1827 	 */
1828 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1829 		sifs = 16 - RAL_RXTX_TURNAROUND;
1830 		eifs = 364;
1831 	} else {
1832 		sifs = 10 - RAL_RXTX_TURNAROUND;
1833 		eifs = 64;
1834 	}
1835 
1836 	ural_write(sc, RAL_MAC_CSR10, slottime);
1837 	ural_write(sc, RAL_MAC_CSR11, sifs);
1838 	ural_write(sc, RAL_MAC_CSR12, eifs);
1839 }
1840 
1841 static void
1842 ural_set_txpreamble(struct ural_softc *sc)
1843 {
1844 	struct ifnet *ifp = sc->sc_ifp;
1845 	struct ieee80211com *ic = ifp->if_l2com;
1846 	uint16_t tmp;
1847 
1848 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1849 
1850 	tmp &= ~RAL_SHORT_PREAMBLE;
1851 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1852 		tmp |= RAL_SHORT_PREAMBLE;
1853 
1854 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1855 }
1856 
1857 static void
1858 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1859 {
1860 	/* XXX wrong, take from rate set */
1861 	/* update basic rate set */
1862 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1863 		/* 11a basic rates: 6, 12, 24Mbps */
1864 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1865 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1866 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1867 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1868 	} else {
1869 		/* 11b basic rates: 1, 2Mbps */
1870 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1871 	}
1872 }
1873 
1874 static void
1875 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1876 {
1877 	uint16_t tmp;
1878 
1879 	tmp = bssid[0] | bssid[1] << 8;
1880 	ural_write(sc, RAL_MAC_CSR5, tmp);
1881 
1882 	tmp = bssid[2] | bssid[3] << 8;
1883 	ural_write(sc, RAL_MAC_CSR6, tmp);
1884 
1885 	tmp = bssid[4] | bssid[5] << 8;
1886 	ural_write(sc, RAL_MAC_CSR7, tmp);
1887 
1888 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1889 }
1890 
1891 static void
1892 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1893 {
1894 	uint16_t tmp;
1895 
1896 	tmp = addr[0] | addr[1] << 8;
1897 	ural_write(sc, RAL_MAC_CSR2, tmp);
1898 
1899 	tmp = addr[2] | addr[3] << 8;
1900 	ural_write(sc, RAL_MAC_CSR3, tmp);
1901 
1902 	tmp = addr[4] | addr[5] << 8;
1903 	ural_write(sc, RAL_MAC_CSR4, tmp);
1904 
1905 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1906 }
1907 
1908 static void
1909 ural_setpromisc(struct ural_softc *sc)
1910 {
1911 	struct ifnet *ifp = sc->sc_ifp;
1912 	uint32_t tmp;
1913 
1914 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1915 
1916 	tmp &= ~RAL_DROP_NOT_TO_ME;
1917 	if (!(ifp->if_flags & IFF_PROMISC))
1918 		tmp |= RAL_DROP_NOT_TO_ME;
1919 
1920 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1921 
1922 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1923 	    "entering" : "leaving");
1924 }
1925 
1926 static void
1927 ural_update_promisc(struct ifnet *ifp)
1928 {
1929 	struct ural_softc *sc = ifp->if_softc;
1930 
1931 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1932 		return;
1933 
1934 	RAL_LOCK(sc);
1935 	ural_setpromisc(sc);
1936 	RAL_UNLOCK(sc);
1937 }
1938 
1939 static const char *
1940 ural_get_rf(int rev)
1941 {
1942 	switch (rev) {
1943 	case RAL_RF_2522:	return "RT2522";
1944 	case RAL_RF_2523:	return "RT2523";
1945 	case RAL_RF_2524:	return "RT2524";
1946 	case RAL_RF_2525:	return "RT2525";
1947 	case RAL_RF_2525E:	return "RT2525e";
1948 	case RAL_RF_2526:	return "RT2526";
1949 	case RAL_RF_5222:	return "RT5222";
1950 	default:		return "unknown";
1951 	}
1952 }
1953 
1954 static void
1955 ural_read_eeprom(struct ural_softc *sc)
1956 {
1957 	uint16_t val;
1958 
1959 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1960 	val = le16toh(val);
1961 	sc->rf_rev =   (val >> 11) & 0x7;
1962 	sc->hw_radio = (val >> 10) & 0x1;
1963 	sc->led_mode = (val >> 6)  & 0x7;
1964 	sc->rx_ant =   (val >> 4)  & 0x3;
1965 	sc->tx_ant =   (val >> 2)  & 0x3;
1966 	sc->nb_ant =   val & 0x3;
1967 
1968 	/* read MAC address */
1969 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1970 
1971 	/* read default values for BBP registers */
1972 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1973 
1974 	/* read Tx power for all b/g channels */
1975 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1976 }
1977 
1978 static int
1979 ural_bbp_init(struct ural_softc *sc)
1980 {
1981 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
1982 	int i, ntries;
1983 
1984 	/* wait for BBP to be ready */
1985 	for (ntries = 0; ntries < 100; ntries++) {
1986 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1987 			break;
1988 		if (ural_pause(sc, hz / 100))
1989 			break;
1990 	}
1991 	if (ntries == 100) {
1992 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1993 		return EIO;
1994 	}
1995 
1996 	/* initialize BBP registers to default values */
1997 	for (i = 0; i < N(ural_def_bbp); i++)
1998 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1999 
2000 #if 0
2001 	/* initialize BBP registers to values stored in EEPROM */
2002 	for (i = 0; i < 16; i++) {
2003 		if (sc->bbp_prom[i].reg == 0xff)
2004 			continue;
2005 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2006 	}
2007 #endif
2008 
2009 	return 0;
2010 #undef N
2011 }
2012 
2013 static void
2014 ural_set_txantenna(struct ural_softc *sc, int antenna)
2015 {
2016 	uint16_t tmp;
2017 	uint8_t tx;
2018 
2019 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2020 	if (antenna == 1)
2021 		tx |= RAL_BBP_ANTA;
2022 	else if (antenna == 2)
2023 		tx |= RAL_BBP_ANTB;
2024 	else
2025 		tx |= RAL_BBP_DIVERSITY;
2026 
2027 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2028 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2029 	    sc->rf_rev == RAL_RF_5222)
2030 		tx |= RAL_BBP_FLIPIQ;
2031 
2032 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2033 
2034 	/* update values in PHY_CSR5 and PHY_CSR6 */
2035 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2036 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2037 
2038 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2039 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2040 }
2041 
2042 static void
2043 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2044 {
2045 	uint8_t rx;
2046 
2047 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2048 	if (antenna == 1)
2049 		rx |= RAL_BBP_ANTA;
2050 	else if (antenna == 2)
2051 		rx |= RAL_BBP_ANTB;
2052 	else
2053 		rx |= RAL_BBP_DIVERSITY;
2054 
2055 	/* need to force no I/Q flip for RF 2525e and 2526 */
2056 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2057 		rx &= ~RAL_BBP_FLIPIQ;
2058 
2059 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2060 }
2061 
2062 static void
2063 ural_init_locked(struct ural_softc *sc)
2064 {
2065 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
2066 	struct ifnet *ifp = sc->sc_ifp;
2067 	struct ieee80211com *ic = ifp->if_l2com;
2068 	uint16_t tmp;
2069 	int i, ntries;
2070 
2071 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2072 
2073 	ural_set_testmode(sc);
2074 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2075 
2076 	ural_stop(sc);
2077 
2078 	/* initialize MAC registers to default values */
2079 	for (i = 0; i < N(ural_def_mac); i++)
2080 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2081 
2082 	/* wait for BBP and RF to wake up (this can take a long time!) */
2083 	for (ntries = 0; ntries < 100; ntries++) {
2084 		tmp = ural_read(sc, RAL_MAC_CSR17);
2085 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2086 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2087 			break;
2088 		if (ural_pause(sc, hz / 100))
2089 			break;
2090 	}
2091 	if (ntries == 100) {
2092 		device_printf(sc->sc_dev,
2093 		    "timeout waiting for BBP/RF to wakeup\n");
2094 		goto fail;
2095 	}
2096 
2097 	/* we're ready! */
2098 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2099 
2100 	/* set basic rate set (will be updated later) */
2101 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2102 
2103 	if (ural_bbp_init(sc) != 0)
2104 		goto fail;
2105 
2106 	ural_set_chan(sc, ic->ic_curchan);
2107 
2108 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2109 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2110 
2111 	ural_set_txantenna(sc, sc->tx_ant);
2112 	ural_set_rxantenna(sc, sc->rx_ant);
2113 
2114 	ural_set_macaddr(sc, IF_LLADDR(ifp));
2115 
2116 	/*
2117 	 * Allocate Tx and Rx xfer queues.
2118 	 */
2119 	ural_setup_tx_list(sc);
2120 
2121 	/* kick Rx */
2122 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2123 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2124 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2125 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2126 			tmp |= RAL_DROP_TODS;
2127 		if (!(ifp->if_flags & IFF_PROMISC))
2128 			tmp |= RAL_DROP_NOT_TO_ME;
2129 	}
2130 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2131 
2132 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2133 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2134 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2135 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2136 	return;
2137 
2138 fail:	ural_stop(sc);
2139 #undef N
2140 }
2141 
2142 static void
2143 ural_init(void *priv)
2144 {
2145 	struct ural_softc *sc = priv;
2146 	struct ifnet *ifp = sc->sc_ifp;
2147 	struct ieee80211com *ic = ifp->if_l2com;
2148 
2149 	RAL_LOCK(sc);
2150 	ural_init_locked(sc);
2151 	RAL_UNLOCK(sc);
2152 
2153 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2154 		ieee80211_start_all(ic);		/* start all vap's */
2155 }
2156 
2157 static void
2158 ural_stop(struct ural_softc *sc)
2159 {
2160 	struct ifnet *ifp = sc->sc_ifp;
2161 
2162 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2163 
2164 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2165 
2166 	/*
2167 	 * Drain all the transfers, if not already drained:
2168 	 */
2169 	RAL_UNLOCK(sc);
2170 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2171 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2172 	RAL_LOCK(sc);
2173 
2174 	ural_unsetup_tx_list(sc);
2175 
2176 	/* disable Rx */
2177 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2178 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2179 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2180 	/* wait a little */
2181 	ural_pause(sc, hz / 10);
2182 	ural_write(sc, RAL_MAC_CSR1, 0);
2183 	/* wait a little */
2184 	ural_pause(sc, hz / 10);
2185 }
2186 
2187 static int
2188 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2189 	const struct ieee80211_bpf_params *params)
2190 {
2191 	struct ieee80211com *ic = ni->ni_ic;
2192 	struct ifnet *ifp = ic->ic_ifp;
2193 	struct ural_softc *sc = ifp->if_softc;
2194 
2195 	RAL_LOCK(sc);
2196 	/* prevent management frames from being sent if we're not ready */
2197 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2198 		RAL_UNLOCK(sc);
2199 		m_freem(m);
2200 		ieee80211_free_node(ni);
2201 		return ENETDOWN;
2202 	}
2203 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2204 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2205 		RAL_UNLOCK(sc);
2206 		m_freem(m);
2207 		ieee80211_free_node(ni);
2208 		return EIO;
2209 	}
2210 
2211 	ifp->if_opackets++;
2212 
2213 	if (params == NULL) {
2214 		/*
2215 		 * Legacy path; interpret frame contents to decide
2216 		 * precisely how to send the frame.
2217 		 */
2218 		if (ural_tx_mgt(sc, m, ni) != 0)
2219 			goto bad;
2220 	} else {
2221 		/*
2222 		 * Caller supplied explicit parameters to use in
2223 		 * sending the frame.
2224 		 */
2225 		if (ural_tx_raw(sc, m, ni, params) != 0)
2226 			goto bad;
2227 	}
2228 	RAL_UNLOCK(sc);
2229 	return 0;
2230 bad:
2231 	ifp->if_oerrors++;
2232 	RAL_UNLOCK(sc);
2233 	ieee80211_free_node(ni);
2234 	return EIO;		/* XXX */
2235 }
2236 
2237 static void
2238 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2239 {
2240 	struct ieee80211vap *vap = ni->ni_vap;
2241 	struct ural_vap *uvp = URAL_VAP(vap);
2242 
2243 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2244 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2245 
2246 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2247 }
2248 
2249 static void
2250 ural_ratectl_timeout(void *arg)
2251 {
2252 	struct ural_vap *uvp = arg;
2253 	struct ieee80211vap *vap = &uvp->vap;
2254 	struct ieee80211com *ic = vap->iv_ic;
2255 
2256 	ieee80211_runtask(ic, &uvp->ratectl_task);
2257 }
2258 
2259 static void
2260 ural_ratectl_task(void *arg, int pending)
2261 {
2262 	struct ural_vap *uvp = arg;
2263 	struct ieee80211vap *vap = &uvp->vap;
2264 	struct ieee80211com *ic = vap->iv_ic;
2265 	struct ifnet *ifp = ic->ic_ifp;
2266 	struct ural_softc *sc = ifp->if_softc;
2267 	struct ieee80211_node *ni;
2268 	int ok, fail;
2269 	int sum, retrycnt;
2270 
2271 	ni = ieee80211_ref_node(vap->iv_bss);
2272 	RAL_LOCK(sc);
2273 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2274 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2275 
2276 	ok = sc->sta[7] +		/* TX ok w/o retry */
2277 	     sc->sta[8];		/* TX ok w/ retry */
2278 	fail = sc->sta[9];		/* TX retry-fail count */
2279 	sum = ok+fail;
2280 	retrycnt = sc->sta[8] + fail;
2281 
2282 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2283 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2284 
2285 	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2286 
2287 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2288 	RAL_UNLOCK(sc);
2289 	ieee80211_free_node(ni);
2290 }
2291 
2292 static int
2293 ural_pause(struct ural_softc *sc, int timeout)
2294 {
2295 
2296 	usb_pause_mtx(&sc->sc_mtx, timeout);
2297 	return (0);
2298 }
2299