1 /*- 2 * Copyright (c) 2006 Sam Leffler, Errno Consulting 3 * Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 /* 32 * This driver is distantly derived from a driver of the same name 33 * by Damien Bergamini. The original copyright is included below: 34 * 35 * Copyright (c) 2006 36 * Damien Bergamini <damien.bergamini@free.fr> 37 * 38 * Permission to use, copy, modify, and distribute this software for any 39 * purpose with or without fee is hereby granted, provided that the above 40 * copyright notice and this permission notice appear in all copies. 41 * 42 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 43 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 44 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 45 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 46 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 47 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 48 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 /*- 55 * Driver for Atheros AR5523 USB parts. 56 * 57 * The driver requires firmware to be loaded into the device. This 58 * is done on device discovery from a user application (uathload) 59 * that is launched by devd when a device with suitable product ID 60 * is recognized. Once firmware has been loaded the device will 61 * reset the USB port and re-attach with the original product ID+1 62 * and this driver will be attached. The firmware is licensed for 63 * general use (royalty free) and may be incorporated in products. 64 * Note that the firmware normally packaged with the NDIS drivers 65 * for these devices does not work in this way and so does not work 66 * with this driver. 67 */ 68 #include <sys/param.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/systm.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/bus.h> 80 #include <sys/endian.h> 81 #include <sys/kdb.h> 82 83 #include <machine/bus.h> 84 #include <machine/resource.h> 85 #include <sys/rman.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_arp.h> 90 #include <net/ethernet.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 #include <net/if_types.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/in_systm.h> 98 #include <netinet/in_var.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/ip.h> 101 #endif 102 103 #include <net80211/ieee80211_var.h> 104 #include <net80211/ieee80211_regdomain.h> 105 #include <net80211/ieee80211_radiotap.h> 106 107 #include <dev/usb/usb.h> 108 #include <dev/usb/usbdi.h> 109 #include "usbdevs.h" 110 111 #include <dev/usb/wlan/if_uathreg.h> 112 #include <dev/usb/wlan/if_uathvar.h> 113 114 SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); 115 116 static int uath_countrycode = CTRY_DEFAULT; /* country code */ 117 SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RW, &uath_countrycode, 118 0, "country code"); 119 TUNABLE_INT("hw.usb.uath.countrycode", &uath_countrycode); 120 static int uath_regdomain = 0; /* regulatory domain */ 121 SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 122 0, "regulatory domain"); 123 124 #ifdef UATH_DEBUG 125 int uath_debug = 0; 126 SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RW, &uath_debug, 0, 127 "uath debug level"); 128 TUNABLE_INT("hw.usb.uath.debug", &uath_debug); 129 enum { 130 UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 131 UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ 132 UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 133 UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ 134 UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ 135 UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ 136 UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ 137 UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ 138 UATH_DEBUG_CMDS = 0x00000100, /* commands */ 139 UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ 140 UATH_DEBUG_RESET = 0x00000400, /* reset processing */ 141 UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ 142 UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ 143 UATH_DEBUG_WME = 0x00002000, /* WME */ 144 UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ 145 UATH_DEBUG_RATES = 0x00008000, /* rates */ 146 UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ 147 UATH_DEBUG_LED = 0x00020000, /* LED */ 148 UATH_DEBUG_ANY = 0xffffffff 149 }; 150 #define DPRINTF(sc, m, fmt, ...) do { \ 151 if (sc->sc_debug & (m)) \ 152 printf(fmt, __VA_ARGS__); \ 153 } while (0) 154 #else 155 #define DPRINTF(sc, m, fmt, ...) do { \ 156 (void) sc; \ 157 } while (0) 158 #endif 159 160 /* unaligned little endian access */ 161 #define LE_READ_2(p) \ 162 ((u_int16_t) \ 163 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 164 #define LE_READ_4(p) \ 165 ((u_int32_t) \ 166 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 167 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 168 169 /* recognized device vendors/products */ 170 static const struct usb_device_id uath_devs[] = { 171 #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 172 UATH_DEV(ACCTON, SMCWUSBG), 173 UATH_DEV(ACCTON, SMCWUSBTG2), 174 UATH_DEV(ATHEROS, AR5523), 175 UATH_DEV(ATHEROS2, AR5523_1), 176 UATH_DEV(ATHEROS2, AR5523_2), 177 UATH_DEV(ATHEROS2, AR5523_3), 178 UATH_DEV(CONCEPTRONIC, AR5523_1), 179 UATH_DEV(CONCEPTRONIC, AR5523_2), 180 UATH_DEV(DLINK, DWLAG122), 181 UATH_DEV(DLINK, DWLAG132), 182 UATH_DEV(DLINK, DWLG132), 183 UATH_DEV(DLINK2, DWA120), 184 UATH_DEV(GIGASET, AR5523), 185 UATH_DEV(GIGASET, SMCWUSBTG), 186 UATH_DEV(GLOBALSUN, AR5523_1), 187 UATH_DEV(GLOBALSUN, AR5523_2), 188 UATH_DEV(NETGEAR, WG111U), 189 UATH_DEV(NETGEAR3, WG111T), 190 UATH_DEV(NETGEAR3, WPN111), 191 UATH_DEV(NETGEAR3, WPN111_2), 192 UATH_DEV(UMEDIA, TEW444UBEU), 193 UATH_DEV(UMEDIA, AR5523_2), 194 UATH_DEV(WISTRONNEWEB, AR5523_1), 195 UATH_DEV(WISTRONNEWEB, AR5523_2), 196 UATH_DEV(ZCOM, AR5523) 197 #undef UATH_DEV 198 }; 199 200 static usb_callback_t uath_intr_rx_callback; 201 static usb_callback_t uath_intr_tx_callback; 202 static usb_callback_t uath_bulk_rx_callback; 203 static usb_callback_t uath_bulk_tx_callback; 204 205 static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { 206 [UATH_INTR_RX] = { 207 .type = UE_BULK, 208 .endpoint = 0x1, 209 .direction = UE_DIR_IN, 210 .bufsize = UATH_MAX_CMDSZ, 211 .flags = { 212 .pipe_bof = 1, 213 .short_xfer_ok = 1 214 }, 215 .callback = uath_intr_rx_callback 216 }, 217 [UATH_INTR_TX] = { 218 .type = UE_BULK, 219 .endpoint = 0x1, 220 .direction = UE_DIR_OUT, 221 .bufsize = UATH_MAX_CMDSZ, 222 .flags = { 223 .ext_buffer = 1, 224 .force_short_xfer = 1, 225 .pipe_bof = 1, 226 }, 227 .callback = uath_intr_tx_callback, 228 .timeout = UATH_CMD_TIMEOUT 229 }, 230 [UATH_BULK_RX] = { 231 .type = UE_BULK, 232 .endpoint = 0x2, 233 .direction = UE_DIR_IN, 234 .bufsize = MCLBYTES, 235 .flags = { 236 .ext_buffer = 1, 237 .pipe_bof = 1, 238 .short_xfer_ok = 1 239 }, 240 .callback = uath_bulk_rx_callback 241 }, 242 [UATH_BULK_TX] = { 243 .type = UE_BULK, 244 .endpoint = 0x2, 245 .direction = UE_DIR_OUT, 246 .bufsize = UATH_MAX_TXBUFSZ, 247 .flags = { 248 .ext_buffer = 1, 249 .force_short_xfer = 1, 250 .pipe_bof = 1 251 }, 252 .callback = uath_bulk_tx_callback, 253 .timeout = UATH_DATA_TIMEOUT 254 } 255 }; 256 257 static struct ieee80211vap *uath_vap_create(struct ieee80211com *, 258 const char name[IFNAMSIZ], int unit, int opmode, 259 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 260 const uint8_t mac[IEEE80211_ADDR_LEN]); 261 static void uath_vap_delete(struct ieee80211vap *); 262 static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd [], 263 int, int); 264 static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd [], 265 int); 266 static int uath_host_available(struct uath_softc *); 267 static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); 268 static int uath_get_devcap(struct uath_softc *); 269 static struct uath_cmd * 270 uath_get_cmdbuf(struct uath_softc *); 271 static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, 272 int, void *, int, int); 273 static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, 274 int, int); 275 static void uath_stat(void *); 276 #ifdef UATH_DEBUG 277 static void uath_dump_cmd(const uint8_t *, int, char); 278 static const char * 279 uath_codename(int); 280 #endif 281 static int uath_get_devstatus(struct uath_softc *, 282 uint8_t macaddr[IEEE80211_ADDR_LEN]); 283 static int uath_get_status(struct uath_softc *, uint32_t, void *, int); 284 static int uath_alloc_rx_data_list(struct uath_softc *); 285 static int uath_alloc_tx_data_list(struct uath_softc *); 286 static void uath_free_rx_data_list(struct uath_softc *); 287 static void uath_free_tx_data_list(struct uath_softc *); 288 static int uath_init_locked(void *); 289 static void uath_init(void *); 290 static void uath_stop_locked(struct ifnet *); 291 static void uath_stop(struct ifnet *); 292 static int uath_ioctl(struct ifnet *, u_long, caddr_t); 293 static void uath_start(struct ifnet *); 294 static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, 295 const struct ieee80211_bpf_params *); 296 static void uath_scan_start(struct ieee80211com *); 297 static void uath_scan_end(struct ieee80211com *); 298 static void uath_set_channel(struct ieee80211com *); 299 static void uath_update_mcast(struct ifnet *); 300 static void uath_update_promisc(struct ifnet *); 301 static int uath_config(struct uath_softc *, uint32_t, uint32_t); 302 static int uath_config_multi(struct uath_softc *, uint32_t, const void *, 303 int); 304 static int uath_switch_channel(struct uath_softc *, 305 struct ieee80211_channel *); 306 static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); 307 static void uath_watchdog(void *); 308 static void uath_abort_xfers(struct uath_softc *); 309 static int uath_dataflush(struct uath_softc *); 310 static int uath_cmdflush(struct uath_softc *); 311 static int uath_flush(struct uath_softc *); 312 static int uath_set_ledstate(struct uath_softc *, int); 313 static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); 314 static int uath_reset_tx_queues(struct uath_softc *); 315 static int uath_wme_init(struct uath_softc *); 316 static struct uath_data * 317 uath_getbuf(struct uath_softc *); 318 static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, 319 int); 320 static int uath_set_key(struct uath_softc *, 321 const struct ieee80211_key *, int); 322 static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); 323 static void uath_sysctl_node(struct uath_softc *); 324 325 static int 326 uath_match(device_t dev) 327 { 328 struct usb_attach_arg *uaa = device_get_ivars(dev); 329 330 if (uaa->usb_mode != USB_MODE_HOST) 331 return (ENXIO); 332 if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) 333 return (ENXIO); 334 if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) 335 return (ENXIO); 336 337 return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); 338 } 339 340 static int 341 uath_attach(device_t dev) 342 { 343 struct uath_softc *sc = device_get_softc(dev); 344 struct usb_attach_arg *uaa = device_get_ivars(dev); 345 struct ieee80211com *ic; 346 struct ifnet *ifp; 347 uint8_t bands, iface_index = UATH_IFACE_INDEX; /* XXX */ 348 usb_error_t error; 349 uint8_t macaddr[IEEE80211_ADDR_LEN]; 350 351 sc->sc_dev = dev; 352 sc->sc_udev = uaa->device; 353 #ifdef UATH_DEBUG 354 sc->sc_debug = uath_debug; 355 #endif 356 device_set_usb_desc(dev); 357 358 /* 359 * Only post-firmware devices here. 360 */ 361 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 362 MTX_DEF); 363 callout_init(&sc->stat_ch, 0); 364 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 365 366 /* 367 * Allocate xfers for firmware commands. 368 */ 369 error = uath_alloc_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT, 370 UATH_MAX_CMDSZ); 371 if (error != 0) { 372 device_printf(sc->sc_dev, 373 "could not allocate Tx command list\n"); 374 goto fail; 375 } 376 377 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 378 uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); 379 if (error) { 380 device_printf(dev, "could not allocate USB transfers, " 381 "err=%s\n", usbd_errstr(error)); 382 goto fail1; 383 } 384 385 /* 386 * We're now ready to send+receive firmware commands. 387 */ 388 UATH_LOCK(sc); 389 error = uath_host_available(sc); 390 if (error != 0) { 391 device_printf(sc->sc_dev, "could not initialize adapter\n"); 392 goto fail3; 393 } 394 error = uath_get_devcap(sc); 395 if (error != 0) { 396 device_printf(sc->sc_dev, 397 "could not get device capabilities\n"); 398 goto fail3; 399 } 400 UATH_UNLOCK(sc); 401 402 /* Create device sysctl node. */ 403 uath_sysctl_node(sc); 404 405 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 406 if (ifp == NULL) { 407 device_printf(sc->sc_dev, "can not allocate ifnet\n"); 408 error = ENXIO; 409 goto fail2; 410 } 411 412 UATH_LOCK(sc); 413 error = uath_get_devstatus(sc, macaddr); 414 if (error != 0) { 415 device_printf(sc->sc_dev, "could not get device status\n"); 416 goto fail4; 417 } 418 419 /* 420 * Allocate xfers for Rx/Tx data pipes. 421 */ 422 error = uath_alloc_rx_data_list(sc); 423 if (error != 0) { 424 device_printf(sc->sc_dev, "could not allocate Rx data list\n"); 425 goto fail4; 426 } 427 error = uath_alloc_tx_data_list(sc); 428 if (error != 0) { 429 device_printf(sc->sc_dev, "could not allocate Tx data list\n"); 430 goto fail4; 431 } 432 UATH_UNLOCK(sc); 433 434 ifp->if_softc = sc; 435 if_initname(ifp, "uath", device_get_unit(sc->sc_dev)); 436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 437 ifp->if_init = uath_init; 438 ifp->if_ioctl = uath_ioctl; 439 ifp->if_start = uath_start; 440 /* XXX UATH_TX_DATA_LIST_COUNT */ 441 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 442 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 443 IFQ_SET_READY(&ifp->if_snd); 444 445 ic = ifp->if_l2com; 446 ic->ic_ifp = ifp; 447 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 448 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 449 450 /* set device capabilities */ 451 ic->ic_caps = 452 IEEE80211_C_STA | /* station mode */ 453 IEEE80211_C_MONITOR | /* monitor mode supported */ 454 IEEE80211_C_TXPMGT | /* tx power management */ 455 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 456 IEEE80211_C_SHSLOT | /* short slot time supported */ 457 IEEE80211_C_WPA | /* 802.11i */ 458 IEEE80211_C_BGSCAN | /* capable of bg scanning */ 459 IEEE80211_C_TXFRAG; /* handle tx frags */ 460 461 /* put a regulatory domain to reveal informations. */ 462 uath_regdomain = sc->sc_devcap.regDomain; 463 464 bands = 0; 465 setbit(&bands, IEEE80211_MODE_11B); 466 setbit(&bands, IEEE80211_MODE_11G); 467 if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) 468 setbit(&bands, IEEE80211_MODE_11A); 469 /* XXX turbo */ 470 ieee80211_init_channels(ic, NULL, &bands); 471 472 ieee80211_ifattach(ic, macaddr); 473 ic->ic_raw_xmit = uath_raw_xmit; 474 ic->ic_scan_start = uath_scan_start; 475 ic->ic_scan_end = uath_scan_end; 476 ic->ic_set_channel = uath_set_channel; 477 478 ic->ic_vap_create = uath_vap_create; 479 ic->ic_vap_delete = uath_vap_delete; 480 ic->ic_update_mcast = uath_update_mcast; 481 ic->ic_update_promisc = uath_update_promisc; 482 483 ieee80211_radiotap_attach(ic, 484 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 485 UATH_TX_RADIOTAP_PRESENT, 486 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 487 UATH_RX_RADIOTAP_PRESENT); 488 489 if (bootverbose) 490 ieee80211_announce(ic); 491 492 return (0); 493 494 fail4: if_free(ifp); 495 fail3: UATH_UNLOCK(sc); 496 fail2: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 497 fail1: uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT); 498 fail: 499 return (error); 500 } 501 502 static int 503 uath_detach(device_t dev) 504 { 505 struct uath_softc *sc = device_get_softc(dev); 506 struct ifnet *ifp = sc->sc_ifp; 507 struct ieee80211com *ic = ifp->if_l2com; 508 509 if (!device_is_attached(dev)) 510 return (0); 511 512 UATH_LOCK(sc); 513 sc->sc_flags |= UATH_FLAG_INVALID; 514 UATH_UNLOCK(sc); 515 516 ieee80211_ifdetach(ic); 517 uath_stop(ifp); 518 519 callout_drain(&sc->stat_ch); 520 callout_drain(&sc->watchdog_ch); 521 522 usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 523 524 /* free buffers */ 525 UATH_LOCK(sc); 526 uath_free_rx_data_list(sc); 527 uath_free_tx_data_list(sc); 528 uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT); 529 UATH_UNLOCK(sc); 530 531 if_free(ifp); 532 mtx_destroy(&sc->sc_mtx); 533 return (0); 534 } 535 536 static void 537 uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[], int ncmd) 538 { 539 int i; 540 541 for (i = 0; i < ncmd; i++) 542 if (cmds[i].buf != NULL) 543 free(cmds[i].buf, M_USBDEV); 544 } 545 546 static int 547 uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[], 548 int ncmd, int maxsz) 549 { 550 int i, error; 551 552 STAILQ_INIT(&sc->sc_cmd_active); 553 STAILQ_INIT(&sc->sc_cmd_pending); 554 STAILQ_INIT(&sc->sc_cmd_waiting); 555 STAILQ_INIT(&sc->sc_cmd_inactive); 556 557 for (i = 0; i < ncmd; i++) { 558 struct uath_cmd *cmd = &cmds[i]; 559 560 cmd->sc = sc; /* backpointer for callbacks */ 561 cmd->msgid = i; 562 cmd->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); 563 if (cmd->buf == NULL) { 564 device_printf(sc->sc_dev, 565 "could not allocate xfer buffer\n"); 566 error = ENOMEM; 567 goto fail; 568 } 569 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 570 UATH_STAT_INC(sc, st_cmd_inactive); 571 } 572 return (0); 573 574 fail: uath_free_cmd_list(sc, cmds, ncmd); 575 return (error); 576 } 577 578 static int 579 uath_host_available(struct uath_softc *sc) 580 { 581 struct uath_cmd_host_available setup; 582 583 UATH_ASSERT_LOCKED(sc); 584 585 /* inform target the host is available */ 586 setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); 587 setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); 588 setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); 589 setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); 590 return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, 591 &setup, sizeof setup, NULL, 0, 0); 592 } 593 594 #ifdef UATH_DEBUG 595 static void 596 uath_dump_cmd(const uint8_t *buf, int len, char prefix) 597 { 598 const char *sep = ""; 599 int i; 600 601 for (i = 0; i < len; i++) { 602 if ((i % 16) == 0) { 603 printf("%s%c ", sep, prefix); 604 sep = "\n"; 605 } 606 else if ((i % 4) == 0) 607 printf(" "); 608 printf("%02x", buf[i]); 609 } 610 printf("\n"); 611 } 612 613 static const char * 614 uath_codename(int code) 615 { 616 #define N(a) (sizeof(a)/sizeof(a[0])) 617 static const char *names[] = { 618 "0x00", 619 "HOST_AVAILABLE", 620 "BIND", 621 "TARGET_RESET", 622 "TARGET_GET_CAPABILITY", 623 "TARGET_SET_CONFIG", 624 "TARGET_GET_STATUS", 625 "TARGET_GET_STATS", 626 "TARGET_START", 627 "TARGET_STOP", 628 "TARGET_ENABLE", 629 "TARGET_DISABLE", 630 "CREATE_CONNECTION", 631 "UPDATE_CONNECT_ATTR", 632 "DELETE_CONNECT", 633 "SEND", 634 "FLUSH", 635 "STATS_UPDATE", 636 "BMISS", 637 "DEVICE_AVAIL", 638 "SEND_COMPLETE", 639 "DATA_AVAIL", 640 "SET_PWR_MODE", 641 "BMISS_ACK", 642 "SET_LED_STEADY", 643 "SET_LED_BLINK", 644 "SETUP_BEACON_DESC", 645 "BEACON_INIT", 646 "RESET_KEY_CACHE", 647 "RESET_KEY_CACHE_ENTRY", 648 "SET_KEY_CACHE_ENTRY", 649 "SET_DECOMP_MASK", 650 "SET_REGULATORY_DOMAIN", 651 "SET_LED_STATE", 652 "WRITE_ASSOCID", 653 "SET_STA_BEACON_TIMERS", 654 "GET_TSF", 655 "RESET_TSF", 656 "SET_ADHOC_MODE", 657 "SET_BASIC_RATE", 658 "MIB_CONTROL", 659 "GET_CHANNEL_DATA", 660 "GET_CUR_RSSI", 661 "SET_ANTENNA_SWITCH", 662 "0x2c", "0x2d", "0x2e", 663 "USE_SHORT_SLOT_TIME", 664 "SET_POWER_MODE", 665 "SETUP_PSPOLL_DESC", 666 "SET_RX_MULTICAST_FILTER", 667 "RX_FILTER", 668 "PER_CALIBRATION", 669 "RESET", 670 "DISABLE", 671 "PHY_DISABLE", 672 "SET_TX_POWER_LIMIT", 673 "SET_TX_QUEUE_PARAMS", 674 "SETUP_TX_QUEUE", 675 "RELEASE_TX_QUEUE", 676 }; 677 static char buf[8]; 678 679 if (code < N(names)) 680 return names[code]; 681 if (code == WDCMSG_SET_DEFAULT_KEY) 682 return "SET_DEFAULT_KEY"; 683 snprintf(buf, sizeof(buf), "0x%02x", code); 684 return buf; 685 #undef N 686 } 687 #endif 688 689 /* 690 * Low-level function to send read or write commands to the firmware. 691 */ 692 static int 693 uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, 694 void *odata, int olen, int flags) 695 { 696 struct uath_cmd_hdr *hdr; 697 struct uath_cmd *cmd; 698 int error; 699 700 UATH_ASSERT_LOCKED(sc); 701 702 /* grab a xfer */ 703 cmd = uath_get_cmdbuf(sc); 704 if (cmd == NULL) { 705 device_printf(sc->sc_dev, "%s: empty inactive queue\n", 706 __func__); 707 return (ENOBUFS); 708 } 709 cmd->flags = flags; 710 /* always bulk-out a multiple of 4 bytes */ 711 cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); 712 713 hdr = (struct uath_cmd_hdr *)cmd->buf; 714 bzero(hdr, sizeof (struct uath_cmd_hdr)); /* XXX not needed */ 715 hdr->len = htobe32(cmd->buflen); 716 hdr->code = htobe32(code); 717 hdr->msgid = cmd->msgid; /* don't care about endianness */ 718 hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); 719 bcopy(idata, (uint8_t *)(hdr + 1), ilen); 720 721 #ifdef UATH_DEBUG 722 if (sc->sc_debug & UATH_DEBUG_CMDS) { 723 printf("%s: send %s [flags 0x%x] olen %d\n", 724 __func__, uath_codename(code), cmd->flags, olen); 725 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 726 uath_dump_cmd(cmd->buf, cmd->buflen, '+'); 727 } 728 #endif 729 cmd->odata = odata; 730 KASSERT(odata == NULL || 731 olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), 732 ("odata %p olen %u", odata, olen)); 733 cmd->olen = olen; 734 735 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); 736 UATH_STAT_INC(sc, st_cmd_pending); 737 usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); 738 739 if (cmd->flags & UATH_CMD_FLAG_READ) { 740 usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); 741 742 /* wait at most two seconds for command reply */ 743 error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); 744 cmd->odata = NULL; /* in case reply comes too late */ 745 if (error != 0) { 746 device_printf(sc->sc_dev, "timeout waiting for reply " 747 "to cmd 0x%x (%u)\n", code, code); 748 } else if (cmd->olen != olen) { 749 device_printf(sc->sc_dev, "unexpected reply data count " 750 "to cmd 0x%x (%u), got %u, expected %u\n", 751 code, code, cmd->olen, olen); 752 error = EINVAL; 753 } 754 return (error); 755 } 756 return (0); 757 } 758 759 static int 760 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, 761 int ilen, void *odata, int olen, int flags) 762 { 763 764 flags |= UATH_CMD_FLAG_READ; 765 return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); 766 } 767 768 static int 769 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, 770 int flags) 771 { 772 773 flags &= ~UATH_CMD_FLAG_READ; 774 return uath_cmdsend(sc, code, data, len, NULL, 0, flags); 775 } 776 777 static struct uath_cmd * 778 uath_get_cmdbuf(struct uath_softc *sc) 779 { 780 struct uath_cmd *uc; 781 782 UATH_ASSERT_LOCKED(sc); 783 784 uc = STAILQ_FIRST(&sc->sc_cmd_inactive); 785 if (uc != NULL) { 786 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); 787 UATH_STAT_DEC(sc, st_cmd_inactive); 788 } else 789 uc = NULL; 790 if (uc == NULL) 791 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 792 "out of command xmit buffers"); 793 return (uc); 794 } 795 796 /* 797 * This function is called periodically (every second) when associated to 798 * query device statistics. 799 */ 800 static void 801 uath_stat(void *arg) 802 { 803 struct uath_softc *sc = arg; 804 int error; 805 806 UATH_LOCK(sc); 807 /* 808 * Send request for statistics asynchronously. The timer will be 809 * restarted when we'll get the stats notification. 810 */ 811 error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, 812 UATH_CMD_FLAG_ASYNC); 813 if (error != 0) { 814 device_printf(sc->sc_dev, 815 "could not query stats, error %d\n", error); 816 } 817 UATH_UNLOCK(sc); 818 } 819 820 static int 821 uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) 822 { 823 int error; 824 825 cap = htobe32(cap); 826 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, 827 &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); 828 if (error != 0) { 829 device_printf(sc->sc_dev, "could not read capability %u\n", 830 be32toh(cap)); 831 return (error); 832 } 833 *val = be32toh(*val); 834 return (error); 835 } 836 837 static int 838 uath_get_devcap(struct uath_softc *sc) 839 { 840 #define GETCAP(x, v) do { \ 841 error = uath_get_capability(sc, x, &v); \ 842 if (error != 0) \ 843 return (error); \ 844 DPRINTF(sc, UATH_DEBUG_DEVCAP, \ 845 "%s: %s=0x%08x\n", __func__, #x, v); \ 846 } while (0) 847 struct uath_devcap *cap = &sc->sc_devcap; 848 int error; 849 850 /* collect device capabilities */ 851 GETCAP(CAP_TARGET_VERSION, cap->targetVersion); 852 GETCAP(CAP_TARGET_REVISION, cap->targetRevision); 853 GETCAP(CAP_MAC_VERSION, cap->macVersion); 854 GETCAP(CAP_MAC_REVISION, cap->macRevision); 855 GETCAP(CAP_PHY_REVISION, cap->phyRevision); 856 GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); 857 GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); 858 859 GETCAP(CAP_REG_DOMAIN, cap->regDomain); 860 GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); 861 #if 0 862 /* NB: not supported in rev 1.5 */ 863 GETCAP(CAP_COUNTRY_CODE, cap->countryCode); 864 #endif 865 GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); 866 GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); 867 GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); 868 GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); 869 GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); 870 GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); 871 GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); 872 GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); 873 GETCAP(CAP_DEVICE_TYPE, cap->deviceType); 874 GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); 875 GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); 876 GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); 877 878 GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); 879 GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); 880 GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); 881 GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); 882 GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); 883 GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); 884 885 GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); 886 GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); 887 GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); 888 889 cap->supportCipherWEP = 1; /* NB: always available */ 890 891 return (0); 892 } 893 894 static int 895 uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 896 { 897 int error; 898 899 /* retrieve MAC address */ 900 error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); 901 if (error != 0) { 902 device_printf(sc->sc_dev, "could not read MAC address\n"); 903 return (error); 904 } 905 906 error = uath_get_status(sc, ST_SERIAL_NUMBER, 907 &sc->sc_serial[0], sizeof(sc->sc_serial)); 908 if (error != 0) { 909 device_printf(sc->sc_dev, 910 "could not read device serial number\n"); 911 return (error); 912 } 913 return (0); 914 } 915 916 static int 917 uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) 918 { 919 int error; 920 921 which = htobe32(which); 922 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, 923 &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); 924 if (error != 0) 925 device_printf(sc->sc_dev, 926 "could not read EEPROM offset 0x%02x\n", be32toh(which)); 927 return (error); 928 } 929 930 static void 931 uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, 932 int fillmbuf) 933 { 934 int i; 935 936 for (i = 0; i < ndata; i++) { 937 struct uath_data *dp = &data[i]; 938 939 if (fillmbuf == 1) { 940 if (dp->m != NULL) { 941 m_freem(dp->m); 942 dp->m = NULL; 943 dp->buf = NULL; 944 } 945 } else { 946 if (dp->buf != NULL) { 947 free(dp->buf, M_USBDEV); 948 dp->buf = NULL; 949 } 950 } 951 #ifdef UATH_DEBUG 952 if (dp->ni != NULL) 953 device_printf(sc->sc_dev, "Node isn't NULL\n"); 954 #endif 955 } 956 } 957 958 static int 959 uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], 960 int ndata, int maxsz, int fillmbuf) 961 { 962 int i, error; 963 964 for (i = 0; i < ndata; i++) { 965 struct uath_data *dp = &data[i]; 966 967 dp->sc = sc; 968 if (fillmbuf) { 969 /* XXX check maxsz */ 970 dp->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 971 if (dp->m == NULL) { 972 device_printf(sc->sc_dev, 973 "could not allocate rx mbuf\n"); 974 error = ENOMEM; 975 goto fail; 976 } 977 dp->buf = mtod(dp->m, uint8_t *); 978 } else { 979 dp->m = NULL; 980 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); 981 if (dp->buf == NULL) { 982 device_printf(sc->sc_dev, 983 "could not allocate buffer\n"); 984 error = ENOMEM; 985 goto fail; 986 } 987 } 988 dp->ni = NULL; 989 } 990 991 return (0); 992 993 fail: uath_free_data_list(sc, data, ndata, fillmbuf); 994 return (error); 995 } 996 997 static int 998 uath_alloc_rx_data_list(struct uath_softc *sc) 999 { 1000 int error, i; 1001 1002 /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ 1003 error = uath_alloc_data_list(sc, 1004 sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, 1005 1 /* setup mbufs */); 1006 if (error != 0) 1007 return (error); 1008 1009 STAILQ_INIT(&sc->sc_rx_active); 1010 STAILQ_INIT(&sc->sc_rx_inactive); 1011 1012 for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { 1013 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], 1014 next); 1015 UATH_STAT_INC(sc, st_rx_inactive); 1016 } 1017 1018 return (0); 1019 } 1020 1021 static int 1022 uath_alloc_tx_data_list(struct uath_softc *sc) 1023 { 1024 int error, i; 1025 1026 error = uath_alloc_data_list(sc, 1027 sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, 1028 0 /* no mbufs */); 1029 if (error != 0) 1030 return (error); 1031 1032 STAILQ_INIT(&sc->sc_tx_active); 1033 STAILQ_INIT(&sc->sc_tx_inactive); 1034 STAILQ_INIT(&sc->sc_tx_pending); 1035 1036 for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { 1037 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], 1038 next); 1039 UATH_STAT_INC(sc, st_tx_inactive); 1040 } 1041 1042 return (0); 1043 } 1044 1045 static void 1046 uath_free_rx_data_list(struct uath_softc *sc) 1047 { 1048 1049 STAILQ_INIT(&sc->sc_rx_active); 1050 STAILQ_INIT(&sc->sc_rx_inactive); 1051 1052 uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1053 1 /* free mbufs */); 1054 } 1055 1056 static void 1057 uath_free_tx_data_list(struct uath_softc *sc) 1058 { 1059 1060 STAILQ_INIT(&sc->sc_tx_active); 1061 STAILQ_INIT(&sc->sc_tx_inactive); 1062 STAILQ_INIT(&sc->sc_tx_pending); 1063 1064 uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 1065 0 /* no mbufs */); 1066 } 1067 1068 static struct ieee80211vap * 1069 uath_vap_create(struct ieee80211com *ic, 1070 const char name[IFNAMSIZ], int unit, int opmode, int flags, 1071 const uint8_t bssid[IEEE80211_ADDR_LEN], 1072 const uint8_t mac[IEEE80211_ADDR_LEN]) 1073 { 1074 struct uath_vap *uvp; 1075 struct ieee80211vap *vap; 1076 1077 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1078 return (NULL); 1079 uvp = (struct uath_vap *) malloc(sizeof(struct uath_vap), 1080 M_80211_VAP, M_NOWAIT | M_ZERO); 1081 if (uvp == NULL) 1082 return (NULL); 1083 vap = &uvp->vap; 1084 /* enable s/w bmiss handling for sta mode */ 1085 ieee80211_vap_setup(ic, vap, name, unit, opmode, 1086 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 1087 1088 /* override state transition machine */ 1089 uvp->newstate = vap->iv_newstate; 1090 vap->iv_newstate = uath_newstate; 1091 1092 /* complete setup */ 1093 ieee80211_vap_attach(vap, ieee80211_media_change, 1094 ieee80211_media_status); 1095 ic->ic_opmode = opmode; 1096 return (vap); 1097 } 1098 1099 static void 1100 uath_vap_delete(struct ieee80211vap *vap) 1101 { 1102 struct uath_vap *uvp = UATH_VAP(vap); 1103 1104 ieee80211_vap_detach(vap); 1105 free(uvp, M_80211_VAP); 1106 } 1107 1108 static int 1109 uath_init_locked(void *arg) 1110 { 1111 struct uath_softc *sc = arg; 1112 struct ifnet *ifp = sc->sc_ifp; 1113 struct ieee80211com *ic = ifp->if_l2com; 1114 uint32_t val; 1115 int error; 1116 1117 UATH_ASSERT_LOCKED(sc); 1118 1119 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1120 uath_stop_locked(ifp); 1121 1122 /* reset variables */ 1123 sc->sc_intrx_nextnum = sc->sc_msgid = 0; 1124 1125 val = htobe32(0); 1126 uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); 1127 1128 /* set MAC address */ 1129 uath_config_multi(sc, CFG_MAC_ADDR, IF_LLADDR(ifp), IEEE80211_ADDR_LEN); 1130 1131 /* XXX honor net80211 state */ 1132 uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); 1133 uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); 1134 uath_config(sc, CFG_ABOLT, 0x0000003f); 1135 uath_config(sc, CFG_WME_ENABLED, 0x00000001); 1136 1137 uath_config(sc, CFG_SERVICE_TYPE, 1); 1138 uath_config(sc, CFG_TP_SCALE, 0x00000000); 1139 uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); 1140 uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); 1141 uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); 1142 uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); 1143 uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); 1144 uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); 1145 uath_config(sc, CFG_MODE_CTS, 0x00000002); 1146 1147 error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, 1148 &val, sizeof(val), UATH_CMD_FLAG_MAGIC); 1149 if (error) { 1150 device_printf(sc->sc_dev, 1151 "could not start target, error %d\n", error); 1152 goto fail; 1153 } 1154 DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", 1155 uath_codename(WDCMSG_TARGET_START), be32toh(val)); 1156 1157 /* set default channel */ 1158 error = uath_switch_channel(sc, ic->ic_curchan); 1159 if (error) { 1160 device_printf(sc->sc_dev, 1161 "could not switch channel, error %d\n", error); 1162 goto fail; 1163 } 1164 1165 val = htobe32(TARGET_DEVICE_AWAKE); 1166 uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); 1167 /* XXX? check */ 1168 uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); 1169 1170 usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); 1171 /* enable Rx */ 1172 uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); 1173 uath_set_rxfilter(sc, 1174 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1175 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, 1176 UATH_FILTER_OP_SET); 1177 1178 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1179 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1180 sc->sc_flags |= UATH_FLAG_INITDONE; 1181 1182 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1183 1184 return (0); 1185 1186 fail: 1187 uath_stop_locked(ifp); 1188 return (error); 1189 } 1190 1191 static void 1192 uath_init(void *arg) 1193 { 1194 struct uath_softc *sc = arg; 1195 1196 UATH_LOCK(sc); 1197 (void)uath_init_locked(sc); 1198 UATH_UNLOCK(sc); 1199 } 1200 1201 static void 1202 uath_stop_locked(struct ifnet *ifp) 1203 { 1204 struct uath_softc *sc = ifp->if_softc; 1205 1206 UATH_ASSERT_LOCKED(sc); 1207 1208 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1209 sc->sc_flags &= ~UATH_FLAG_INITDONE; 1210 1211 callout_stop(&sc->stat_ch); 1212 callout_stop(&sc->watchdog_ch); 1213 sc->sc_tx_timer = 0; 1214 /* abort pending transmits */ 1215 uath_abort_xfers(sc); 1216 /* flush data & control requests into the target */ 1217 (void)uath_flush(sc); 1218 /* set a LED status to the disconnected. */ 1219 uath_set_ledstate(sc, 0); 1220 /* stop the target */ 1221 uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); 1222 } 1223 1224 static void 1225 uath_stop(struct ifnet *ifp) 1226 { 1227 struct uath_softc *sc = ifp->if_softc; 1228 1229 UATH_LOCK(sc); 1230 uath_stop_locked(ifp); 1231 UATH_UNLOCK(sc); 1232 } 1233 1234 static int 1235 uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) 1236 { 1237 struct uath_write_mac write; 1238 int error; 1239 1240 write.reg = htobe32(reg); 1241 write.len = htobe32(0); /* 0 = single write */ 1242 *(uint32_t *)write.data = htobe32(val); 1243 1244 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1245 3 * sizeof (uint32_t), 0); 1246 if (error != 0) { 1247 device_printf(sc->sc_dev, "could not write register 0x%02x\n", 1248 reg); 1249 } 1250 return (error); 1251 } 1252 1253 static int 1254 uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, 1255 int len) 1256 { 1257 struct uath_write_mac write; 1258 int error; 1259 1260 write.reg = htobe32(reg); 1261 write.len = htobe32(len); 1262 bcopy(data, write.data, len); 1263 1264 /* properly handle the case where len is zero (reset) */ 1265 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1266 (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); 1267 if (error != 0) { 1268 device_printf(sc->sc_dev, 1269 "could not write %d bytes to register 0x%02x\n", len, reg); 1270 } 1271 return (error); 1272 } 1273 1274 static int 1275 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) 1276 { 1277 int error; 1278 1279 UATH_ASSERT_LOCKED(sc); 1280 1281 /* set radio frequency */ 1282 error = uath_set_chan(sc, c); 1283 if (error) { 1284 device_printf(sc->sc_dev, 1285 "could not set channel, error %d\n", error); 1286 goto failed; 1287 } 1288 /* reset Tx rings */ 1289 error = uath_reset_tx_queues(sc); 1290 if (error) { 1291 device_printf(sc->sc_dev, 1292 "could not reset Tx queues, error %d\n", error); 1293 goto failed; 1294 } 1295 /* set Tx rings WME properties */ 1296 error = uath_wme_init(sc); 1297 if (error) { 1298 device_printf(sc->sc_dev, 1299 "could not init Tx queues, error %d\n", error); 1300 goto failed; 1301 } 1302 error = uath_set_ledstate(sc, 0); 1303 if (error) { 1304 device_printf(sc->sc_dev, 1305 "could not set led state, error %d\n", error); 1306 goto failed; 1307 } 1308 error = uath_flush(sc); 1309 if (error) { 1310 device_printf(sc->sc_dev, 1311 "could not flush pipes, error %d\n", error); 1312 goto failed; 1313 } 1314 failed: 1315 return (error); 1316 } 1317 1318 static int 1319 uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) 1320 { 1321 struct uath_cmd_rx_filter rxfilter; 1322 1323 rxfilter.bits = htobe32(bits); 1324 rxfilter.op = htobe32(op); 1325 1326 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 1327 "setting Rx filter=0x%x flags=0x%x\n", bits, op); 1328 return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, 1329 sizeof rxfilter, 0); 1330 } 1331 1332 static void 1333 uath_watchdog(void *arg) 1334 { 1335 struct uath_softc *sc = arg; 1336 struct ifnet *ifp = sc->sc_ifp; 1337 1338 if (sc->sc_tx_timer > 0) { 1339 if (--sc->sc_tx_timer == 0) { 1340 device_printf(sc->sc_dev, "device timeout\n"); 1341 /*uath_init(ifp); XXX needs a process context! */ 1342 ifp->if_oerrors++; 1343 return; 1344 } 1345 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1346 } 1347 } 1348 1349 static void 1350 uath_abort_xfers(struct uath_softc *sc) 1351 { 1352 int i; 1353 1354 UATH_ASSERT_LOCKED(sc); 1355 /* abort any pending transfers */ 1356 for (i = 0; i < UATH_N_XFERS; i++) 1357 usbd_transfer_stop(sc->sc_xfer[i]); 1358 } 1359 1360 static int 1361 uath_flush(struct uath_softc *sc) 1362 { 1363 int error; 1364 1365 error = uath_dataflush(sc); 1366 if (error != 0) 1367 goto failed; 1368 1369 error = uath_cmdflush(sc); 1370 if (error != 0) 1371 goto failed; 1372 1373 failed: 1374 return (error); 1375 } 1376 1377 static int 1378 uath_cmdflush(struct uath_softc *sc) 1379 { 1380 1381 return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); 1382 } 1383 1384 static int 1385 uath_dataflush(struct uath_softc *sc) 1386 { 1387 struct uath_data *data; 1388 struct uath_chunk *chunk; 1389 struct uath_tx_desc *desc; 1390 1391 UATH_ASSERT_LOCKED(sc); 1392 1393 data = uath_getbuf(sc); 1394 if (data == NULL) 1395 return (ENOBUFS); 1396 data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); 1397 data->m = NULL; 1398 data->ni = NULL; 1399 chunk = (struct uath_chunk *)data->buf; 1400 desc = (struct uath_tx_desc *)(chunk + 1); 1401 1402 /* one chunk only */ 1403 chunk->seqnum = 0; 1404 chunk->flags = UATH_CFLAGS_FINAL; 1405 chunk->length = htobe16(sizeof (struct uath_tx_desc)); 1406 1407 bzero(desc, sizeof(struct uath_tx_desc)); 1408 desc->msglen = htobe32(sizeof(struct uath_tx_desc)); 1409 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1410 desc->type = htobe32(WDCMSG_FLUSH); 1411 desc->txqid = htobe32(0); 1412 desc->connid = htobe32(0); 1413 desc->flags = htobe32(0); 1414 1415 #ifdef UATH_DEBUG 1416 if (sc->sc_debug & UATH_DEBUG_CMDS) { 1417 DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", 1418 desc->msgid); 1419 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 1420 uath_dump_cmd(data->buf, data->buflen, '+'); 1421 } 1422 #endif 1423 1424 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1425 UATH_STAT_INC(sc, st_tx_pending); 1426 sc->sc_tx_timer = 5; 1427 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1428 1429 return (0); 1430 } 1431 1432 static struct uath_data * 1433 _uath_getbuf(struct uath_softc *sc) 1434 { 1435 struct uath_data *bf; 1436 1437 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1438 if (bf != NULL) { 1439 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1440 UATH_STAT_DEC(sc, st_tx_inactive); 1441 } else 1442 bf = NULL; 1443 if (bf == NULL) 1444 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 1445 "out of xmit buffers"); 1446 return (bf); 1447 } 1448 1449 static struct uath_data * 1450 uath_getbuf(struct uath_softc *sc) 1451 { 1452 struct uath_data *bf; 1453 1454 UATH_ASSERT_LOCKED(sc); 1455 1456 bf = _uath_getbuf(sc); 1457 if (bf == NULL) { 1458 struct ifnet *ifp = sc->sc_ifp; 1459 1460 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1461 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1462 } 1463 return (bf); 1464 } 1465 1466 static int 1467 uath_set_ledstate(struct uath_softc *sc, int connected) 1468 { 1469 1470 DPRINTF(sc, UATH_DEBUG_LED, 1471 "set led state %sconnected\n", connected ? "" : "!"); 1472 connected = htobe32(connected); 1473 return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, 1474 &connected, sizeof connected, 0); 1475 } 1476 1477 static int 1478 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) 1479 { 1480 #ifdef UATH_DEBUG 1481 struct ifnet *ifp = sc->sc_ifp; 1482 struct ieee80211com *ic = ifp->if_l2com; 1483 #endif 1484 struct uath_cmd_reset reset; 1485 1486 bzero(&reset, sizeof reset); 1487 if (IEEE80211_IS_CHAN_2GHZ(c)) 1488 reset.flags |= htobe32(UATH_CHAN_2GHZ); 1489 if (IEEE80211_IS_CHAN_5GHZ(c)) 1490 reset.flags |= htobe32(UATH_CHAN_5GHZ); 1491 /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ 1492 if (IEEE80211_IS_CHAN_OFDM(c)) 1493 reset.flags |= htobe32(UATH_CHAN_OFDM); 1494 else if (IEEE80211_IS_CHAN_CCK(c)) 1495 reset.flags |= htobe32(UATH_CHAN_CCK); 1496 /* turbo can be used in either 2GHz or 5GHz */ 1497 if (c->ic_flags & IEEE80211_CHAN_TURBO) 1498 reset.flags |= htobe32(UATH_CHAN_TURBO); 1499 reset.freq = htobe32(c->ic_freq); 1500 reset.maxrdpower = htobe32(50); /* XXX */ 1501 reset.channelchange = htobe32(1); 1502 reset.keeprccontent = htobe32(0); 1503 1504 DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", 1505 ieee80211_chan2ieee(ic, c), 1506 be32toh(reset.flags), be32toh(reset.freq)); 1507 return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); 1508 } 1509 1510 static int 1511 uath_reset_tx_queues(struct uath_softc *sc) 1512 { 1513 int ac, error; 1514 1515 DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); 1516 for (ac = 0; ac < 4; ac++) { 1517 const uint32_t qid = htobe32(ac); 1518 1519 error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, 1520 sizeof qid, 0); 1521 if (error != 0) 1522 break; 1523 } 1524 return (error); 1525 } 1526 1527 static int 1528 uath_wme_init(struct uath_softc *sc) 1529 { 1530 /* XXX get from net80211 */ 1531 static const struct uath_wme_settings uath_wme_11g[4] = { 1532 { 7, 4, 10, 0, 0 }, /* Background */ 1533 { 3, 4, 10, 0, 0 }, /* Best-Effort */ 1534 { 3, 3, 4, 26, 0 }, /* Video */ 1535 { 2, 2, 3, 47, 0 } /* Voice */ 1536 }; 1537 struct uath_cmd_txq_setup qinfo; 1538 int ac, error; 1539 1540 DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); 1541 for (ac = 0; ac < 4; ac++) { 1542 qinfo.qid = htobe32(ac); 1543 qinfo.len = htobe32(sizeof(qinfo.attr)); 1544 qinfo.attr.priority = htobe32(ac); /* XXX */ 1545 qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); 1546 qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); 1547 qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); 1548 qinfo.attr.bursttime = htobe32(UATH_TXOP_TO_US( 1549 uath_wme_11g[ac].txop)); 1550 qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ 1551 qinfo.attr.qflags = htobe32(1); /* XXX? */ 1552 1553 error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, 1554 sizeof qinfo, 0); 1555 if (error != 0) 1556 break; 1557 } 1558 return (error); 1559 } 1560 1561 static int 1562 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1563 { 1564 struct ieee80211com *ic = ifp->if_l2com; 1565 struct ifreq *ifr = (struct ifreq *) data; 1566 int error = 0, startall = 0; 1567 1568 switch (cmd) { 1569 case SIOCSIFFLAGS: 1570 if (ifp->if_flags & IFF_UP) { 1571 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1572 uath_init(ifp->if_softc); 1573 startall = 1; 1574 } 1575 } else { 1576 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1577 uath_stop(ifp); 1578 } 1579 if (startall) 1580 ieee80211_start_all(ic); 1581 break; 1582 case SIOCGIFMEDIA: 1583 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1584 break; 1585 case SIOCGIFADDR: 1586 error = ether_ioctl(ifp, cmd, data); 1587 break; 1588 default: 1589 error = EINVAL; 1590 break; 1591 } 1592 1593 return (error); 1594 } 1595 1596 static int 1597 uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1598 struct uath_data *data) 1599 { 1600 struct ieee80211vap *vap = ni->ni_vap; 1601 struct uath_chunk *chunk; 1602 struct uath_tx_desc *desc; 1603 const struct ieee80211_frame *wh; 1604 struct ieee80211_key *k; 1605 int framelen, msglen; 1606 1607 UATH_ASSERT_LOCKED(sc); 1608 1609 data->ni = ni; 1610 data->m = m0; 1611 chunk = (struct uath_chunk *)data->buf; 1612 desc = (struct uath_tx_desc *)(chunk + 1); 1613 1614 if (ieee80211_radiotap_active_vap(vap)) { 1615 struct uath_tx_radiotap_header *tap = &sc->sc_txtap; 1616 1617 tap->wt_flags = 0; 1618 if (m0->m_flags & M_FRAG) 1619 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1620 1621 ieee80211_radiotap_tx(vap, m0); 1622 } 1623 1624 wh = mtod(m0, struct ieee80211_frame *); 1625 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1626 k = ieee80211_crypto_encap(ni, m0); 1627 if (k == NULL) { 1628 m_freem(m0); 1629 return (ENOBUFS); 1630 } 1631 1632 /* packet header may have moved, reset our local pointer */ 1633 wh = mtod(m0, struct ieee80211_frame *); 1634 } 1635 m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); 1636 1637 framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1638 msglen = framelen + sizeof (struct uath_tx_desc); 1639 data->buflen = msglen + sizeof (struct uath_chunk); 1640 1641 /* one chunk only for now */ 1642 chunk->seqnum = sc->sc_seqnum++; 1643 chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; 1644 if (m0->m_flags & M_LASTFRAG) 1645 chunk->flags |= UATH_CFLAGS_FINAL; 1646 chunk->flags = UATH_CFLAGS_FINAL; 1647 chunk->length = htobe16(msglen); 1648 1649 /* fill Tx descriptor */ 1650 desc->msglen = htobe32(msglen); 1651 /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ 1652 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1653 desc->type = htobe32(WDCMSG_SEND); 1654 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1655 case IEEE80211_FC0_TYPE_CTL: 1656 case IEEE80211_FC0_TYPE_MGT: 1657 /* NB: force all management frames to highest queue */ 1658 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1659 /* NB: force all management frames to highest queue */ 1660 desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); 1661 } else 1662 desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); 1663 break; 1664 case IEEE80211_FC0_TYPE_DATA: 1665 /* XXX multicast frames should honor mcastrate */ 1666 desc->txqid = htobe32(M_WME_GETAC(m0)); 1667 break; 1668 default: 1669 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1670 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1671 m_freem(m0); 1672 return (EIO); 1673 } 1674 if (vap->iv_state == IEEE80211_S_AUTH || 1675 vap->iv_state == IEEE80211_S_ASSOC || 1676 vap->iv_state == IEEE80211_S_RUN) 1677 desc->connid = htobe32(UATH_ID_BSS); 1678 else 1679 desc->connid = htobe32(UATH_ID_INVALID); 1680 desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); 1681 desc->buflen = htobe32(m0->m_pkthdr.len); 1682 1683 #ifdef UATH_DEBUG 1684 DPRINTF(sc, UATH_DEBUG_XMIT, 1685 "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", 1686 desc->msgid, framelen, msglen, be32toh(desc->connid), 1687 be32toh(desc->txqid)); 1688 if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) 1689 uath_dump_cmd(data->buf, data->buflen, '+'); 1690 #endif 1691 1692 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1693 UATH_STAT_INC(sc, st_tx_pending); 1694 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1695 1696 return (0); 1697 } 1698 1699 /* 1700 * Cleanup driver resources when we run out of buffers while processing 1701 * fragments; return the tx buffers allocated and drop node references. 1702 */ 1703 static void 1704 uath_txfrag_cleanup(struct uath_softc *sc, 1705 uath_datahead *frags, struct ieee80211_node *ni) 1706 { 1707 struct uath_data *bf, *next; 1708 1709 UATH_ASSERT_LOCKED(sc); 1710 1711 STAILQ_FOREACH_SAFE(bf, frags, next, next) { 1712 /* NB: bf assumed clean */ 1713 STAILQ_REMOVE_HEAD(frags, next); 1714 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1715 UATH_STAT_INC(sc, st_tx_inactive); 1716 ieee80211_node_decref(ni); 1717 } 1718 } 1719 1720 /* 1721 * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump 1722 * the node reference count to reflect the held reference to be setup by 1723 * uath_tx_start. 1724 */ 1725 static int 1726 uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, 1727 struct mbuf *m0, struct ieee80211_node *ni) 1728 { 1729 struct mbuf *m; 1730 struct uath_data *bf; 1731 1732 UATH_ASSERT_LOCKED(sc); 1733 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1734 bf = uath_getbuf(sc); 1735 if (bf == NULL) { /* out of buffers, cleanup */ 1736 uath_txfrag_cleanup(sc, frags, ni); 1737 break; 1738 } 1739 ieee80211_node_incref(ni); 1740 STAILQ_INSERT_TAIL(frags, bf, next); 1741 } 1742 1743 return !STAILQ_EMPTY(frags); 1744 } 1745 1746 /* 1747 * Reclaim mbuf resources. For fragmented frames we need to claim each frag 1748 * chained with m_nextpkt. 1749 */ 1750 static void 1751 uath_freetx(struct mbuf *m) 1752 { 1753 struct mbuf *next; 1754 1755 do { 1756 next = m->m_nextpkt; 1757 m->m_nextpkt = NULL; 1758 m_freem(m); 1759 } while ((m = next) != NULL); 1760 } 1761 1762 static void 1763 uath_start(struct ifnet *ifp) 1764 { 1765 struct uath_data *bf; 1766 struct uath_softc *sc = ifp->if_softc; 1767 struct ieee80211_node *ni; 1768 struct mbuf *m, *next; 1769 uath_datahead frags; 1770 1771 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1772 (sc->sc_flags & UATH_FLAG_INVALID)) 1773 return; 1774 1775 UATH_LOCK(sc); 1776 for (;;) { 1777 bf = uath_getbuf(sc); 1778 if (bf == NULL) 1779 break; 1780 1781 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1782 if (m == NULL) { 1783 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1784 UATH_STAT_INC(sc, st_tx_inactive); 1785 break; 1786 } 1787 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1788 m->m_pkthdr.rcvif = NULL; 1789 1790 /* 1791 * Check for fragmentation. If this frame has been broken up 1792 * verify we have enough buffers to send all the fragments 1793 * so all go out or none... 1794 */ 1795 STAILQ_INIT(&frags); 1796 if ((m->m_flags & M_FRAG) && 1797 !uath_txfrag_setup(sc, &frags, m, ni)) { 1798 DPRINTF(sc, UATH_DEBUG_XMIT, 1799 "%s: out of txfrag buffers\n", __func__); 1800 uath_freetx(m); 1801 goto bad; 1802 } 1803 sc->sc_seqnum = 0; 1804 nextfrag: 1805 /* 1806 * Pass the frame to the h/w for transmission. 1807 * Fragmented frames have each frag chained together 1808 * with m_nextpkt. We know there are sufficient uath_data's 1809 * to send all the frags because of work done by 1810 * uath_txfrag_setup. 1811 */ 1812 next = m->m_nextpkt; 1813 if (uath_tx_start(sc, m, ni, bf) != 0) { 1814 bad: 1815 ifp->if_oerrors++; 1816 reclaim: 1817 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1818 UATH_STAT_INC(sc, st_tx_inactive); 1819 uath_txfrag_cleanup(sc, &frags, ni); 1820 ieee80211_free_node(ni); 1821 continue; 1822 } 1823 1824 if (next != NULL) { 1825 /* 1826 * Beware of state changing between frags. 1827 XXX check sta power-save state? 1828 */ 1829 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1830 DPRINTF(sc, UATH_DEBUG_XMIT, 1831 "%s: flush fragmented packet, state %s\n", 1832 __func__, 1833 ieee80211_state_name[ni->ni_vap->iv_state]); 1834 uath_freetx(next); 1835 goto reclaim; 1836 } 1837 m = next; 1838 bf = STAILQ_FIRST(&frags); 1839 KASSERT(bf != NULL, ("no buf for txfrag")); 1840 STAILQ_REMOVE_HEAD(&frags, next); 1841 goto nextfrag; 1842 } 1843 1844 sc->sc_tx_timer = 5; 1845 } 1846 UATH_UNLOCK(sc); 1847 } 1848 1849 static int 1850 uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1851 const struct ieee80211_bpf_params *params) 1852 { 1853 struct ieee80211com *ic = ni->ni_ic; 1854 struct ifnet *ifp = ic->ic_ifp; 1855 struct uath_data *bf; 1856 struct uath_softc *sc = ifp->if_softc; 1857 1858 /* prevent management frames from being sent if we're not ready */ 1859 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1860 !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1861 m_freem(m); 1862 ieee80211_free_node(ni); 1863 return (ENETDOWN); 1864 } 1865 1866 UATH_LOCK(sc); 1867 /* grab a TX buffer */ 1868 bf = uath_getbuf(sc); 1869 if (bf == NULL) { 1870 ieee80211_free_node(ni); 1871 m_freem(m); 1872 UATH_UNLOCK(sc); 1873 return (ENOBUFS); 1874 } 1875 1876 sc->sc_seqnum = 0; 1877 if (uath_tx_start(sc, m, ni, bf) != 0) { 1878 ieee80211_free_node(ni); 1879 ifp->if_oerrors++; 1880 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1881 UATH_STAT_INC(sc, st_tx_inactive); 1882 UATH_UNLOCK(sc); 1883 return (EIO); 1884 } 1885 UATH_UNLOCK(sc); 1886 1887 sc->sc_tx_timer = 5; 1888 return (0); 1889 } 1890 1891 static void 1892 uath_scan_start(struct ieee80211com *ic) 1893 { 1894 /* do nothing */ 1895 } 1896 1897 static void 1898 uath_scan_end(struct ieee80211com *ic) 1899 { 1900 /* do nothing */ 1901 } 1902 1903 static void 1904 uath_set_channel(struct ieee80211com *ic) 1905 { 1906 struct ifnet *ifp = ic->ic_ifp; 1907 struct uath_softc *sc = ifp->if_softc; 1908 1909 UATH_LOCK(sc); 1910 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1911 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1912 UATH_UNLOCK(sc); 1913 return; 1914 } 1915 (void)uath_switch_channel(sc, ic->ic_curchan); 1916 UATH_UNLOCK(sc); 1917 } 1918 1919 static int 1920 uath_set_rxmulti_filter(struct uath_softc *sc) 1921 { 1922 /* XXX broken */ 1923 return (0); 1924 } 1925 static void 1926 uath_update_mcast(struct ifnet *ifp) 1927 { 1928 struct uath_softc *sc = ifp->if_softc; 1929 1930 UATH_LOCK(sc); 1931 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1932 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1933 UATH_UNLOCK(sc); 1934 return; 1935 } 1936 /* 1937 * this is for avoiding the race condition when we're try to 1938 * connect to the AP with WPA. 1939 */ 1940 if (sc->sc_flags & UATH_FLAG_INITDONE) 1941 (void)uath_set_rxmulti_filter(sc); 1942 UATH_UNLOCK(sc); 1943 } 1944 1945 static void 1946 uath_update_promisc(struct ifnet *ifp) 1947 { 1948 struct uath_softc *sc = ifp->if_softc; 1949 1950 UATH_LOCK(sc); 1951 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1952 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1953 UATH_UNLOCK(sc); 1954 return; 1955 } 1956 if (sc->sc_flags & UATH_FLAG_INITDONE) { 1957 uath_set_rxfilter(sc, 1958 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1959 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | 1960 UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); 1961 } 1962 UATH_UNLOCK(sc); 1963 } 1964 1965 static int 1966 uath_create_connection(struct uath_softc *sc, uint32_t connid) 1967 { 1968 const struct ieee80211_rateset *rs; 1969 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1970 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1971 struct ieee80211_node *ni = vap->iv_bss; 1972 struct uath_cmd_create_connection create; 1973 1974 bzero(&create, sizeof create); 1975 create.connid = htobe32(connid); 1976 create.bssid = htobe32(0); 1977 /* XXX packed or not? */ 1978 create.size = htobe32(sizeof(struct uath_cmd_rateset)); 1979 1980 rs = &ni->ni_rates; 1981 create.connattr.rateset.length = rs->rs_nrates; 1982 bcopy(rs->rs_rates, &create.connattr.rateset.set[0], 1983 rs->rs_nrates); 1984 1985 /* XXX turbo */ 1986 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 1987 create.connattr.wlanmode = htobe32(WLAN_MODE_11a); 1988 else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) 1989 create.connattr.wlanmode = htobe32(WLAN_MODE_11g); 1990 else 1991 create.connattr.wlanmode = htobe32(WLAN_MODE_11b); 1992 1993 return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, 1994 sizeof create, 0); 1995 } 1996 1997 static int 1998 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) 1999 { 2000 struct uath_cmd_rates rates; 2001 2002 bzero(&rates, sizeof rates); 2003 rates.connid = htobe32(UATH_ID_BSS); /* XXX */ 2004 rates.size = htobe32(sizeof(struct uath_cmd_rateset)); 2005 /* XXX bounds check rs->rs_nrates */ 2006 rates.rateset.length = rs->rs_nrates; 2007 bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); 2008 2009 DPRINTF(sc, UATH_DEBUG_RATES, 2010 "setting supported rates nrates=%d\n", rs->rs_nrates); 2011 return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, 2012 &rates, sizeof rates, 0); 2013 } 2014 2015 static int 2016 uath_write_associd(struct uath_softc *sc) 2017 { 2018 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2019 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2020 struct ieee80211_node *ni = vap->iv_bss; 2021 struct uath_cmd_set_associd associd; 2022 2023 bzero(&associd, sizeof associd); 2024 associd.defaultrateix = htobe32(1); /* XXX */ 2025 associd.associd = htobe32(ni->ni_associd); 2026 associd.timoffset = htobe32(0x3b); /* XXX */ 2027 IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); 2028 return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, 2029 sizeof associd, 0); 2030 } 2031 2032 static int 2033 uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) 2034 { 2035 struct uath_cmd_ledsteady led; 2036 2037 led.lednum = htobe32(lednum); 2038 led.ledmode = htobe32(ledmode); 2039 2040 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", 2041 (lednum == UATH_LED_LINK) ? "link" : "activity", 2042 ledmode ? "on" : "off"); 2043 return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); 2044 } 2045 2046 static int 2047 uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, 2048 int blinkrate, int slowmode) 2049 { 2050 struct uath_cmd_ledblink led; 2051 2052 led.lednum = htobe32(lednum); 2053 led.ledmode = htobe32(ledmode); 2054 led.blinkrate = htobe32(blinkrate); 2055 led.slowmode = htobe32(slowmode); 2056 2057 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", 2058 (lednum == UATH_LED_LINK) ? "link" : "activity", 2059 ledmode ? "on" : "off"); 2060 return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); 2061 } 2062 2063 static int 2064 uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2065 { 2066 enum ieee80211_state ostate = vap->iv_state; 2067 int error; 2068 struct ieee80211_node *ni = vap->iv_bss; 2069 struct ieee80211com *ic = vap->iv_ic; 2070 struct uath_softc *sc = ic->ic_ifp->if_softc; 2071 struct uath_vap *uvp = UATH_VAP(vap); 2072 2073 DPRINTF(sc, UATH_DEBUG_STATE, 2074 "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], 2075 ieee80211_state_name[nstate]); 2076 2077 IEEE80211_UNLOCK(ic); 2078 UATH_LOCK(sc); 2079 callout_stop(&sc->stat_ch); 2080 callout_stop(&sc->watchdog_ch); 2081 2082 switch (nstate) { 2083 case IEEE80211_S_INIT: 2084 if (ostate == IEEE80211_S_RUN) { 2085 /* turn link and activity LEDs off */ 2086 uath_set_ledstate(sc, 0); 2087 } 2088 break; 2089 2090 case IEEE80211_S_SCAN: 2091 break; 2092 2093 case IEEE80211_S_AUTH: 2094 /* XXX good place? set RTS threshold */ 2095 uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); 2096 /* XXX bad place */ 2097 error = uath_set_keys(sc, vap); 2098 if (error != 0) { 2099 device_printf(sc->sc_dev, 2100 "could not set crypto keys, error %d\n", error); 2101 break; 2102 } 2103 if (uath_switch_channel(sc, ni->ni_chan) != 0) { 2104 device_printf(sc->sc_dev, "could not switch channel\n"); 2105 break; 2106 } 2107 if (uath_create_connection(sc, UATH_ID_BSS) != 0) { 2108 device_printf(sc->sc_dev, 2109 "could not create connection\n"); 2110 break; 2111 } 2112 break; 2113 2114 case IEEE80211_S_ASSOC: 2115 if (uath_set_rates(sc, &ni->ni_rates) != 0) { 2116 device_printf(sc->sc_dev, 2117 "could not set negotiated rate set\n"); 2118 break; 2119 } 2120 break; 2121 2122 case IEEE80211_S_RUN: 2123 /* XXX monitor mode doesn't be tested */ 2124 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2125 uath_set_ledstate(sc, 1); 2126 break; 2127 } 2128 2129 /* 2130 * Tx rate is controlled by firmware, report the maximum 2131 * negotiated rate in ifconfig output. 2132 */ 2133 ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; 2134 2135 if (uath_write_associd(sc) != 0) { 2136 device_printf(sc->sc_dev, 2137 "could not write association id\n"); 2138 break; 2139 } 2140 /* turn link LED on */ 2141 uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); 2142 /* make activity LED blink */ 2143 uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); 2144 /* set state to associated */ 2145 uath_set_ledstate(sc, 1); 2146 2147 /* start statistics timer */ 2148 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2149 break; 2150 default: 2151 break; 2152 } 2153 UATH_UNLOCK(sc); 2154 IEEE80211_LOCK(ic); 2155 return (uvp->newstate(vap, nstate, arg)); 2156 } 2157 2158 static int 2159 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, 2160 int index) 2161 { 2162 #if 0 2163 struct uath_cmd_crypto crypto; 2164 int i; 2165 2166 bzero(&crypto, sizeof crypto); 2167 crypto.keyidx = htobe32(index); 2168 crypto.magic1 = htobe32(1); 2169 crypto.size = htobe32(368); 2170 crypto.mask = htobe32(0xffff); 2171 crypto.flags = htobe32(0x80000068); 2172 if (index != UATH_DEFAULT_KEY) 2173 crypto.flags |= htobe32(index << 16); 2174 memset(crypto.magic2, 0xff, sizeof crypto.magic2); 2175 2176 /* 2177 * Each byte of the key must be XOR'ed with 10101010 before being 2178 * transmitted to the firmware. 2179 */ 2180 for (i = 0; i < wk->wk_keylen; i++) 2181 crypto.key[i] = wk->wk_key[i] ^ 0xaa; 2182 2183 DPRINTF(sc, UATH_DEBUG_CRYPTO, 2184 "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); 2185 return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, 2186 sizeof crypto, 0); 2187 #else 2188 /* XXX support H/W cryto */ 2189 return (0); 2190 #endif 2191 } 2192 2193 static int 2194 uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) 2195 { 2196 int i, error; 2197 2198 error = 0; 2199 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2200 const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; 2201 2202 if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { 2203 error = uath_set_key(sc, wk, i); 2204 if (error) 2205 return (error); 2206 } 2207 } 2208 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2209 error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], 2210 UATH_DEFAULT_KEY); 2211 } 2212 return (error); 2213 } 2214 2215 #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2216 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2217 2218 static void 2219 uath_sysctl_node(struct uath_softc *sc) 2220 { 2221 struct sysctl_ctx_list *ctx; 2222 struct sysctl_oid_list *child; 2223 struct sysctl_oid *tree; 2224 struct uath_stat *stats; 2225 2226 stats = &sc->sc_stat; 2227 ctx = device_get_sysctl_ctx(sc->sc_dev); 2228 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2229 2230 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2231 NULL, "UATH statistics"); 2232 child = SYSCTL_CHILDREN(tree); 2233 UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", 2234 &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); 2235 UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, 2236 "Invalid length"); 2237 UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, 2238 "Multi chunks"); 2239 UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", 2240 &stats->st_toobigrxpkt, "Too big rx packets"); 2241 UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", 2242 &stats->st_stopinprogress, "Stop in progress"); 2243 UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, 2244 "CRC errors"); 2245 UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, 2246 "PHY errors"); 2247 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", 2248 &stats->st_decrypt_crcerr, "Decryption CRC errors"); 2249 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", 2250 &stats->st_decrypt_micerr, "Decryption Misc errors"); 2251 UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, 2252 "Decomp errors"); 2253 UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, 2254 "Key errors"); 2255 UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, 2256 "Unknown errors"); 2257 2258 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", 2259 &stats->st_cmd_active, "Active numbers in Command queue"); 2260 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", 2261 &stats->st_cmd_inactive, "Inactive numbers in Command queue"); 2262 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", 2263 &stats->st_cmd_pending, "Pending numbers in Command queue"); 2264 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", 2265 &stats->st_cmd_waiting, "Waiting numbers in Command queue"); 2266 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", 2267 &stats->st_rx_active, "Active numbers in RX queue"); 2268 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", 2269 &stats->st_rx_inactive, "Inactive numbers in RX queue"); 2270 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2271 &stats->st_tx_active, "Active numbers in TX queue"); 2272 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2273 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2274 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2275 &stats->st_tx_pending, "Pending numbers in TX queue"); 2276 } 2277 2278 #undef UATH_SYSCTL_STAT_ADD32 2279 2280 static void 2281 uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) 2282 { 2283 struct uath_cmd_hdr *hdr; 2284 int dlen; 2285 2286 hdr = (struct uath_cmd_hdr *)cmd->buf; 2287 /* NB: msgid is passed thru w/o byte swapping */ 2288 #ifdef UATH_DEBUG 2289 if (sc->sc_debug & UATH_DEBUG_CMDS) { 2290 int len = be32toh(hdr->len); 2291 printf("%s: %s [ix %u] len %u status %u\n", 2292 __func__, uath_codename(be32toh(hdr->code)), 2293 hdr->msgid, len, be32toh(hdr->magic)); 2294 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 2295 uath_dump_cmd(cmd->buf, 2296 len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); 2297 } 2298 #endif 2299 hdr->code = be32toh(hdr->code); 2300 hdr->len = be32toh(hdr->len); 2301 hdr->magic = be32toh(hdr->magic); /* target status on return */ 2302 2303 switch (hdr->code & 0xff) { 2304 /* reply to a read command */ 2305 default: 2306 dlen = hdr->len - sizeof(*hdr); 2307 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2308 "%s: code %d data len %u\n", 2309 __func__, hdr->code & 0xff, dlen); 2310 /* 2311 * The first response from the target after the 2312 * HOST_AVAILABLE has an invalid msgid so we must 2313 * treat it specially. 2314 */ 2315 if (hdr->msgid < UATH_CMD_LIST_COUNT) { 2316 uint32_t *rp = (uint32_t *)(hdr+1); 2317 u_int olen; 2318 2319 if (!(sizeof(*hdr) <= hdr->len && 2320 hdr->len < UATH_MAX_CMDSZ)) { 2321 device_printf(sc->sc_dev, 2322 "%s: invalid WDC msg length %u; " 2323 "msg ignored\n", __func__, hdr->len); 2324 return; 2325 } 2326 /* 2327 * Calculate return/receive payload size; the 2328 * first word, if present, always gives the 2329 * number of bytes--unless it's 0 in which 2330 * case a single 32-bit word should be present. 2331 */ 2332 if (dlen >= sizeof(uint32_t)) { 2333 olen = be32toh(rp[0]); 2334 dlen -= sizeof(uint32_t); 2335 if (olen == 0) { 2336 /* convention is 0 =>'s one word */ 2337 olen = sizeof(uint32_t); 2338 /* XXX KASSERT(olen == dlen ) */ 2339 } 2340 } else 2341 olen = 0; 2342 if (cmd->odata != NULL) { 2343 /* NB: cmd->olen validated in uath_cmd */ 2344 if (olen > cmd->olen) { 2345 /* XXX complain? */ 2346 device_printf(sc->sc_dev, 2347 "%s: cmd 0x%x olen %u cmd olen %u\n", 2348 __func__, hdr->code, olen, 2349 cmd->olen); 2350 olen = cmd->olen; 2351 } 2352 if (olen > dlen) { 2353 /* XXX complain, shouldn't happen */ 2354 device_printf(sc->sc_dev, 2355 "%s: cmd 0x%x olen %u dlen %u\n", 2356 __func__, hdr->code, olen, dlen); 2357 olen = dlen; 2358 } 2359 /* XXX have submitter do this */ 2360 /* copy answer into caller's supplied buffer */ 2361 bcopy(&rp[1], cmd->odata, olen); 2362 cmd->olen = olen; 2363 } 2364 } 2365 wakeup_one(cmd); /* wake up caller */ 2366 break; 2367 2368 case WDCMSG_TARGET_START: 2369 if (hdr->msgid >= UATH_CMD_LIST_COUNT) { 2370 /* XXX */ 2371 return; 2372 } 2373 dlen = hdr->len - sizeof(*hdr); 2374 if (dlen != sizeof(uint32_t)) { 2375 /* XXX something wrong */ 2376 return; 2377 } 2378 /* XXX have submitter do this */ 2379 /* copy answer into caller's supplied buffer */ 2380 bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); 2381 cmd->olen = sizeof(uint32_t); 2382 wakeup_one(cmd); /* wake up caller */ 2383 break; 2384 2385 case WDCMSG_SEND_COMPLETE: 2386 /* this notification is sent when UATH_TX_NOTIFY is set */ 2387 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2388 "%s: received Tx notification\n", __func__); 2389 break; 2390 2391 case WDCMSG_TARGET_GET_STATS: 2392 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2393 "%s: received device statistics\n", __func__); 2394 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2395 break; 2396 } 2397 } 2398 2399 static void 2400 uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2401 { 2402 struct uath_softc *sc = usbd_xfer_softc(xfer); 2403 struct uath_cmd *cmd; 2404 struct usb_page_cache *pc; 2405 int actlen; 2406 2407 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2408 2409 UATH_ASSERT_LOCKED(sc); 2410 2411 switch (USB_GET_STATE(xfer)) { 2412 case USB_ST_TRANSFERRED: 2413 cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); 2414 if (cmd == NULL) 2415 goto setup; 2416 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); 2417 UATH_STAT_DEC(sc, st_cmd_waiting); 2418 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 2419 UATH_STAT_INC(sc, st_cmd_inactive); 2420 2421 KASSERT(actlen >= sizeof(struct uath_cmd_hdr), 2422 ("short xfer error")); 2423 pc = usbd_xfer_get_frame(xfer, 0); 2424 usbd_copy_out(pc, 0, cmd->buf, actlen); 2425 uath_cmdeof(sc, cmd); 2426 case USB_ST_SETUP: 2427 setup: 2428 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2429 usbd_transfer_submit(xfer); 2430 break; 2431 default: 2432 if (error != USB_ERR_CANCELLED) { 2433 usbd_xfer_set_stall(xfer); 2434 goto setup; 2435 } 2436 break; 2437 } 2438 } 2439 2440 static void 2441 uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2442 { 2443 struct uath_softc *sc = usbd_xfer_softc(xfer); 2444 struct uath_cmd *cmd; 2445 2446 UATH_ASSERT_LOCKED(sc); 2447 2448 switch (USB_GET_STATE(xfer)) { 2449 case USB_ST_TRANSFERRED: 2450 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2451 if (cmd == NULL) 2452 goto setup; 2453 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); 2454 UATH_STAT_DEC(sc, st_cmd_active); 2455 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? 2456 &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); 2457 if (cmd->flags & UATH_CMD_FLAG_READ) 2458 UATH_STAT_INC(sc, st_cmd_waiting); 2459 else 2460 UATH_STAT_INC(sc, st_cmd_inactive); 2461 /* FALLTHROUGH */ 2462 case USB_ST_SETUP: 2463 setup: 2464 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2465 if (cmd == NULL) { 2466 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2467 __func__); 2468 return; 2469 } 2470 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); 2471 UATH_STAT_DEC(sc, st_cmd_pending); 2472 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? 2473 &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); 2474 if (cmd->flags & UATH_CMD_FLAG_ASYNC) 2475 UATH_STAT_INC(sc, st_cmd_inactive); 2476 else 2477 UATH_STAT_INC(sc, st_cmd_active); 2478 2479 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2480 usbd_transfer_submit(xfer); 2481 break; 2482 default: 2483 if (error != USB_ERR_CANCELLED) { 2484 usbd_xfer_set_stall(xfer); 2485 goto setup; 2486 } 2487 break; 2488 } 2489 } 2490 2491 static void 2492 uath_update_rxstat(struct uath_softc *sc, uint32_t status) 2493 { 2494 2495 switch (status) { 2496 case UATH_STATUS_STOP_IN_PROGRESS: 2497 UATH_STAT_INC(sc, st_stopinprogress); 2498 break; 2499 case UATH_STATUS_CRC_ERR: 2500 UATH_STAT_INC(sc, st_crcerr); 2501 break; 2502 case UATH_STATUS_PHY_ERR: 2503 UATH_STAT_INC(sc, st_phyerr); 2504 break; 2505 case UATH_STATUS_DECRYPT_CRC_ERR: 2506 UATH_STAT_INC(sc, st_decrypt_crcerr); 2507 break; 2508 case UATH_STATUS_DECRYPT_MIC_ERR: 2509 UATH_STAT_INC(sc, st_decrypt_micerr); 2510 break; 2511 case UATH_STATUS_DECOMP_ERR: 2512 UATH_STAT_INC(sc, st_decomperr); 2513 break; 2514 case UATH_STATUS_KEY_ERR: 2515 UATH_STAT_INC(sc, st_keyerr); 2516 break; 2517 case UATH_STATUS_ERR: 2518 UATH_STAT_INC(sc, st_err); 2519 break; 2520 default: 2521 break; 2522 } 2523 } 2524 2525 static struct mbuf * 2526 uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, 2527 struct uath_rx_desc **pdesc) 2528 { 2529 struct uath_softc *sc = usbd_xfer_softc(xfer); 2530 struct ifnet *ifp = sc->sc_ifp; 2531 struct ieee80211com *ic = ifp->if_l2com; 2532 struct uath_chunk *chunk; 2533 struct uath_rx_desc *desc; 2534 struct mbuf *m = data->m, *mnew, *mp; 2535 uint16_t chunklen; 2536 int actlen; 2537 2538 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2539 2540 if (actlen < UATH_MIN_RXBUFSZ) { 2541 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2542 "%s: wrong xfer size (len=%d)\n", __func__, actlen); 2543 ifp->if_ierrors++; 2544 return (NULL); 2545 } 2546 2547 chunk = (struct uath_chunk *)data->buf; 2548 if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { 2549 device_printf(sc->sc_dev, "%s: strange response\n", __func__); 2550 ifp->if_ierrors++; 2551 UATH_RESET_INTRX(sc); 2552 return (NULL); 2553 } 2554 2555 if (chunk->seqnum != sc->sc_intrx_nextnum) { 2556 DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", 2557 chunk->seqnum, sc->sc_intrx_nextnum); 2558 UATH_STAT_INC(sc, st_badchunkseqnum); 2559 if (sc->sc_intrx_head != NULL) 2560 m_freem(sc->sc_intrx_head); 2561 UATH_RESET_INTRX(sc); 2562 return (NULL); 2563 } 2564 2565 /* check multi-chunk frames */ 2566 if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || 2567 (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || 2568 chunk->flags & UATH_CFLAGS_RXMSG) 2569 UATH_STAT_INC(sc, st_multichunk); 2570 2571 chunklen = be16toh(chunk->length); 2572 if (chunk->flags & UATH_CFLAGS_FINAL) 2573 chunklen -= sizeof(struct uath_rx_desc); 2574 2575 if (chunklen > 0 && 2576 (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { 2577 /* we should use intermediate RX buffer */ 2578 if (chunk->seqnum == 0) 2579 UATH_RESET_INTRX(sc); 2580 if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + 2581 chunklen) > UATH_MAX_INTRX_SIZE) { 2582 UATH_STAT_INC(sc, st_invalidlen); 2583 ifp->if_iqdrops++; 2584 if (sc->sc_intrx_head != NULL) 2585 m_freem(sc->sc_intrx_head); 2586 UATH_RESET_INTRX(sc); 2587 return (NULL); 2588 } 2589 2590 m->m_len = chunklen; 2591 m->m_data += sizeof(struct uath_chunk); 2592 2593 if (sc->sc_intrx_head == NULL) { 2594 sc->sc_intrx_head = m; 2595 sc->sc_intrx_tail = m; 2596 } else { 2597 m->m_flags &= ~M_PKTHDR; 2598 sc->sc_intrx_tail->m_next = m; 2599 sc->sc_intrx_tail = m; 2600 } 2601 } 2602 sc->sc_intrx_len += chunklen; 2603 2604 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2605 if (mnew == NULL) { 2606 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2607 "%s: can't get new mbuf, drop frame\n", __func__); 2608 ifp->if_ierrors++; 2609 if (sc->sc_intrx_head != NULL) 2610 m_freem(sc->sc_intrx_head); 2611 UATH_RESET_INTRX(sc); 2612 return (NULL); 2613 } 2614 2615 data->m = mnew; 2616 data->buf = mtod(mnew, uint8_t *); 2617 2618 /* if the frame is not final continue the transfer */ 2619 if (!(chunk->flags & UATH_CFLAGS_FINAL)) { 2620 sc->sc_intrx_nextnum++; 2621 UATH_RESET_INTRX(sc); 2622 return (NULL); 2623 } 2624 2625 /* 2626 * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is 2627 * located at the end, 32-bit aligned 2628 */ 2629 desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? 2630 (struct uath_rx_desc *)(chunk + 1) : 2631 (struct uath_rx_desc *)(((uint8_t *)chunk) + 2632 sizeof(struct uath_chunk) + be16toh(chunk->length) - 2633 sizeof(struct uath_rx_desc)); 2634 *pdesc = desc; 2635 2636 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2637 "%s: frame len %u code %u status %u rate %u antenna %u " 2638 "rssi %d channel %u phyerror %u connix %u decrypterror %u " 2639 "keycachemiss %u\n", __func__, be32toh(desc->framelen) 2640 , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) 2641 , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) 2642 , be32toh(desc->phyerror), be32toh(desc->connix) 2643 , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); 2644 2645 if (be32toh(desc->len) > MCLBYTES) { 2646 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2647 "%s: bad descriptor (len=%d)\n", __func__, 2648 be32toh(desc->len)); 2649 ifp->if_iqdrops++; 2650 UATH_STAT_INC(sc, st_toobigrxpkt); 2651 if (sc->sc_intrx_head != NULL) 2652 m_freem(sc->sc_intrx_head); 2653 UATH_RESET_INTRX(sc); 2654 return (NULL); 2655 } 2656 2657 uath_update_rxstat(sc, be32toh(desc->status)); 2658 2659 /* finalize mbuf */ 2660 if (sc->sc_intrx_head == NULL) { 2661 m->m_pkthdr.rcvif = ifp; 2662 m->m_pkthdr.len = m->m_len = 2663 be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; 2664 m->m_data += sizeof(struct uath_chunk); 2665 } else { 2666 mp = sc->sc_intrx_head; 2667 mp->m_pkthdr.rcvif = ifp; 2668 mp->m_flags |= M_PKTHDR; 2669 mp->m_pkthdr.len = sc->sc_intrx_len; 2670 m = mp; 2671 } 2672 2673 /* there are a lot more fields in the RX descriptor */ 2674 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && 2675 ieee80211_radiotap_active(ic)) { 2676 struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; 2677 uint32_t tsf_hi = be32toh(desc->tstamp_high); 2678 uint32_t tsf_lo = be32toh(desc->tstamp_low); 2679 2680 /* XXX only get low order 24bits of tsf from h/w */ 2681 tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 2682 tap->wr_flags = 0; 2683 if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) 2684 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2685 /* XXX map other status to BADFCS? */ 2686 /* XXX ath h/w rate code, need to map */ 2687 tap->wr_rate = be32toh(desc->rate); 2688 tap->wr_antenna = be32toh(desc->antenna); 2689 tap->wr_antsignal = -95 + be32toh(desc->rssi); 2690 tap->wr_antnoise = -95; 2691 } 2692 2693 ifp->if_ipackets++; 2694 UATH_RESET_INTRX(sc); 2695 2696 return (m); 2697 } 2698 2699 static void 2700 uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2701 { 2702 struct uath_softc *sc = usbd_xfer_softc(xfer); 2703 struct ifnet *ifp = sc->sc_ifp; 2704 struct ieee80211com *ic = ifp->if_l2com; 2705 struct ieee80211_frame *wh; 2706 struct ieee80211_node *ni; 2707 struct mbuf *m = NULL; 2708 struct uath_data *data; 2709 struct uath_rx_desc *desc = NULL; 2710 int8_t nf; 2711 2712 UATH_ASSERT_LOCKED(sc); 2713 2714 switch (USB_GET_STATE(xfer)) { 2715 case USB_ST_TRANSFERRED: 2716 data = STAILQ_FIRST(&sc->sc_rx_active); 2717 if (data == NULL) 2718 goto setup; 2719 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2720 UATH_STAT_DEC(sc, st_rx_active); 2721 m = uath_data_rxeof(xfer, data, &desc); 2722 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2723 UATH_STAT_INC(sc, st_rx_inactive); 2724 /* FALLTHROUGH */ 2725 case USB_ST_SETUP: 2726 setup: 2727 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2728 if (data == NULL) 2729 return; 2730 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2731 UATH_STAT_DEC(sc, st_rx_inactive); 2732 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2733 UATH_STAT_INC(sc, st_rx_active); 2734 usbd_xfer_set_frame_data(xfer, 0, data->buf, 2735 usbd_xfer_max_len(xfer)); 2736 usbd_transfer_submit(xfer); 2737 2738 /* 2739 * To avoid LOR we should unlock our private mutex here to call 2740 * ieee80211_input() because here is at the end of a USB 2741 * callback and safe to unlock. 2742 */ 2743 if (sc->sc_flags & UATH_FLAG_INVALID) { 2744 if (m != NULL) 2745 m_freem(m); 2746 return; 2747 } 2748 UATH_UNLOCK(sc); 2749 if (m != NULL && desc != NULL) { 2750 wh = mtod(m, struct ieee80211_frame *); 2751 ni = ieee80211_find_rxnode(ic, 2752 (struct ieee80211_frame_min *)wh); 2753 nf = -95; /* XXX */ 2754 if (ni != NULL) { 2755 (void) ieee80211_input(ni, m, 2756 (int)be32toh(desc->rssi), nf); 2757 /* node is no longer needed */ 2758 ieee80211_free_node(ni); 2759 } else 2760 (void) ieee80211_input_all(ic, m, 2761 (int)be32toh(desc->rssi), nf); 2762 m = NULL; 2763 desc = NULL; 2764 } 2765 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2766 !IFQ_IS_EMPTY(&ifp->if_snd)) 2767 uath_start(ifp); 2768 UATH_LOCK(sc); 2769 break; 2770 default: 2771 /* needs it to the inactive queue due to a error. */ 2772 data = STAILQ_FIRST(&sc->sc_rx_active); 2773 if (data != NULL) { 2774 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2775 UATH_STAT_DEC(sc, st_rx_active); 2776 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2777 UATH_STAT_INC(sc, st_rx_inactive); 2778 } 2779 if (error != USB_ERR_CANCELLED) { 2780 usbd_xfer_set_stall(xfer); 2781 ifp->if_ierrors++; 2782 goto setup; 2783 } 2784 break; 2785 } 2786 } 2787 2788 static void 2789 uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) 2790 { 2791 struct uath_softc *sc = usbd_xfer_softc(xfer); 2792 struct ifnet *ifp = sc->sc_ifp; 2793 struct mbuf *m; 2794 2795 UATH_ASSERT_LOCKED(sc); 2796 2797 /* 2798 * Do any tx complete callback. Note this must be done before releasing 2799 * the node reference. 2800 */ 2801 if (data->m) { 2802 m = data->m; 2803 if (m->m_flags & M_TXCB && 2804 (sc->sc_flags & UATH_FLAG_INVALID) == 0) { 2805 /* XXX status? */ 2806 ieee80211_process_callback(data->ni, m, 0); 2807 } 2808 m_freem(m); 2809 data->m = NULL; 2810 } 2811 if (data->ni) { 2812 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2813 ieee80211_free_node(data->ni); 2814 data->ni = NULL; 2815 } 2816 sc->sc_tx_timer = 0; 2817 ifp->if_opackets++; 2818 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2819 } 2820 2821 static void 2822 uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2823 { 2824 struct uath_softc *sc = usbd_xfer_softc(xfer); 2825 struct ifnet *ifp = sc->sc_ifp; 2826 struct uath_data *data; 2827 2828 UATH_ASSERT_LOCKED(sc); 2829 2830 switch (USB_GET_STATE(xfer)) { 2831 case USB_ST_TRANSFERRED: 2832 data = STAILQ_FIRST(&sc->sc_tx_active); 2833 if (data == NULL) 2834 goto setup; 2835 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2836 UATH_STAT_DEC(sc, st_tx_active); 2837 uath_data_txeof(xfer, data); 2838 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2839 UATH_STAT_INC(sc, st_tx_inactive); 2840 /* FALLTHROUGH */ 2841 case USB_ST_SETUP: 2842 setup: 2843 data = STAILQ_FIRST(&sc->sc_tx_pending); 2844 if (data == NULL) { 2845 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2846 __func__); 2847 return; 2848 } 2849 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2850 UATH_STAT_DEC(sc, st_tx_pending); 2851 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2852 UATH_STAT_INC(sc, st_tx_active); 2853 2854 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2855 usbd_transfer_submit(xfer); 2856 2857 UATH_UNLOCK(sc); 2858 uath_start(ifp); 2859 UATH_LOCK(sc); 2860 break; 2861 default: 2862 data = STAILQ_FIRST(&sc->sc_tx_active); 2863 if (data == NULL) 2864 goto setup; 2865 if (data->ni != NULL) { 2866 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2867 ieee80211_free_node(data->ni); 2868 data->ni = NULL; 2869 ifp->if_oerrors++; 2870 } 2871 if (error != USB_ERR_CANCELLED) { 2872 usbd_xfer_set_stall(xfer); 2873 goto setup; 2874 } 2875 break; 2876 } 2877 } 2878 2879 static device_method_t uath_methods[] = { 2880 DEVMETHOD(device_probe, uath_match), 2881 DEVMETHOD(device_attach, uath_attach), 2882 DEVMETHOD(device_detach, uath_detach), 2883 { 0, 0 } 2884 }; 2885 static driver_t uath_driver = { 2886 "uath", 2887 uath_methods, 2888 sizeof(struct uath_softc) 2889 }; 2890 static devclass_t uath_devclass; 2891 2892 DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); 2893 MODULE_DEPEND(uath, wlan, 1, 1, 1); 2894 MODULE_DEPEND(uath, usb, 1, 1, 1); 2895