/* $FreeBSD$ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Copyright (c) 2006, 2008 * Hans Petter Selasky * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2500USB chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR ural_debug #include #include #include #ifdef USB_DEBUG static int ural_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0, "Debug level"); #endif #define URAL_RSSI(rssi) \ ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) /* various supported device vendors/products */ static const STRUCT_USB_HOST_ID ural_devs[] = { #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } URAL_DEV(ASUS, WL167G), URAL_DEV(ASUS, RT2570), URAL_DEV(BELKIN, F5D7050), URAL_DEV(BELKIN, F5D7051), URAL_DEV(CISCOLINKSYS, HU200TS), URAL_DEV(CISCOLINKSYS, WUSB54G), URAL_DEV(CISCOLINKSYS, WUSB54GP), URAL_DEV(CONCEPTRONIC2, C54RU), URAL_DEV(DLINK, DWLG122), URAL_DEV(GIGABYTE, GN54G), URAL_DEV(GIGABYTE, GNWBKG), URAL_DEV(GUILLEMOT, HWGUSB254), URAL_DEV(MELCO, KG54), URAL_DEV(MELCO, KG54AI), URAL_DEV(MELCO, KG54YB), URAL_DEV(MELCO, NINWIFI), URAL_DEV(MSI, RT2570), URAL_DEV(MSI, RT2570_2), URAL_DEV(MSI, RT2570_3), URAL_DEV(NOVATECH, NV902), URAL_DEV(RALINK, RT2570), URAL_DEV(RALINK, RT2570_2), URAL_DEV(RALINK, RT2570_3), URAL_DEV(SIEMENS2, WL54G), URAL_DEV(SMC, 2862WG), URAL_DEV(SPHAIRON, UB801R), URAL_DEV(SURECOM, RT2570), URAL_DEV(VTECH, RT2570), URAL_DEV(ZINWELL, RT2570), #undef URAL_DEV }; static usb_callback_t ural_bulk_read_callback; static usb_callback_t ural_bulk_write_callback; static usb_error_t ural_do_request(struct ural_softc *sc, struct usb_device_request *req, void *data); static struct ieee80211vap *ural_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void ural_vap_delete(struct ieee80211vap *); static void ural_tx_free(struct ural_tx_data *, int); static void ural_setup_tx_list(struct ural_softc *); static void ural_unsetup_tx_list(struct ural_softc *); static int ural_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void ural_setup_tx_desc(struct ural_softc *, struct ural_tx_desc *, uint32_t, int, int); static int ural_tx_bcn(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static int ural_tx_mgt(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static int ural_tx_data(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static void ural_start(struct ifnet *); static int ural_ioctl(struct ifnet *, u_long, caddr_t); static void ural_set_testmode(struct ural_softc *); static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, int); static uint16_t ural_read(struct ural_softc *, uint16_t); static void ural_read_multi(struct ural_softc *, uint16_t, void *, int); static void ural_write(struct ural_softc *, uint16_t, uint16_t); static void ural_write_multi(struct ural_softc *, uint16_t, void *, int) __unused; static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); static void ural_scan_start(struct ieee80211com *); static void ural_scan_end(struct ieee80211com *); static void ural_set_channel(struct ieee80211com *); static void ural_set_chan(struct ural_softc *, struct ieee80211_channel *); static void ural_disable_rf_tune(struct ural_softc *); static void ural_enable_tsf_sync(struct ural_softc *); static void ural_enable_tsf(struct ural_softc *); static void ural_update_slot(struct ifnet *); static void ural_set_txpreamble(struct ural_softc *); static void ural_set_basicrates(struct ural_softc *, const struct ieee80211_channel *); static void ural_set_bssid(struct ural_softc *, const uint8_t *); static void ural_set_macaddr(struct ural_softc *, uint8_t *); static void ural_update_promisc(struct ifnet *); static void ural_setpromisc(struct ural_softc *); static const char *ural_get_rf(int); static void ural_read_eeprom(struct ural_softc *); static int ural_bbp_init(struct ural_softc *); static void ural_set_txantenna(struct ural_softc *, int); static void ural_set_rxantenna(struct ural_softc *, int); static void ural_init_locked(struct ural_softc *); static void ural_init(void *); static void ural_stop(struct ural_softc *); static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void ural_ratectl_start(struct ural_softc *, struct ieee80211_node *); static void ural_ratectl_timeout(void *); static void ural_ratectl_task(void *, int); static int ural_pause(struct ural_softc *sc, int timeout); /* * Default values for MAC registers; values taken from the reference driver. */ static const struct { uint16_t reg; uint16_t val; } ural_def_mac[] = { { RAL_TXRX_CSR5, 0x8c8d }, { RAL_TXRX_CSR6, 0x8b8a }, { RAL_TXRX_CSR7, 0x8687 }, { RAL_TXRX_CSR8, 0x0085 }, { RAL_MAC_CSR13, 0x1111 }, { RAL_MAC_CSR14, 0x1e11 }, { RAL_TXRX_CSR21, 0xe78f }, { RAL_MAC_CSR9, 0xff1d }, { RAL_MAC_CSR11, 0x0002 }, { RAL_MAC_CSR22, 0x0053 }, { RAL_MAC_CSR15, 0x0000 }, { RAL_MAC_CSR8, RAL_FRAME_SIZE }, { RAL_TXRX_CSR19, 0x0000 }, { RAL_TXRX_CSR18, 0x005a }, { RAL_PHY_CSR2, 0x0000 }, { RAL_TXRX_CSR0, 0x1ec0 }, { RAL_PHY_CSR4, 0x000f } }; /* * Default values for BBP registers; values taken from the reference driver. */ static const struct { uint8_t reg; uint8_t val; } ural_def_bbp[] = { { 3, 0x02 }, { 4, 0x19 }, { 14, 0x1c }, { 15, 0x30 }, { 16, 0xac }, { 17, 0x48 }, { 18, 0x18 }, { 19, 0xff }, { 20, 0x1e }, { 21, 0x08 }, { 22, 0x08 }, { 23, 0x08 }, { 24, 0x80 }, { 25, 0x50 }, { 26, 0x08 }, { 27, 0x23 }, { 30, 0x10 }, { 31, 0x2b }, { 32, 0xb9 }, { 34, 0x12 }, { 35, 0x50 }, { 39, 0xc4 }, { 40, 0x02 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 56, 0x08 }, { 57, 0x10 }, { 58, 0x08 }, { 61, 0x60 }, { 62, 0x10 }, { 75, 0xff } }; /* * Default values for RF register R2 indexed by channel numbers. */ static const uint32_t ural_rf2522_r2[] = { 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e }; static const uint32_t ural_rf2523_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2524_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2525_r2[] = { 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 }; static const uint32_t ural_rf2525_hi_r2[] = { 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e }; static const uint32_t ural_rf2525e_r2[] = { 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b }; static const uint32_t ural_rf2526_hi_r2[] = { 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 }; static const uint32_t ural_rf2526_r2[] = { 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d }; /* * For dual-band RF, RF registers R1 and R4 also depend on channel number; * values taken from the reference driver. */ static const struct { uint8_t chan; uint32_t r1; uint32_t r2; uint32_t r4; } ural_rf5222[] = { { 1, 0x08808, 0x0044d, 0x00282 }, { 2, 0x08808, 0x0044e, 0x00282 }, { 3, 0x08808, 0x0044f, 0x00282 }, { 4, 0x08808, 0x00460, 0x00282 }, { 5, 0x08808, 0x00461, 0x00282 }, { 6, 0x08808, 0x00462, 0x00282 }, { 7, 0x08808, 0x00463, 0x00282 }, { 8, 0x08808, 0x00464, 0x00282 }, { 9, 0x08808, 0x00465, 0x00282 }, { 10, 0x08808, 0x00466, 0x00282 }, { 11, 0x08808, 0x00467, 0x00282 }, { 12, 0x08808, 0x00468, 0x00282 }, { 13, 0x08808, 0x00469, 0x00282 }, { 14, 0x08808, 0x0046b, 0x00286 }, { 36, 0x08804, 0x06225, 0x00287 }, { 40, 0x08804, 0x06226, 0x00287 }, { 44, 0x08804, 0x06227, 0x00287 }, { 48, 0x08804, 0x06228, 0x00287 }, { 52, 0x08804, 0x06229, 0x00287 }, { 56, 0x08804, 0x0622a, 0x00287 }, { 60, 0x08804, 0x0622b, 0x00287 }, { 64, 0x08804, 0x0622c, 0x00287 }, { 100, 0x08804, 0x02200, 0x00283 }, { 104, 0x08804, 0x02201, 0x00283 }, { 108, 0x08804, 0x02202, 0x00283 }, { 112, 0x08804, 0x02203, 0x00283 }, { 116, 0x08804, 0x02204, 0x00283 }, { 120, 0x08804, 0x02205, 0x00283 }, { 124, 0x08804, 0x02206, 0x00283 }, { 128, 0x08804, 0x02207, 0x00283 }, { 132, 0x08804, 0x02208, 0x00283 }, { 136, 0x08804, 0x02209, 0x00283 }, { 140, 0x08804, 0x0220a, 0x00283 }, { 149, 0x08808, 0x02429, 0x00281 }, { 153, 0x08808, 0x0242b, 0x00281 }, { 157, 0x08808, 0x0242d, 0x00281 }, { 161, 0x08808, 0x0242f, 0x00281 } }; static const struct usb_config ural_config[URAL_N_TRANSFER] = { [URAL_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = ural_bulk_write_callback, .timeout = 5000, /* ms */ }, [URAL_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = ural_bulk_read_callback, }, }; static device_probe_t ural_match; static device_attach_t ural_attach; static device_detach_t ural_detach; static device_method_t ural_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ural_match), DEVMETHOD(device_attach, ural_attach), DEVMETHOD(device_detach, ural_detach), DEVMETHOD_END }; static driver_t ural_driver = { .name = "ural", .methods = ural_methods, .size = sizeof(struct ural_softc), }; static devclass_t ural_devclass; DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); MODULE_DEPEND(ural, usb, 1, 1, 1); MODULE_DEPEND(ural, wlan, 1, 1, 1); MODULE_VERSION(ural, 1); static int ural_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); } static int ural_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct ural_softc *sc = device_get_softc(self); struct ifnet *ifp; struct ieee80211com *ic; uint8_t iface_index, bands; int error; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); iface_index = RAL_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, ural_config, URAL_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RAL_LOCK(sc); /* retrieve RT2570 rev. no */ sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); /* retrieve MAC address and various other things from EEPROM */ ural_read_eeprom(sc); RAL_UNLOCK(sc); device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", sc->asic_rev, ural_get_rf(sc->rf_rev)); ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(sc->sc_dev, "can not if_alloc()\n"); goto detach; } ic = ifp->if_l2com; ifp->if_softc = sc; if_initname(ifp, "ural", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ural_init; ifp->if_ioctl = ural_ioctl; ifp->if_start = ural_start; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_HOSTAP /* HostAp mode supported */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* bg scanning supported */ | IEEE80211_C_WPA /* 802.11i */ ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); if (sc->rf_rev == RAL_RF_5222) setbit(&bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic, sc->sc_bssid); ic->ic_update_promisc = ural_update_promisc; ic->ic_raw_xmit = ural_raw_xmit; ic->ic_scan_start = ural_scan_start; ic->ic_scan_end = ural_scan_end; ic->ic_set_channel = ural_set_channel; ic->ic_vap_create = ural_vap_create; ic->ic_vap_delete = ural_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RAL_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RAL_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); detach: ural_detach(self); return (ENXIO); /* failure */ } static int ural_detach(device_t self) { struct ural_softc *sc = device_get_softc(self); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic; /* prevent further ioctls */ RAL_LOCK(sc); sc->sc_detached = 1; RAL_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); /* free TX list, if any */ RAL_LOCK(sc); ural_unsetup_tx_list(sc); RAL_UNLOCK(sc); if (ifp) { ic = ifp->if_l2com; ieee80211_ifdetach(ic); if_free(ifp); } mtx_destroy(&sc->sc_mtx); return (0); } static usb_error_t ural_do_request(struct ural_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); if (ural_pause(sc, hz / 100)) break; } return (err); } static struct ieee80211vap * ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ural_softc *sc = ic->ic_ifp->if_softc; struct ural_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (uvp == NULL) return NULL; vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = ural_newstate; usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static void ural_vap_delete(struct ieee80211vap *vap) { struct ural_vap *uvp = URAL_VAP(vap); struct ieee80211com *ic = vap->iv_ic; usb_callout_drain(&uvp->ratectl_ch); ieee80211_draintask(ic, &uvp->ratectl_task); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void ural_tx_free(struct ural_tx_data *data, int txerr) { struct ural_softc *sc = data->sc; if (data->m != NULL) { if (data->m->m_flags & M_TXCB) ieee80211_process_callback(data->ni, data->m, txerr ? ETIMEDOUT : 0); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void ural_setup_tx_list(struct ural_softc *sc) { struct ural_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void ural_unsetup_tx_list(struct ural_softc *sc) { struct ural_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ural_vap *uvp = URAL_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ural_softc *sc = ic->ic_ifp->if_softc; const struct ieee80211_txparam *tp; struct ieee80211_node *ni; struct mbuf *m; DPRINTF("%s -> %s\n", ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RAL_LOCK(sc); usb_callout_stop(&uvp->ratectl_ch); switch (nstate) { case IEEE80211_S_INIT: if (vap->iv_state == IEEE80211_S_RUN) { /* abort TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); /* force tx led to stop blinking */ ural_write(sc, RAL_MAC_CSR20, 0); } break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (vap->iv_opmode != IEEE80211_M_MONITOR) { if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { RAL_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return (-1); } ural_update_slot(ic->ic_ifp); ural_set_txpreamble(sc); ural_set_basicrates(sc, ic->ic_bsschan); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); ural_set_bssid(sc, sc->sc_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { m = ieee80211_beacon_alloc(ni, &uvp->bo); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate beacon\n"); RAL_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return (-1); } ieee80211_ref_node(ni); if (ural_tx_bcn(sc, m, ni) != 0) { device_printf(sc->sc_dev, "could not send beacon\n"); RAL_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return (-1); } } /* make tx led blink on tx (controlled by ASIC) */ ural_write(sc, RAL_MAC_CSR20, 1); if (vap->iv_opmode != IEEE80211_M_MONITOR) ural_enable_tsf_sync(sc); else ural_enable_tsf(sc); /* enable automatic rate adaptation */ /* XXX should use ic_bsschan but not valid until after newstate call below */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) ural_ratectl_start(sc, ni); ieee80211_free_node(ni); break; default: break; } RAL_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static void ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct ural_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct ieee80211vap *vap; struct ural_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete, %d bytes\n", len); /* free resources */ data = usbd_xfer_get_priv(xfer); ural_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); ifp->if_opackets++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { DPRINTFN(0, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct ural_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m); } /* xfer length needs to be a multiple of two! */ len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; if ((len % 64) == 0) len += 2; DPRINTFN(11, "sending frame len=%u xferlen=%u\n", m->m_pkthdr.len, len); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } RAL_UNLOCK(sc); ural_start(ifp); RAL_LOCK(sc); break; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); ifp->if_oerrors++; data = usbd_xfer_get_priv(xfer); if (data != NULL) { ural_tx_free(data, error); usbd_xfer_set_priv(xfer, NULL); } if (error == USB_ERR_STALLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); break; } } static void ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct ural_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_node *ni; struct mbuf *m = NULL; struct usb_page_cache *pc; uint32_t flags; int8_t rssi = 0, nf = 0; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", len); if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { DPRINTF("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len); ifp->if_ierrors++; goto tr_setup; } len -= RAL_RX_DESC_SIZE; /* rx descriptor is located at the end */ pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); rssi = URAL_RSSI(sc->sc_rx_desc.rssi); nf = RAL_NOISE_FLOOR; flags = le32toh(sc->sc_rx_desc.flags); if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { /* * This should not happen since we did not * request to receive those frames when we * filled RAL_TXRX_CSR2: */ DPRINTFN(5, "PHY or CRC error\n"); ifp->if_ierrors++; goto tr_setup; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF("could not allocate mbuf\n"); ifp->if_ierrors++; goto tr_setup; } usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; if (ieee80211_radiotap_active(ic)) { struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; /* XXX set once */ tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, (flags & RAL_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } /* Strip trailing 802.11 MAC FCS. */ m_adj(m, -IEEE80211_CRC_LEN); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ RAL_UNLOCK(sc); if (m) { ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); } if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) ural_start(ifp); RAL_LOCK(sc); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static uint8_t ural_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, uint32_t flags, int len, int rate) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RAL_TX_NEWSEQ); desc->flags |= htole32(len << 16); desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); /* setup PLCP fields */ desc->plcp_signal = ural_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RAL_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RAL_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->iv = 0; desc->eiv = 0; } #define RAL_TX_TIMEOUT 5000 static int ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = sc->sc_ifp; const struct ieee80211_txparam *tp; struct ural_tx_data *data; if (sc->tx_nfree == 0) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m0); ieee80211_free_node(ni); return (EIO); } if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { m_freem(m0); ieee80211_free_node(ni); return (ENXIO); } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; ural_setup_tx_desc(sc, &data->desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", m0->m_pkthdr.len, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return (0); } static int ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_txparam *tp; struct ural_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; uint32_t flags; uint16_t dur; RAL_LOCK_ASSERT(sc, MA_OWNED); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } wh = mtod(m0, struct ieee80211_frame *); } data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RAL_TX_TIMESTAMP; } ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", m0->m_pkthdr.len, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_sendprot(struct ural_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct ural_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort; uint16_t dur; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RAL_TX_RETRY(7); if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RAL_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); data->rate = protrate; ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ural_tx_data *data; uint32_t flags; int error; int rate; RAL_LOCK_ASSERT(sc, MA_OWNED); KASSERT(params != NULL, ("no raw xmit params")); rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { m_freem(m0); return EINVAL; } flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RAL_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = ural_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RAL_TX_IFS_SIFS; } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; /* XXX need to setup descriptor ourself */ ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ural_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; uint32_t flags = 0; uint16_t dur; int error, rate; RAL_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = ni->ni_txrate; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = ural_sendprot(sc, m0, ni, prot, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RAL_TX_IFS_SIFS; } } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; flags |= RAL_TX_RETRY(7); dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending data frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static void ural_start(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct mbuf *m; RAL_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { RAL_UNLOCK(sc); return; } for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (sc->tx_nfree < RAL_TX_MINFREE) { IFQ_DRV_PREPEND(&ifp->if_snd, m); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (ural_tx_data(sc, m, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } RAL_UNLOCK(sc); } static int ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error; int startall = 0; RAL_LOCK(sc); error = sc->sc_detached ? ENXIO : 0; RAL_UNLOCK(sc); if (error) return (error); switch (cmd) { case SIOCSIFFLAGS: RAL_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ural_init_locked(sc); startall = 1; } else ural_setpromisc(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) ural_stop(sc); } RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } return error; } static void ural_set_testmode(struct ural_softc *sc) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_VENDOR_REQUEST; USETW(req.wValue, 4); USETW(req.wIndex, 1); USETW(req.wLength, 0); error = ural_do_request(sc, &req, NULL); if (error != 0) { device_printf(sc->sc_dev, "could not set test mode: %s\n", usbd_errstr(error)); } } static void ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } } static uint16_t ural_read(struct ural_softc *sc, uint16_t reg) { struct usb_device_request req; usb_error_t error; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, sizeof (uint16_t)); error = ural_do_request(sc, &req, &val); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC register: %s\n", usbd_errstr(error)); return 0; } return le16toh(val); } static void ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC register: %s\n", usbd_errstr(error)); } } static void ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MAC; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); error = ural_do_request(sc, &req, NULL); if (error != 0) { device_printf(sc->sc_dev, "could not write MAC register: %s\n", usbd_errstr(error)); } } static void ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not write MAC register: %s\n", usbd_errstr(error)); } } static void ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) { uint16_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = reg << 8 | val; ural_write(sc, RAL_PHY_CSR7, tmp); } static uint8_t ural_bbp_read(struct ural_softc *sc, uint8_t reg) { uint16_t val; int ntries; val = RAL_BBP_WRITE | reg << 8; ural_write(sc, RAL_PHY_CSR7, val); for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } return ural_read(sc, RAL_PHY_CSR7) & 0xff; } static void ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); ural_write(sc, RAL_PHY_CSR10, tmp >> 16); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); } static void ural_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct ural_softc *sc = ifp->if_softc; RAL_LOCK(sc); ural_write(sc, RAL_TXRX_CSR19, 0); ural_set_bssid(sc, ifp->if_broadcastaddr); RAL_UNLOCK(sc); } static void ural_scan_end(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_ifp->if_softc; RAL_LOCK(sc); ural_enable_tsf_sync(sc); ural_set_bssid(sc, sc->sc_bssid); RAL_UNLOCK(sc); } static void ural_set_channel(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_ifp->if_softc; RAL_LOCK(sc); ural_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } static void ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint8_t power, tmp; int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; /* adjust txpower using ifconfig settings */ power -= (100 - ic->ic_txpowlimit) / 8; DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); switch (sc->rf_rev) { case RAL_RF_2522: ural_rf_write(sc, RAL_RF1, 0x00814); ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RAL_RF_2523: ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2524: ural_rf_write(sc, RAL_RF1, 0x0c808); ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525E: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RAL_RF_2526: ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RAL_RF_5222: for (i = 0; ural_rf5222[i].chan != chan; i++); ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); break; } if (ic->ic_opmode != IEEE80211_M_MONITOR && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* set Japan filter bit for channel 14 */ tmp = ural_bbp_read(sc, 70); tmp &= ~RAL_JAPAN_FILTER; if (chan == 14) tmp |= RAL_JAPAN_FILTER; ural_bbp_write(sc, 70, tmp); /* clear CRC errors */ ural_read(sc, RAL_STA_CSR0); ural_pause(sc, hz / 100); ural_disable_rf_tune(sc); } /* XXX doesn't belong here */ /* update basic rate set */ ural_set_basicrates(sc, c); /* give the hardware some time to do the switchover */ ural_pause(sc, hz / 100); } /* * Disable RF auto-tuning. */ static void ural_disable_rf_tune(struct ural_softc *sc) { uint32_t tmp; if (sc->rf_rev != RAL_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; ural_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; ural_rf_write(sc, RAL_RF3, tmp); DPRINTFN(2, "disabling RF autotune\n"); } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void ural_enable_tsf_sync(struct ural_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t logcwmin, preload, tmp; /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); tmp = (16 * vap->iv_bss->ni_intval) << 4; ural_write(sc, RAL_TXRX_CSR18, tmp); logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; tmp = logcwmin << 12 | preload; ural_write(sc, RAL_TXRX_CSR20, tmp); /* finally, enable TSF synchronization */ tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RAL_ENABLE_TSF_SYNC(1); else tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; ural_write(sc, RAL_TXRX_CSR19, tmp); DPRINTF("enabling TSF synchronization\n"); } static void ural_enable_tsf(struct ural_softc *sc) { /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); } #define RAL_RXTX_TURNAROUND 5 /* us */ static void ural_update_slot(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; uint16_t slottime, sifs, eifs; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; /* * These settings may sound a bit inconsistent but this is what the * reference driver does. */ if (ic->ic_curmode == IEEE80211_MODE_11B) { sifs = 16 - RAL_RXTX_TURNAROUND; eifs = 364; } else { sifs = 10 - RAL_RXTX_TURNAROUND; eifs = 64; } ural_write(sc, RAL_MAC_CSR10, slottime); ural_write(sc, RAL_MAC_CSR11, sifs); ural_write(sc, RAL_MAC_CSR12, eifs); } static void ural_set_txpreamble(struct ural_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint16_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR10); tmp &= ~RAL_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RAL_SHORT_PREAMBLE; ural_write(sc, RAL_TXRX_CSR10, tmp); } static void ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) { /* XXX wrong, take from rate set */ /* update basic rate set */ if (IEEE80211_IS_CHAN_5GHZ(c)) { /* 11a basic rates: 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x150); } else if (IEEE80211_IS_CHAN_ANYG(c)) { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x15f); } else { /* 11b basic rates: 1, 2Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x3); } } static void ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) { uint16_t tmp; tmp = bssid[0] | bssid[1] << 8; ural_write(sc, RAL_MAC_CSR5, tmp); tmp = bssid[2] | bssid[3] << 8; ural_write(sc, RAL_MAC_CSR6, tmp); tmp = bssid[4] | bssid[5] << 8; ural_write(sc, RAL_MAC_CSR7, tmp); DPRINTF("setting BSSID to %6D\n", bssid, ":"); } static void ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) { uint16_t tmp; tmp = addr[0] | addr[1] << 8; ural_write(sc, RAL_MAC_CSR2, tmp); tmp = addr[2] | addr[3] << 8; ural_write(sc, RAL_MAC_CSR3, tmp); tmp = addr[4] | addr[5] << 8; ural_write(sc, RAL_MAC_CSR4, tmp); DPRINTF("setting MAC address to %6D\n", addr, ":"); } static void ural_setpromisc(struct ural_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR2); tmp &= ~RAL_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; ural_write(sc, RAL_TXRX_CSR2, tmp); DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving"); } static void ural_update_promisc(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; RAL_LOCK(sc); ural_setpromisc(sc); RAL_UNLOCK(sc); } static const char * ural_get_rf(int rev) { switch (rev) { case RAL_RF_2522: return "RT2522"; case RAL_RF_2523: return "RT2523"; case RAL_RF_2524: return "RT2524"; case RAL_RF_2525: return "RT2525"; case RAL_RF_2525E: return "RT2525e"; case RAL_RF_2526: return "RT2526"; case RAL_RF_5222: return "RT5222"; default: return "unknown"; } } static void ural_read_eeprom(struct ural_softc *sc) { uint16_t val; ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read MAC address */ ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6); /* read default values for BBP registers */ ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); /* read Tx power for all b/g channels */ ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); } static int ural_bbp_init(struct ural_softc *sc) { #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(ural_def_bbp); i++) ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; #undef N } static void ural_set_txantenna(struct ural_softc *sc, int antenna) { uint16_t tmp; uint8_t tx; tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; if (antenna == 1) tx |= RAL_BBP_ANTA; else if (antenna == 2) tx |= RAL_BBP_ANTB; else tx |= RAL_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || sc->rf_rev == RAL_RF_5222) tx |= RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_TX, tx); /* update values in PHY_CSR5 and PHY_CSR6 */ tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); } static void ural_set_rxantenna(struct ural_softc *sc, int antenna) { uint8_t rx; rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; if (antenna == 1) rx |= RAL_BBP_ANTA; else if (antenna == 2) rx |= RAL_BBP_ANTB; else rx |= RAL_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) rx &= ~RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_RX, rx); } static void ural_init_locked(struct ural_softc *sc) { #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint16_t tmp; int i, ntries; RAL_LOCK_ASSERT(sc, MA_OWNED); ural_set_testmode(sc); ural_write(sc, 0x308, 0x00f0); /* XXX magic */ ural_stop(sc); /* initialize MAC registers to default values */ for (i = 0; i < N(ural_def_mac); i++) ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); /* wait for BBP and RF to wake up (this can take a long time!) */ for (ntries = 0; ntries < 100; ntries++) { tmp = ural_read(sc, RAL_MAC_CSR17); if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == (RAL_BBP_AWAKE | RAL_RF_AWAKE)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP/RF to wakeup\n"); goto fail; } /* we're ready! */ ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); /* set basic rate set (will be updated later) */ ural_write(sc, RAL_TXRX_CSR11, 0x15f); if (ural_bbp_init(sc) != 0) goto fail; ural_set_chan(sc, ic->ic_curchan); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); ural_set_txantenna(sc, sc->tx_ant); ural_set_rxantenna(sc, sc->rx_ant); ural_set_macaddr(sc, IF_LLADDR(ifp)); /* * Allocate Tx and Rx xfer queues. */ ural_setup_tx_list(sc); /* kick Rx */ tmp = RAL_DROP_PHY | RAL_DROP_CRC; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RAL_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; } ural_write(sc, RAL_TXRX_CSR2, tmp); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); return; fail: ural_stop(sc); #undef N } static void ural_init(void *priv) { struct ural_softc *sc = priv; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; RAL_LOCK(sc); ural_init_locked(sc); RAL_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void ural_stop(struct ural_softc *sc) { struct ifnet *ifp = sc->sc_ifp; RAL_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* * Drain all the transfers, if not already drained: */ RAL_UNLOCK(sc); usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); RAL_LOCK(sc); ural_unsetup_tx_list(sc); /* disable Rx */ ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); /* reset ASIC and BBP (but won't reset MAC registers!) */ ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); /* wait a little */ ural_pause(sc, hz / 10); ural_write(sc, RAL_MAC_CSR1, 0); /* wait a little */ ural_pause(sc, hz / 10); } static int ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct ural_softc *sc = ifp->if_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return ENETDOWN; } if (sc->tx_nfree < RAL_TX_MINFREE) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; RAL_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return EIO; } ifp->if_opackets++; if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (ural_tx_mgt(sc, m, ni) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (ural_tx_raw(sc, m, ni, params) != 0) goto bad; } RAL_UNLOCK(sc); return 0; bad: ifp->if_oerrors++; RAL_UNLOCK(sc); ieee80211_free_node(ni); return EIO; /* XXX */ } static void ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ural_vap *uvp = URAL_VAP(vap); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); } static void ural_ratectl_timeout(void *arg) { struct ural_vap *uvp = arg; struct ieee80211vap *vap = &uvp->vap; struct ieee80211com *ic = vap->iv_ic; ieee80211_runtask(ic, &uvp->ratectl_task); } static void ural_ratectl_task(void *arg, int pending) { struct ural_vap *uvp = arg; struct ieee80211vap *vap = &uvp->vap; struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = ic->ic_ifp; struct ural_softc *sc = ifp->if_softc; struct ieee80211_node *ni; int ok, fail; int sum, retrycnt; ni = ieee80211_ref_node(vap->iv_bss); RAL_LOCK(sc); /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); ok = sc->sta[7] + /* TX ok w/o retry */ sc->sta[8]; /* TX ok w/ retry */ fail = sc->sta[9]; /* TX retry-fail count */ sum = ok+fail; retrycnt = sc->sta[8] + fail; ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); (void) ieee80211_ratectl_rate(ni, NULL, 0); ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); RAL_UNLOCK(sc); ieee80211_free_node(ni); } static int ural_pause(struct ural_softc *sc, int timeout) { usb_pause_mtx(&sc->sc_mtx, timeout); return (0); }