1 /*- 2 * Copyright (c) 2006 Sam Leffler, Errno Consulting 3 * Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 /* 32 * This driver is distantly derived from a driver of the same name 33 * by Damien Bergamini. The original copyright is included below: 34 * 35 * Copyright (c) 2006 36 * Damien Bergamini <damien.bergamini@free.fr> 37 * 38 * Permission to use, copy, modify, and distribute this software for any 39 * purpose with or without fee is hereby granted, provided that the above 40 * copyright notice and this permission notice appear in all copies. 41 * 42 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 43 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 44 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 45 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 46 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 47 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 48 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 /*- 55 * Driver for Atheros AR5523 USB parts. 56 * 57 * The driver requires firmware to be loaded into the device. This 58 * is done on device discovery from a user application (uathload) 59 * that is launched by devd when a device with suitable product ID 60 * is recognized. Once firmware has been loaded the device will 61 * reset the USB port and re-attach with the original product ID+1 62 * and this driver will be attached. The firmware is licensed for 63 * general use (royalty free) and may be incorporated in products. 64 * Note that the firmware normally packaged with the NDIS drivers 65 * for these devices does not work in this way and so does not work 66 * with this driver. 67 */ 68 #include <sys/param.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/systm.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/bus.h> 80 #include <sys/endian.h> 81 #include <sys/kdb.h> 82 83 #include <machine/bus.h> 84 #include <machine/resource.h> 85 #include <sys/rman.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/if_ether.h> 101 #include <netinet/ip.h> 102 #endif 103 104 #include <net80211/ieee80211_var.h> 105 #include <net80211/ieee80211_regdomain.h> 106 #include <net80211/ieee80211_radiotap.h> 107 108 #include <dev/usb/usb.h> 109 #include <dev/usb/usbdi.h> 110 #include "usbdevs.h" 111 112 #include <dev/usb/wlan/if_uathreg.h> 113 #include <dev/usb/wlan/if_uathvar.h> 114 115 static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); 116 117 static int uath_countrycode = CTRY_DEFAULT; /* country code */ 118 SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RW | CTLFLAG_TUN, &uath_countrycode, 119 0, "country code"); 120 TUNABLE_INT("hw.usb.uath.countrycode", &uath_countrycode); 121 static int uath_regdomain = 0; /* regulatory domain */ 122 SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 123 0, "regulatory domain"); 124 125 #ifdef UATH_DEBUG 126 int uath_debug = 0; 127 SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &uath_debug, 0, 128 "uath debug level"); 129 TUNABLE_INT("hw.usb.uath.debug", &uath_debug); 130 enum { 131 UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 132 UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ 133 UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 134 UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ 135 UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ 136 UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ 137 UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ 138 UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ 139 UATH_DEBUG_CMDS = 0x00000100, /* commands */ 140 UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ 141 UATH_DEBUG_RESET = 0x00000400, /* reset processing */ 142 UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ 143 UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ 144 UATH_DEBUG_WME = 0x00002000, /* WME */ 145 UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ 146 UATH_DEBUG_RATES = 0x00008000, /* rates */ 147 UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ 148 UATH_DEBUG_LED = 0x00020000, /* LED */ 149 UATH_DEBUG_ANY = 0xffffffff 150 }; 151 #define DPRINTF(sc, m, fmt, ...) do { \ 152 if (sc->sc_debug & (m)) \ 153 printf(fmt, __VA_ARGS__); \ 154 } while (0) 155 #else 156 #define DPRINTF(sc, m, fmt, ...) do { \ 157 (void) sc; \ 158 } while (0) 159 #endif 160 161 /* unaligned little endian access */ 162 #define LE_READ_2(p) \ 163 ((u_int16_t) \ 164 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 165 #define LE_READ_4(p) \ 166 ((u_int32_t) \ 167 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 168 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 169 170 /* recognized device vendors/products */ 171 static const STRUCT_USB_HOST_ID uath_devs[] = { 172 #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 173 UATH_DEV(ACCTON, SMCWUSBTG2), 174 UATH_DEV(ATHEROS, AR5523), 175 UATH_DEV(ATHEROS2, AR5523_1), 176 UATH_DEV(ATHEROS2, AR5523_2), 177 UATH_DEV(ATHEROS2, AR5523_3), 178 UATH_DEV(CONCEPTRONIC, AR5523_1), 179 UATH_DEV(CONCEPTRONIC, AR5523_2), 180 UATH_DEV(DLINK, DWLAG122), 181 UATH_DEV(DLINK, DWLAG132), 182 UATH_DEV(DLINK, DWLG132), 183 UATH_DEV(DLINK2, DWA120), 184 UATH_DEV(GIGASET, AR5523), 185 UATH_DEV(GIGASET, SMCWUSBTG), 186 UATH_DEV(GLOBALSUN, AR5523_1), 187 UATH_DEV(GLOBALSUN, AR5523_2), 188 UATH_DEV(NETGEAR, WG111U), 189 UATH_DEV(NETGEAR3, WG111T), 190 UATH_DEV(NETGEAR3, WPN111), 191 UATH_DEV(NETGEAR3, WPN111_2), 192 UATH_DEV(UMEDIA, TEW444UBEU), 193 UATH_DEV(UMEDIA, AR5523_2), 194 UATH_DEV(WISTRONNEWEB, AR5523_1), 195 UATH_DEV(WISTRONNEWEB, AR5523_2), 196 UATH_DEV(ZCOM, AR5523) 197 #undef UATH_DEV 198 }; 199 200 static usb_callback_t uath_intr_rx_callback; 201 static usb_callback_t uath_intr_tx_callback; 202 static usb_callback_t uath_bulk_rx_callback; 203 static usb_callback_t uath_bulk_tx_callback; 204 205 static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { 206 [UATH_INTR_RX] = { 207 .type = UE_BULK, 208 .endpoint = 0x1, 209 .direction = UE_DIR_IN, 210 .bufsize = UATH_MAX_CMDSZ, 211 .flags = { 212 .pipe_bof = 1, 213 .short_xfer_ok = 1 214 }, 215 .callback = uath_intr_rx_callback 216 }, 217 [UATH_INTR_TX] = { 218 .type = UE_BULK, 219 .endpoint = 0x1, 220 .direction = UE_DIR_OUT, 221 .bufsize = UATH_MAX_CMDSZ * UATH_CMD_LIST_COUNT, 222 .flags = { 223 .force_short_xfer = 1, 224 .pipe_bof = 1, 225 }, 226 .callback = uath_intr_tx_callback, 227 .timeout = UATH_CMD_TIMEOUT 228 }, 229 [UATH_BULK_RX] = { 230 .type = UE_BULK, 231 .endpoint = 0x2, 232 .direction = UE_DIR_IN, 233 .bufsize = MCLBYTES, 234 .flags = { 235 .ext_buffer = 1, 236 .pipe_bof = 1, 237 .short_xfer_ok = 1 238 }, 239 .callback = uath_bulk_rx_callback 240 }, 241 [UATH_BULK_TX] = { 242 .type = UE_BULK, 243 .endpoint = 0x2, 244 .direction = UE_DIR_OUT, 245 .bufsize = UATH_MAX_TXBUFSZ * UATH_TX_DATA_LIST_COUNT, 246 .flags = { 247 .force_short_xfer = 1, 248 .pipe_bof = 1 249 }, 250 .callback = uath_bulk_tx_callback, 251 .timeout = UATH_DATA_TIMEOUT 252 } 253 }; 254 255 static struct ieee80211vap *uath_vap_create(struct ieee80211com *, 256 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 257 const uint8_t [IEEE80211_ADDR_LEN], 258 const uint8_t [IEEE80211_ADDR_LEN]); 259 static void uath_vap_delete(struct ieee80211vap *); 260 static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd []); 261 static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd []); 262 static int uath_host_available(struct uath_softc *); 263 static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); 264 static int uath_get_devcap(struct uath_softc *); 265 static struct uath_cmd * 266 uath_get_cmdbuf(struct uath_softc *); 267 static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, 268 int, void *, int, int); 269 static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, 270 int, int); 271 static void uath_stat(void *); 272 #ifdef UATH_DEBUG 273 static void uath_dump_cmd(const uint8_t *, int, char); 274 static const char * 275 uath_codename(int); 276 #endif 277 static int uath_get_devstatus(struct uath_softc *, 278 uint8_t macaddr[IEEE80211_ADDR_LEN]); 279 static int uath_get_status(struct uath_softc *, uint32_t, void *, int); 280 static int uath_alloc_rx_data_list(struct uath_softc *); 281 static int uath_alloc_tx_data_list(struct uath_softc *); 282 static void uath_free_rx_data_list(struct uath_softc *); 283 static void uath_free_tx_data_list(struct uath_softc *); 284 static int uath_init_locked(void *); 285 static void uath_init(void *); 286 static void uath_stop_locked(struct ifnet *); 287 static void uath_stop(struct ifnet *); 288 static int uath_ioctl(struct ifnet *, u_long, caddr_t); 289 static void uath_start(struct ifnet *); 290 static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, 291 const struct ieee80211_bpf_params *); 292 static void uath_scan_start(struct ieee80211com *); 293 static void uath_scan_end(struct ieee80211com *); 294 static void uath_set_channel(struct ieee80211com *); 295 static void uath_update_mcast(struct ifnet *); 296 static void uath_update_promisc(struct ifnet *); 297 static int uath_config(struct uath_softc *, uint32_t, uint32_t); 298 static int uath_config_multi(struct uath_softc *, uint32_t, const void *, 299 int); 300 static int uath_switch_channel(struct uath_softc *, 301 struct ieee80211_channel *); 302 static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); 303 static void uath_watchdog(void *); 304 static void uath_abort_xfers(struct uath_softc *); 305 static int uath_dataflush(struct uath_softc *); 306 static int uath_cmdflush(struct uath_softc *); 307 static int uath_flush(struct uath_softc *); 308 static int uath_set_ledstate(struct uath_softc *, int); 309 static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); 310 static int uath_reset_tx_queues(struct uath_softc *); 311 static int uath_wme_init(struct uath_softc *); 312 static struct uath_data * 313 uath_getbuf(struct uath_softc *); 314 static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, 315 int); 316 static int uath_set_key(struct uath_softc *, 317 const struct ieee80211_key *, int); 318 static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); 319 static void uath_sysctl_node(struct uath_softc *); 320 321 static int 322 uath_match(device_t dev) 323 { 324 struct usb_attach_arg *uaa = device_get_ivars(dev); 325 326 if (uaa->usb_mode != USB_MODE_HOST) 327 return (ENXIO); 328 if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) 329 return (ENXIO); 330 if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) 331 return (ENXIO); 332 333 return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); 334 } 335 336 static int 337 uath_attach(device_t dev) 338 { 339 struct uath_softc *sc = device_get_softc(dev); 340 struct usb_attach_arg *uaa = device_get_ivars(dev); 341 struct ieee80211com *ic; 342 struct ifnet *ifp; 343 uint8_t bands, iface_index = UATH_IFACE_INDEX; /* XXX */ 344 usb_error_t error; 345 uint8_t macaddr[IEEE80211_ADDR_LEN]; 346 347 sc->sc_dev = dev; 348 sc->sc_udev = uaa->device; 349 #ifdef UATH_DEBUG 350 sc->sc_debug = uath_debug; 351 #endif 352 device_set_usb_desc(dev); 353 354 /* 355 * Only post-firmware devices here. 356 */ 357 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 358 MTX_DEF); 359 callout_init(&sc->stat_ch, 0); 360 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 361 362 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 363 uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); 364 if (error) { 365 device_printf(dev, "could not allocate USB transfers, " 366 "err=%s\n", usbd_errstr(error)); 367 goto fail; 368 } 369 370 sc->sc_cmd_dma_buf = 371 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_INTR_TX], 0); 372 sc->sc_tx_dma_buf = 373 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_BULK_TX], 0); 374 375 /* 376 * Setup buffers for firmware commands. 377 */ 378 error = uath_alloc_cmd_list(sc, sc->sc_cmd); 379 if (error != 0) { 380 device_printf(sc->sc_dev, 381 "could not allocate Tx command list\n"); 382 goto fail1; 383 } 384 385 /* 386 * We're now ready to send+receive firmware commands. 387 */ 388 UATH_LOCK(sc); 389 error = uath_host_available(sc); 390 if (error != 0) { 391 device_printf(sc->sc_dev, "could not initialize adapter\n"); 392 goto fail3; 393 } 394 error = uath_get_devcap(sc); 395 if (error != 0) { 396 device_printf(sc->sc_dev, 397 "could not get device capabilities\n"); 398 goto fail3; 399 } 400 UATH_UNLOCK(sc); 401 402 /* Create device sysctl node. */ 403 uath_sysctl_node(sc); 404 405 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 406 if (ifp == NULL) { 407 device_printf(sc->sc_dev, "can not allocate ifnet\n"); 408 error = ENXIO; 409 goto fail2; 410 } 411 412 UATH_LOCK(sc); 413 error = uath_get_devstatus(sc, macaddr); 414 if (error != 0) { 415 device_printf(sc->sc_dev, "could not get device status\n"); 416 goto fail4; 417 } 418 419 /* 420 * Allocate xfers for Rx/Tx data pipes. 421 */ 422 error = uath_alloc_rx_data_list(sc); 423 if (error != 0) { 424 device_printf(sc->sc_dev, "could not allocate Rx data list\n"); 425 goto fail4; 426 } 427 error = uath_alloc_tx_data_list(sc); 428 if (error != 0) { 429 device_printf(sc->sc_dev, "could not allocate Tx data list\n"); 430 goto fail4; 431 } 432 UATH_UNLOCK(sc); 433 434 ifp->if_softc = sc; 435 if_initname(ifp, "uath", device_get_unit(sc->sc_dev)); 436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 437 ifp->if_init = uath_init; 438 ifp->if_ioctl = uath_ioctl; 439 ifp->if_start = uath_start; 440 /* XXX UATH_TX_DATA_LIST_COUNT */ 441 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 442 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 443 IFQ_SET_READY(&ifp->if_snd); 444 445 ic = ifp->if_l2com; 446 ic->ic_ifp = ifp; 447 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 448 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 449 450 /* set device capabilities */ 451 ic->ic_caps = 452 IEEE80211_C_STA | /* station mode */ 453 IEEE80211_C_MONITOR | /* monitor mode supported */ 454 IEEE80211_C_TXPMGT | /* tx power management */ 455 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 456 IEEE80211_C_SHSLOT | /* short slot time supported */ 457 IEEE80211_C_WPA | /* 802.11i */ 458 IEEE80211_C_BGSCAN | /* capable of bg scanning */ 459 IEEE80211_C_TXFRAG; /* handle tx frags */ 460 461 /* put a regulatory domain to reveal informations. */ 462 uath_regdomain = sc->sc_devcap.regDomain; 463 464 bands = 0; 465 setbit(&bands, IEEE80211_MODE_11B); 466 setbit(&bands, IEEE80211_MODE_11G); 467 if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) 468 setbit(&bands, IEEE80211_MODE_11A); 469 /* XXX turbo */ 470 ieee80211_init_channels(ic, NULL, &bands); 471 472 ieee80211_ifattach(ic, macaddr); 473 ic->ic_raw_xmit = uath_raw_xmit; 474 ic->ic_scan_start = uath_scan_start; 475 ic->ic_scan_end = uath_scan_end; 476 ic->ic_set_channel = uath_set_channel; 477 478 ic->ic_vap_create = uath_vap_create; 479 ic->ic_vap_delete = uath_vap_delete; 480 ic->ic_update_mcast = uath_update_mcast; 481 ic->ic_update_promisc = uath_update_promisc; 482 483 ieee80211_radiotap_attach(ic, 484 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 485 UATH_TX_RADIOTAP_PRESENT, 486 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 487 UATH_RX_RADIOTAP_PRESENT); 488 489 if (bootverbose) 490 ieee80211_announce(ic); 491 492 return (0); 493 494 fail4: if_free(ifp); 495 fail3: UATH_UNLOCK(sc); 496 fail2: uath_free_cmd_list(sc, sc->sc_cmd); 497 fail1: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 498 fail: 499 return (error); 500 } 501 502 static int 503 uath_detach(device_t dev) 504 { 505 struct uath_softc *sc = device_get_softc(dev); 506 struct ifnet *ifp = sc->sc_ifp; 507 struct ieee80211com *ic = ifp->if_l2com; 508 unsigned int x; 509 510 /* 511 * Prevent further allocations from RX/TX/CMD 512 * data lists and ioctls 513 */ 514 UATH_LOCK(sc); 515 sc->sc_flags |= UATH_FLAG_INVALID; 516 517 STAILQ_INIT(&sc->sc_rx_active); 518 STAILQ_INIT(&sc->sc_rx_inactive); 519 520 STAILQ_INIT(&sc->sc_tx_active); 521 STAILQ_INIT(&sc->sc_tx_inactive); 522 STAILQ_INIT(&sc->sc_tx_pending); 523 524 STAILQ_INIT(&sc->sc_cmd_active); 525 STAILQ_INIT(&sc->sc_cmd_pending); 526 STAILQ_INIT(&sc->sc_cmd_waiting); 527 STAILQ_INIT(&sc->sc_cmd_inactive); 528 UATH_UNLOCK(sc); 529 530 uath_stop(ifp); 531 532 callout_drain(&sc->stat_ch); 533 callout_drain(&sc->watchdog_ch); 534 535 /* drain USB transfers */ 536 for (x = 0; x != UATH_N_XFERS; x++) 537 usbd_transfer_drain(sc->sc_xfer[x]); 538 539 /* free data buffers */ 540 UATH_LOCK(sc); 541 uath_free_rx_data_list(sc); 542 uath_free_tx_data_list(sc); 543 uath_free_cmd_list(sc, sc->sc_cmd); 544 UATH_UNLOCK(sc); 545 546 /* free USB transfers and some data buffers */ 547 usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 548 549 ieee80211_ifdetach(ic); 550 if_free(ifp); 551 mtx_destroy(&sc->sc_mtx); 552 return (0); 553 } 554 555 static void 556 uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 557 { 558 int i; 559 560 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) 561 cmds[i].buf = NULL; 562 } 563 564 static int 565 uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 566 { 567 int i; 568 569 STAILQ_INIT(&sc->sc_cmd_active); 570 STAILQ_INIT(&sc->sc_cmd_pending); 571 STAILQ_INIT(&sc->sc_cmd_waiting); 572 STAILQ_INIT(&sc->sc_cmd_inactive); 573 574 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) { 575 struct uath_cmd *cmd = &cmds[i]; 576 577 cmd->sc = sc; /* backpointer for callbacks */ 578 cmd->msgid = i; 579 cmd->buf = ((uint8_t *)sc->sc_cmd_dma_buf) + 580 (i * UATH_MAX_CMDSZ); 581 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 582 UATH_STAT_INC(sc, st_cmd_inactive); 583 } 584 return (0); 585 } 586 587 static int 588 uath_host_available(struct uath_softc *sc) 589 { 590 struct uath_cmd_host_available setup; 591 592 UATH_ASSERT_LOCKED(sc); 593 594 /* inform target the host is available */ 595 setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); 596 setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); 597 setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); 598 setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); 599 return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, 600 &setup, sizeof setup, NULL, 0, 0); 601 } 602 603 #ifdef UATH_DEBUG 604 static void 605 uath_dump_cmd(const uint8_t *buf, int len, char prefix) 606 { 607 const char *sep = ""; 608 int i; 609 610 for (i = 0; i < len; i++) { 611 if ((i % 16) == 0) { 612 printf("%s%c ", sep, prefix); 613 sep = "\n"; 614 } 615 else if ((i % 4) == 0) 616 printf(" "); 617 printf("%02x", buf[i]); 618 } 619 printf("\n"); 620 } 621 622 static const char * 623 uath_codename(int code) 624 { 625 #define N(a) (sizeof(a)/sizeof(a[0])) 626 static const char *names[] = { 627 "0x00", 628 "HOST_AVAILABLE", 629 "BIND", 630 "TARGET_RESET", 631 "TARGET_GET_CAPABILITY", 632 "TARGET_SET_CONFIG", 633 "TARGET_GET_STATUS", 634 "TARGET_GET_STATS", 635 "TARGET_START", 636 "TARGET_STOP", 637 "TARGET_ENABLE", 638 "TARGET_DISABLE", 639 "CREATE_CONNECTION", 640 "UPDATE_CONNECT_ATTR", 641 "DELETE_CONNECT", 642 "SEND", 643 "FLUSH", 644 "STATS_UPDATE", 645 "BMISS", 646 "DEVICE_AVAIL", 647 "SEND_COMPLETE", 648 "DATA_AVAIL", 649 "SET_PWR_MODE", 650 "BMISS_ACK", 651 "SET_LED_STEADY", 652 "SET_LED_BLINK", 653 "SETUP_BEACON_DESC", 654 "BEACON_INIT", 655 "RESET_KEY_CACHE", 656 "RESET_KEY_CACHE_ENTRY", 657 "SET_KEY_CACHE_ENTRY", 658 "SET_DECOMP_MASK", 659 "SET_REGULATORY_DOMAIN", 660 "SET_LED_STATE", 661 "WRITE_ASSOCID", 662 "SET_STA_BEACON_TIMERS", 663 "GET_TSF", 664 "RESET_TSF", 665 "SET_ADHOC_MODE", 666 "SET_BASIC_RATE", 667 "MIB_CONTROL", 668 "GET_CHANNEL_DATA", 669 "GET_CUR_RSSI", 670 "SET_ANTENNA_SWITCH", 671 "0x2c", "0x2d", "0x2e", 672 "USE_SHORT_SLOT_TIME", 673 "SET_POWER_MODE", 674 "SETUP_PSPOLL_DESC", 675 "SET_RX_MULTICAST_FILTER", 676 "RX_FILTER", 677 "PER_CALIBRATION", 678 "RESET", 679 "DISABLE", 680 "PHY_DISABLE", 681 "SET_TX_POWER_LIMIT", 682 "SET_TX_QUEUE_PARAMS", 683 "SETUP_TX_QUEUE", 684 "RELEASE_TX_QUEUE", 685 }; 686 static char buf[8]; 687 688 if (code < N(names)) 689 return names[code]; 690 if (code == WDCMSG_SET_DEFAULT_KEY) 691 return "SET_DEFAULT_KEY"; 692 snprintf(buf, sizeof(buf), "0x%02x", code); 693 return buf; 694 #undef N 695 } 696 #endif 697 698 /* 699 * Low-level function to send read or write commands to the firmware. 700 */ 701 static int 702 uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, 703 void *odata, int olen, int flags) 704 { 705 struct uath_cmd_hdr *hdr; 706 struct uath_cmd *cmd; 707 int error; 708 709 UATH_ASSERT_LOCKED(sc); 710 711 /* grab a xfer */ 712 cmd = uath_get_cmdbuf(sc); 713 if (cmd == NULL) { 714 device_printf(sc->sc_dev, "%s: empty inactive queue\n", 715 __func__); 716 return (ENOBUFS); 717 } 718 cmd->flags = flags; 719 /* always bulk-out a multiple of 4 bytes */ 720 cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); 721 722 hdr = (struct uath_cmd_hdr *)cmd->buf; 723 memset(hdr, 0, sizeof(struct uath_cmd_hdr)); 724 hdr->len = htobe32(cmd->buflen); 725 hdr->code = htobe32(code); 726 hdr->msgid = cmd->msgid; /* don't care about endianness */ 727 hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); 728 memcpy((uint8_t *)(hdr + 1), idata, ilen); 729 730 #ifdef UATH_DEBUG 731 if (sc->sc_debug & UATH_DEBUG_CMDS) { 732 printf("%s: send %s [flags 0x%x] olen %d\n", 733 __func__, uath_codename(code), cmd->flags, olen); 734 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 735 uath_dump_cmd(cmd->buf, cmd->buflen, '+'); 736 } 737 #endif 738 cmd->odata = odata; 739 KASSERT(odata == NULL || 740 olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), 741 ("odata %p olen %u", odata, olen)); 742 cmd->olen = olen; 743 744 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); 745 UATH_STAT_INC(sc, st_cmd_pending); 746 usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); 747 748 if (cmd->flags & UATH_CMD_FLAG_READ) { 749 usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); 750 751 /* wait at most two seconds for command reply */ 752 error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); 753 cmd->odata = NULL; /* in case reply comes too late */ 754 if (error != 0) { 755 device_printf(sc->sc_dev, "timeout waiting for reply " 756 "to cmd 0x%x (%u)\n", code, code); 757 } else if (cmd->olen != olen) { 758 device_printf(sc->sc_dev, "unexpected reply data count " 759 "to cmd 0x%x (%u), got %u, expected %u\n", 760 code, code, cmd->olen, olen); 761 error = EINVAL; 762 } 763 return (error); 764 } 765 return (0); 766 } 767 768 static int 769 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, 770 int ilen, void *odata, int olen, int flags) 771 { 772 773 flags |= UATH_CMD_FLAG_READ; 774 return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); 775 } 776 777 static int 778 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, 779 int flags) 780 { 781 782 flags &= ~UATH_CMD_FLAG_READ; 783 return uath_cmdsend(sc, code, data, len, NULL, 0, flags); 784 } 785 786 static struct uath_cmd * 787 uath_get_cmdbuf(struct uath_softc *sc) 788 { 789 struct uath_cmd *uc; 790 791 UATH_ASSERT_LOCKED(sc); 792 793 uc = STAILQ_FIRST(&sc->sc_cmd_inactive); 794 if (uc != NULL) { 795 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); 796 UATH_STAT_DEC(sc, st_cmd_inactive); 797 } else 798 uc = NULL; 799 if (uc == NULL) 800 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 801 "out of command xmit buffers"); 802 return (uc); 803 } 804 805 /* 806 * This function is called periodically (every second) when associated to 807 * query device statistics. 808 */ 809 static void 810 uath_stat(void *arg) 811 { 812 struct uath_softc *sc = arg; 813 int error; 814 815 UATH_LOCK(sc); 816 /* 817 * Send request for statistics asynchronously. The timer will be 818 * restarted when we'll get the stats notification. 819 */ 820 error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, 821 UATH_CMD_FLAG_ASYNC); 822 if (error != 0) { 823 device_printf(sc->sc_dev, 824 "could not query stats, error %d\n", error); 825 } 826 UATH_UNLOCK(sc); 827 } 828 829 static int 830 uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) 831 { 832 int error; 833 834 cap = htobe32(cap); 835 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, 836 &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); 837 if (error != 0) { 838 device_printf(sc->sc_dev, "could not read capability %u\n", 839 be32toh(cap)); 840 return (error); 841 } 842 *val = be32toh(*val); 843 return (error); 844 } 845 846 static int 847 uath_get_devcap(struct uath_softc *sc) 848 { 849 #define GETCAP(x, v) do { \ 850 error = uath_get_capability(sc, x, &v); \ 851 if (error != 0) \ 852 return (error); \ 853 DPRINTF(sc, UATH_DEBUG_DEVCAP, \ 854 "%s: %s=0x%08x\n", __func__, #x, v); \ 855 } while (0) 856 struct uath_devcap *cap = &sc->sc_devcap; 857 int error; 858 859 /* collect device capabilities */ 860 GETCAP(CAP_TARGET_VERSION, cap->targetVersion); 861 GETCAP(CAP_TARGET_REVISION, cap->targetRevision); 862 GETCAP(CAP_MAC_VERSION, cap->macVersion); 863 GETCAP(CAP_MAC_REVISION, cap->macRevision); 864 GETCAP(CAP_PHY_REVISION, cap->phyRevision); 865 GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); 866 GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); 867 868 GETCAP(CAP_REG_DOMAIN, cap->regDomain); 869 GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); 870 #if 0 871 /* NB: not supported in rev 1.5 */ 872 GETCAP(CAP_COUNTRY_CODE, cap->countryCode); 873 #endif 874 GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); 875 GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); 876 GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); 877 GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); 878 GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); 879 GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); 880 GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); 881 GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); 882 GETCAP(CAP_DEVICE_TYPE, cap->deviceType); 883 GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); 884 GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); 885 GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); 886 887 GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); 888 GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); 889 GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); 890 GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); 891 GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); 892 GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); 893 894 GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); 895 GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); 896 GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); 897 898 cap->supportCipherWEP = 1; /* NB: always available */ 899 900 return (0); 901 } 902 903 static int 904 uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 905 { 906 int error; 907 908 /* retrieve MAC address */ 909 error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); 910 if (error != 0) { 911 device_printf(sc->sc_dev, "could not read MAC address\n"); 912 return (error); 913 } 914 915 error = uath_get_status(sc, ST_SERIAL_NUMBER, 916 &sc->sc_serial[0], sizeof(sc->sc_serial)); 917 if (error != 0) { 918 device_printf(sc->sc_dev, 919 "could not read device serial number\n"); 920 return (error); 921 } 922 return (0); 923 } 924 925 static int 926 uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) 927 { 928 int error; 929 930 which = htobe32(which); 931 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, 932 &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); 933 if (error != 0) 934 device_printf(sc->sc_dev, 935 "could not read EEPROM offset 0x%02x\n", be32toh(which)); 936 return (error); 937 } 938 939 static void 940 uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, 941 int fillmbuf) 942 { 943 int i; 944 945 for (i = 0; i < ndata; i++) { 946 struct uath_data *dp = &data[i]; 947 948 if (fillmbuf == 1) { 949 if (dp->m != NULL) { 950 m_freem(dp->m); 951 dp->m = NULL; 952 dp->buf = NULL; 953 } 954 } else { 955 dp->buf = NULL; 956 } 957 if (dp->ni != NULL) { 958 ieee80211_free_node(dp->ni); 959 dp->ni = NULL; 960 } 961 } 962 } 963 964 static int 965 uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], 966 int ndata, int maxsz, void *dma_buf) 967 { 968 int i, error; 969 970 for (i = 0; i < ndata; i++) { 971 struct uath_data *dp = &data[i]; 972 973 dp->sc = sc; 974 if (dma_buf == NULL) { 975 /* XXX check maxsz */ 976 dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 977 if (dp->m == NULL) { 978 device_printf(sc->sc_dev, 979 "could not allocate rx mbuf\n"); 980 error = ENOMEM; 981 goto fail; 982 } 983 dp->buf = mtod(dp->m, uint8_t *); 984 } else { 985 dp->m = NULL; 986 dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); 987 } 988 dp->ni = NULL; 989 } 990 991 return (0); 992 993 fail: uath_free_data_list(sc, data, ndata, 1 /* free mbufs */); 994 return (error); 995 } 996 997 static int 998 uath_alloc_rx_data_list(struct uath_softc *sc) 999 { 1000 int error, i; 1001 1002 /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ 1003 error = uath_alloc_data_list(sc, 1004 sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, 1005 NULL /* setup mbufs */); 1006 if (error != 0) 1007 return (error); 1008 1009 STAILQ_INIT(&sc->sc_rx_active); 1010 STAILQ_INIT(&sc->sc_rx_inactive); 1011 1012 for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { 1013 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], 1014 next); 1015 UATH_STAT_INC(sc, st_rx_inactive); 1016 } 1017 1018 return (0); 1019 } 1020 1021 static int 1022 uath_alloc_tx_data_list(struct uath_softc *sc) 1023 { 1024 int error, i; 1025 1026 error = uath_alloc_data_list(sc, 1027 sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, 1028 sc->sc_tx_dma_buf); 1029 if (error != 0) 1030 return (error); 1031 1032 STAILQ_INIT(&sc->sc_tx_active); 1033 STAILQ_INIT(&sc->sc_tx_inactive); 1034 STAILQ_INIT(&sc->sc_tx_pending); 1035 1036 for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { 1037 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], 1038 next); 1039 UATH_STAT_INC(sc, st_tx_inactive); 1040 } 1041 1042 return (0); 1043 } 1044 1045 static void 1046 uath_free_rx_data_list(struct uath_softc *sc) 1047 { 1048 uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1049 1 /* free mbufs */); 1050 } 1051 1052 static void 1053 uath_free_tx_data_list(struct uath_softc *sc) 1054 { 1055 uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 1056 0 /* no mbufs */); 1057 } 1058 1059 static struct ieee80211vap * 1060 uath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1061 enum ieee80211_opmode opmode, int flags, 1062 const uint8_t bssid[IEEE80211_ADDR_LEN], 1063 const uint8_t mac[IEEE80211_ADDR_LEN]) 1064 { 1065 struct uath_vap *uvp; 1066 struct ieee80211vap *vap; 1067 1068 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1069 return (NULL); 1070 uvp = (struct uath_vap *) malloc(sizeof(struct uath_vap), 1071 M_80211_VAP, M_NOWAIT | M_ZERO); 1072 if (uvp == NULL) 1073 return (NULL); 1074 vap = &uvp->vap; 1075 /* enable s/w bmiss handling for sta mode */ 1076 1077 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 1078 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { 1079 /* out of memory */ 1080 free(uvp, M_80211_VAP); 1081 return (NULL); 1082 } 1083 1084 /* override state transition machine */ 1085 uvp->newstate = vap->iv_newstate; 1086 vap->iv_newstate = uath_newstate; 1087 1088 /* complete setup */ 1089 ieee80211_vap_attach(vap, ieee80211_media_change, 1090 ieee80211_media_status); 1091 ic->ic_opmode = opmode; 1092 return (vap); 1093 } 1094 1095 static void 1096 uath_vap_delete(struct ieee80211vap *vap) 1097 { 1098 struct uath_vap *uvp = UATH_VAP(vap); 1099 1100 ieee80211_vap_detach(vap); 1101 free(uvp, M_80211_VAP); 1102 } 1103 1104 static int 1105 uath_init_locked(void *arg) 1106 { 1107 struct uath_softc *sc = arg; 1108 struct ifnet *ifp = sc->sc_ifp; 1109 struct ieee80211com *ic = ifp->if_l2com; 1110 uint32_t val; 1111 int error; 1112 1113 UATH_ASSERT_LOCKED(sc); 1114 1115 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1116 uath_stop_locked(ifp); 1117 1118 /* reset variables */ 1119 sc->sc_intrx_nextnum = sc->sc_msgid = 0; 1120 1121 val = htobe32(0); 1122 uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); 1123 1124 /* set MAC address */ 1125 uath_config_multi(sc, CFG_MAC_ADDR, IF_LLADDR(ifp), IEEE80211_ADDR_LEN); 1126 1127 /* XXX honor net80211 state */ 1128 uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); 1129 uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); 1130 uath_config(sc, CFG_ABOLT, 0x0000003f); 1131 uath_config(sc, CFG_WME_ENABLED, 0x00000001); 1132 1133 uath_config(sc, CFG_SERVICE_TYPE, 1); 1134 uath_config(sc, CFG_TP_SCALE, 0x00000000); 1135 uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); 1136 uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); 1137 uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); 1138 uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); 1139 uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); 1140 uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); 1141 uath_config(sc, CFG_MODE_CTS, 0x00000002); 1142 1143 error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, 1144 &val, sizeof(val), UATH_CMD_FLAG_MAGIC); 1145 if (error) { 1146 device_printf(sc->sc_dev, 1147 "could not start target, error %d\n", error); 1148 goto fail; 1149 } 1150 DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", 1151 uath_codename(WDCMSG_TARGET_START), be32toh(val)); 1152 1153 /* set default channel */ 1154 error = uath_switch_channel(sc, ic->ic_curchan); 1155 if (error) { 1156 device_printf(sc->sc_dev, 1157 "could not switch channel, error %d\n", error); 1158 goto fail; 1159 } 1160 1161 val = htobe32(TARGET_DEVICE_AWAKE); 1162 uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); 1163 /* XXX? check */ 1164 uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); 1165 1166 usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); 1167 /* enable Rx */ 1168 uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); 1169 uath_set_rxfilter(sc, 1170 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1171 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, 1172 UATH_FILTER_OP_SET); 1173 1174 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1175 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1176 sc->sc_flags |= UATH_FLAG_INITDONE; 1177 1178 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1179 1180 return (0); 1181 1182 fail: 1183 uath_stop_locked(ifp); 1184 return (error); 1185 } 1186 1187 static void 1188 uath_init(void *arg) 1189 { 1190 struct uath_softc *sc = arg; 1191 1192 UATH_LOCK(sc); 1193 (void)uath_init_locked(sc); 1194 UATH_UNLOCK(sc); 1195 } 1196 1197 static void 1198 uath_stop_locked(struct ifnet *ifp) 1199 { 1200 struct uath_softc *sc = ifp->if_softc; 1201 1202 UATH_ASSERT_LOCKED(sc); 1203 1204 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1205 sc->sc_flags &= ~UATH_FLAG_INITDONE; 1206 1207 callout_stop(&sc->stat_ch); 1208 callout_stop(&sc->watchdog_ch); 1209 sc->sc_tx_timer = 0; 1210 /* abort pending transmits */ 1211 uath_abort_xfers(sc); 1212 /* flush data & control requests into the target */ 1213 (void)uath_flush(sc); 1214 /* set a LED status to the disconnected. */ 1215 uath_set_ledstate(sc, 0); 1216 /* stop the target */ 1217 uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); 1218 } 1219 1220 static void 1221 uath_stop(struct ifnet *ifp) 1222 { 1223 struct uath_softc *sc = ifp->if_softc; 1224 1225 UATH_LOCK(sc); 1226 uath_stop_locked(ifp); 1227 UATH_UNLOCK(sc); 1228 } 1229 1230 static int 1231 uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) 1232 { 1233 struct uath_write_mac write; 1234 int error; 1235 1236 write.reg = htobe32(reg); 1237 write.len = htobe32(0); /* 0 = single write */ 1238 *(uint32_t *)write.data = htobe32(val); 1239 1240 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1241 3 * sizeof (uint32_t), 0); 1242 if (error != 0) { 1243 device_printf(sc->sc_dev, "could not write register 0x%02x\n", 1244 reg); 1245 } 1246 return (error); 1247 } 1248 1249 static int 1250 uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, 1251 int len) 1252 { 1253 struct uath_write_mac write; 1254 int error; 1255 1256 write.reg = htobe32(reg); 1257 write.len = htobe32(len); 1258 bcopy(data, write.data, len); 1259 1260 /* properly handle the case where len is zero (reset) */ 1261 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1262 (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); 1263 if (error != 0) { 1264 device_printf(sc->sc_dev, 1265 "could not write %d bytes to register 0x%02x\n", len, reg); 1266 } 1267 return (error); 1268 } 1269 1270 static int 1271 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) 1272 { 1273 int error; 1274 1275 UATH_ASSERT_LOCKED(sc); 1276 1277 /* set radio frequency */ 1278 error = uath_set_chan(sc, c); 1279 if (error) { 1280 device_printf(sc->sc_dev, 1281 "could not set channel, error %d\n", error); 1282 goto failed; 1283 } 1284 /* reset Tx rings */ 1285 error = uath_reset_tx_queues(sc); 1286 if (error) { 1287 device_printf(sc->sc_dev, 1288 "could not reset Tx queues, error %d\n", error); 1289 goto failed; 1290 } 1291 /* set Tx rings WME properties */ 1292 error = uath_wme_init(sc); 1293 if (error) { 1294 device_printf(sc->sc_dev, 1295 "could not init Tx queues, error %d\n", error); 1296 goto failed; 1297 } 1298 error = uath_set_ledstate(sc, 0); 1299 if (error) { 1300 device_printf(sc->sc_dev, 1301 "could not set led state, error %d\n", error); 1302 goto failed; 1303 } 1304 error = uath_flush(sc); 1305 if (error) { 1306 device_printf(sc->sc_dev, 1307 "could not flush pipes, error %d\n", error); 1308 goto failed; 1309 } 1310 failed: 1311 return (error); 1312 } 1313 1314 static int 1315 uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) 1316 { 1317 struct uath_cmd_rx_filter rxfilter; 1318 1319 rxfilter.bits = htobe32(bits); 1320 rxfilter.op = htobe32(op); 1321 1322 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 1323 "setting Rx filter=0x%x flags=0x%x\n", bits, op); 1324 return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, 1325 sizeof rxfilter, 0); 1326 } 1327 1328 static void 1329 uath_watchdog(void *arg) 1330 { 1331 struct uath_softc *sc = arg; 1332 struct ifnet *ifp = sc->sc_ifp; 1333 1334 if (sc->sc_tx_timer > 0) { 1335 if (--sc->sc_tx_timer == 0) { 1336 device_printf(sc->sc_dev, "device timeout\n"); 1337 /*uath_init(ifp); XXX needs a process context! */ 1338 ifp->if_oerrors++; 1339 return; 1340 } 1341 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1342 } 1343 } 1344 1345 static void 1346 uath_abort_xfers(struct uath_softc *sc) 1347 { 1348 int i; 1349 1350 UATH_ASSERT_LOCKED(sc); 1351 /* abort any pending transfers */ 1352 for (i = 0; i < UATH_N_XFERS; i++) 1353 usbd_transfer_stop(sc->sc_xfer[i]); 1354 } 1355 1356 static int 1357 uath_flush(struct uath_softc *sc) 1358 { 1359 int error; 1360 1361 error = uath_dataflush(sc); 1362 if (error != 0) 1363 goto failed; 1364 1365 error = uath_cmdflush(sc); 1366 if (error != 0) 1367 goto failed; 1368 1369 failed: 1370 return (error); 1371 } 1372 1373 static int 1374 uath_cmdflush(struct uath_softc *sc) 1375 { 1376 1377 return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); 1378 } 1379 1380 static int 1381 uath_dataflush(struct uath_softc *sc) 1382 { 1383 struct uath_data *data; 1384 struct uath_chunk *chunk; 1385 struct uath_tx_desc *desc; 1386 1387 UATH_ASSERT_LOCKED(sc); 1388 1389 data = uath_getbuf(sc); 1390 if (data == NULL) 1391 return (ENOBUFS); 1392 data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); 1393 data->m = NULL; 1394 data->ni = NULL; 1395 chunk = (struct uath_chunk *)data->buf; 1396 desc = (struct uath_tx_desc *)(chunk + 1); 1397 1398 /* one chunk only */ 1399 chunk->seqnum = 0; 1400 chunk->flags = UATH_CFLAGS_FINAL; 1401 chunk->length = htobe16(sizeof (struct uath_tx_desc)); 1402 1403 memset(desc, 0, sizeof(struct uath_tx_desc)); 1404 desc->msglen = htobe32(sizeof(struct uath_tx_desc)); 1405 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1406 desc->type = htobe32(WDCMSG_FLUSH); 1407 desc->txqid = htobe32(0); 1408 desc->connid = htobe32(0); 1409 desc->flags = htobe32(0); 1410 1411 #ifdef UATH_DEBUG 1412 if (sc->sc_debug & UATH_DEBUG_CMDS) { 1413 DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", 1414 desc->msgid); 1415 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 1416 uath_dump_cmd(data->buf, data->buflen, '+'); 1417 } 1418 #endif 1419 1420 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1421 UATH_STAT_INC(sc, st_tx_pending); 1422 sc->sc_tx_timer = 5; 1423 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1424 1425 return (0); 1426 } 1427 1428 static struct uath_data * 1429 _uath_getbuf(struct uath_softc *sc) 1430 { 1431 struct uath_data *bf; 1432 1433 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1434 if (bf != NULL) { 1435 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1436 UATH_STAT_DEC(sc, st_tx_inactive); 1437 } else 1438 bf = NULL; 1439 if (bf == NULL) 1440 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 1441 "out of xmit buffers"); 1442 return (bf); 1443 } 1444 1445 static struct uath_data * 1446 uath_getbuf(struct uath_softc *sc) 1447 { 1448 struct uath_data *bf; 1449 1450 UATH_ASSERT_LOCKED(sc); 1451 1452 bf = _uath_getbuf(sc); 1453 if (bf == NULL) { 1454 struct ifnet *ifp = sc->sc_ifp; 1455 1456 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1457 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1458 } 1459 return (bf); 1460 } 1461 1462 static int 1463 uath_set_ledstate(struct uath_softc *sc, int connected) 1464 { 1465 1466 DPRINTF(sc, UATH_DEBUG_LED, 1467 "set led state %sconnected\n", connected ? "" : "!"); 1468 connected = htobe32(connected); 1469 return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, 1470 &connected, sizeof connected, 0); 1471 } 1472 1473 static int 1474 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) 1475 { 1476 #ifdef UATH_DEBUG 1477 struct ifnet *ifp = sc->sc_ifp; 1478 struct ieee80211com *ic = ifp->if_l2com; 1479 #endif 1480 struct uath_cmd_reset reset; 1481 1482 memset(&reset, 0, sizeof(reset)); 1483 if (IEEE80211_IS_CHAN_2GHZ(c)) 1484 reset.flags |= htobe32(UATH_CHAN_2GHZ); 1485 if (IEEE80211_IS_CHAN_5GHZ(c)) 1486 reset.flags |= htobe32(UATH_CHAN_5GHZ); 1487 /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ 1488 if (IEEE80211_IS_CHAN_OFDM(c)) 1489 reset.flags |= htobe32(UATH_CHAN_OFDM); 1490 else if (IEEE80211_IS_CHAN_CCK(c)) 1491 reset.flags |= htobe32(UATH_CHAN_CCK); 1492 /* turbo can be used in either 2GHz or 5GHz */ 1493 if (c->ic_flags & IEEE80211_CHAN_TURBO) 1494 reset.flags |= htobe32(UATH_CHAN_TURBO); 1495 reset.freq = htobe32(c->ic_freq); 1496 reset.maxrdpower = htobe32(50); /* XXX */ 1497 reset.channelchange = htobe32(1); 1498 reset.keeprccontent = htobe32(0); 1499 1500 DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", 1501 ieee80211_chan2ieee(ic, c), 1502 be32toh(reset.flags), be32toh(reset.freq)); 1503 return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); 1504 } 1505 1506 static int 1507 uath_reset_tx_queues(struct uath_softc *sc) 1508 { 1509 int ac, error; 1510 1511 DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); 1512 for (ac = 0; ac < 4; ac++) { 1513 const uint32_t qid = htobe32(ac); 1514 1515 error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, 1516 sizeof qid, 0); 1517 if (error != 0) 1518 break; 1519 } 1520 return (error); 1521 } 1522 1523 static int 1524 uath_wme_init(struct uath_softc *sc) 1525 { 1526 /* XXX get from net80211 */ 1527 static const struct uath_wme_settings uath_wme_11g[4] = { 1528 { 7, 4, 10, 0, 0 }, /* Background */ 1529 { 3, 4, 10, 0, 0 }, /* Best-Effort */ 1530 { 3, 3, 4, 26, 0 }, /* Video */ 1531 { 2, 2, 3, 47, 0 } /* Voice */ 1532 }; 1533 struct uath_cmd_txq_setup qinfo; 1534 int ac, error; 1535 1536 DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); 1537 for (ac = 0; ac < 4; ac++) { 1538 qinfo.qid = htobe32(ac); 1539 qinfo.len = htobe32(sizeof(qinfo.attr)); 1540 qinfo.attr.priority = htobe32(ac); /* XXX */ 1541 qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); 1542 qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); 1543 qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); 1544 qinfo.attr.bursttime = htobe32(UATH_TXOP_TO_US( 1545 uath_wme_11g[ac].txop)); 1546 qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ 1547 qinfo.attr.qflags = htobe32(1); /* XXX? */ 1548 1549 error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, 1550 sizeof qinfo, 0); 1551 if (error != 0) 1552 break; 1553 } 1554 return (error); 1555 } 1556 1557 static int 1558 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1559 { 1560 struct ieee80211com *ic = ifp->if_l2com; 1561 struct ifreq *ifr = (struct ifreq *) data; 1562 struct uath_softc *sc = ifp->if_softc; 1563 int error; 1564 int startall = 0; 1565 1566 UATH_LOCK(sc); 1567 error = (sc->sc_flags & UATH_FLAG_INVALID) ? ENXIO : 0; 1568 UATH_UNLOCK(sc); 1569 if (error) 1570 return (error); 1571 1572 switch (cmd) { 1573 case SIOCSIFFLAGS: 1574 if (ifp->if_flags & IFF_UP) { 1575 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1576 uath_init(ifp->if_softc); 1577 startall = 1; 1578 } 1579 } else { 1580 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1581 uath_stop(ifp); 1582 } 1583 if (startall) 1584 ieee80211_start_all(ic); 1585 break; 1586 case SIOCGIFMEDIA: 1587 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1588 break; 1589 case SIOCGIFADDR: 1590 error = ether_ioctl(ifp, cmd, data); 1591 break; 1592 default: 1593 error = EINVAL; 1594 break; 1595 } 1596 1597 return (error); 1598 } 1599 1600 static int 1601 uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1602 struct uath_data *data) 1603 { 1604 struct ieee80211vap *vap = ni->ni_vap; 1605 struct uath_chunk *chunk; 1606 struct uath_tx_desc *desc; 1607 const struct ieee80211_frame *wh; 1608 struct ieee80211_key *k; 1609 int framelen, msglen; 1610 1611 UATH_ASSERT_LOCKED(sc); 1612 1613 data->ni = ni; 1614 data->m = m0; 1615 chunk = (struct uath_chunk *)data->buf; 1616 desc = (struct uath_tx_desc *)(chunk + 1); 1617 1618 if (ieee80211_radiotap_active_vap(vap)) { 1619 struct uath_tx_radiotap_header *tap = &sc->sc_txtap; 1620 1621 tap->wt_flags = 0; 1622 if (m0->m_flags & M_FRAG) 1623 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1624 1625 ieee80211_radiotap_tx(vap, m0); 1626 } 1627 1628 wh = mtod(m0, struct ieee80211_frame *); 1629 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1630 k = ieee80211_crypto_encap(ni, m0); 1631 if (k == NULL) { 1632 m_freem(m0); 1633 return (ENOBUFS); 1634 } 1635 1636 /* packet header may have moved, reset our local pointer */ 1637 wh = mtod(m0, struct ieee80211_frame *); 1638 } 1639 m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); 1640 1641 framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1642 msglen = framelen + sizeof (struct uath_tx_desc); 1643 data->buflen = msglen + sizeof (struct uath_chunk); 1644 1645 /* one chunk only for now */ 1646 chunk->seqnum = sc->sc_seqnum++; 1647 chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; 1648 if (m0->m_flags & M_LASTFRAG) 1649 chunk->flags |= UATH_CFLAGS_FINAL; 1650 chunk->flags = UATH_CFLAGS_FINAL; 1651 chunk->length = htobe16(msglen); 1652 1653 /* fill Tx descriptor */ 1654 desc->msglen = htobe32(msglen); 1655 /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ 1656 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1657 desc->type = htobe32(WDCMSG_SEND); 1658 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1659 case IEEE80211_FC0_TYPE_CTL: 1660 case IEEE80211_FC0_TYPE_MGT: 1661 /* NB: force all management frames to highest queue */ 1662 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1663 /* NB: force all management frames to highest queue */ 1664 desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); 1665 } else 1666 desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); 1667 break; 1668 case IEEE80211_FC0_TYPE_DATA: 1669 /* XXX multicast frames should honor mcastrate */ 1670 desc->txqid = htobe32(M_WME_GETAC(m0)); 1671 break; 1672 default: 1673 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1674 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1675 m_freem(m0); 1676 return (EIO); 1677 } 1678 if (vap->iv_state == IEEE80211_S_AUTH || 1679 vap->iv_state == IEEE80211_S_ASSOC || 1680 vap->iv_state == IEEE80211_S_RUN) 1681 desc->connid = htobe32(UATH_ID_BSS); 1682 else 1683 desc->connid = htobe32(UATH_ID_INVALID); 1684 desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); 1685 desc->buflen = htobe32(m0->m_pkthdr.len); 1686 1687 #ifdef UATH_DEBUG 1688 DPRINTF(sc, UATH_DEBUG_XMIT, 1689 "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", 1690 desc->msgid, framelen, msglen, be32toh(desc->connid), 1691 be32toh(desc->txqid)); 1692 if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) 1693 uath_dump_cmd(data->buf, data->buflen, '+'); 1694 #endif 1695 1696 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1697 UATH_STAT_INC(sc, st_tx_pending); 1698 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1699 1700 return (0); 1701 } 1702 1703 /* 1704 * Cleanup driver resources when we run out of buffers while processing 1705 * fragments; return the tx buffers allocated and drop node references. 1706 */ 1707 static void 1708 uath_txfrag_cleanup(struct uath_softc *sc, 1709 uath_datahead *frags, struct ieee80211_node *ni) 1710 { 1711 struct uath_data *bf, *next; 1712 1713 UATH_ASSERT_LOCKED(sc); 1714 1715 STAILQ_FOREACH_SAFE(bf, frags, next, next) { 1716 /* NB: bf assumed clean */ 1717 STAILQ_REMOVE_HEAD(frags, next); 1718 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1719 UATH_STAT_INC(sc, st_tx_inactive); 1720 ieee80211_node_decref(ni); 1721 } 1722 } 1723 1724 /* 1725 * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump 1726 * the node reference count to reflect the held reference to be setup by 1727 * uath_tx_start. 1728 */ 1729 static int 1730 uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, 1731 struct mbuf *m0, struct ieee80211_node *ni) 1732 { 1733 struct mbuf *m; 1734 struct uath_data *bf; 1735 1736 UATH_ASSERT_LOCKED(sc); 1737 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1738 bf = uath_getbuf(sc); 1739 if (bf == NULL) { /* out of buffers, cleanup */ 1740 uath_txfrag_cleanup(sc, frags, ni); 1741 break; 1742 } 1743 ieee80211_node_incref(ni); 1744 STAILQ_INSERT_TAIL(frags, bf, next); 1745 } 1746 1747 return !STAILQ_EMPTY(frags); 1748 } 1749 1750 /* 1751 * Reclaim mbuf resources. For fragmented frames we need to claim each frag 1752 * chained with m_nextpkt. 1753 */ 1754 static void 1755 uath_freetx(struct mbuf *m) 1756 { 1757 struct mbuf *next; 1758 1759 do { 1760 next = m->m_nextpkt; 1761 m->m_nextpkt = NULL; 1762 m_freem(m); 1763 } while ((m = next) != NULL); 1764 } 1765 1766 static void 1767 uath_start(struct ifnet *ifp) 1768 { 1769 struct uath_data *bf; 1770 struct uath_softc *sc = ifp->if_softc; 1771 struct ieee80211_node *ni; 1772 struct mbuf *m, *next; 1773 uath_datahead frags; 1774 1775 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1776 (sc->sc_flags & UATH_FLAG_INVALID)) 1777 return; 1778 1779 UATH_LOCK(sc); 1780 for (;;) { 1781 bf = uath_getbuf(sc); 1782 if (bf == NULL) 1783 break; 1784 1785 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1786 if (m == NULL) { 1787 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1788 UATH_STAT_INC(sc, st_tx_inactive); 1789 break; 1790 } 1791 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1792 m->m_pkthdr.rcvif = NULL; 1793 1794 /* 1795 * Check for fragmentation. If this frame has been broken up 1796 * verify we have enough buffers to send all the fragments 1797 * so all go out or none... 1798 */ 1799 STAILQ_INIT(&frags); 1800 if ((m->m_flags & M_FRAG) && 1801 !uath_txfrag_setup(sc, &frags, m, ni)) { 1802 DPRINTF(sc, UATH_DEBUG_XMIT, 1803 "%s: out of txfrag buffers\n", __func__); 1804 uath_freetx(m); 1805 goto bad; 1806 } 1807 sc->sc_seqnum = 0; 1808 nextfrag: 1809 /* 1810 * Pass the frame to the h/w for transmission. 1811 * Fragmented frames have each frag chained together 1812 * with m_nextpkt. We know there are sufficient uath_data's 1813 * to send all the frags because of work done by 1814 * uath_txfrag_setup. 1815 */ 1816 next = m->m_nextpkt; 1817 if (uath_tx_start(sc, m, ni, bf) != 0) { 1818 bad: 1819 ifp->if_oerrors++; 1820 reclaim: 1821 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1822 UATH_STAT_INC(sc, st_tx_inactive); 1823 uath_txfrag_cleanup(sc, &frags, ni); 1824 ieee80211_free_node(ni); 1825 continue; 1826 } 1827 1828 if (next != NULL) { 1829 /* 1830 * Beware of state changing between frags. 1831 XXX check sta power-save state? 1832 */ 1833 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1834 DPRINTF(sc, UATH_DEBUG_XMIT, 1835 "%s: flush fragmented packet, state %s\n", 1836 __func__, 1837 ieee80211_state_name[ni->ni_vap->iv_state]); 1838 uath_freetx(next); 1839 goto reclaim; 1840 } 1841 m = next; 1842 bf = STAILQ_FIRST(&frags); 1843 KASSERT(bf != NULL, ("no buf for txfrag")); 1844 STAILQ_REMOVE_HEAD(&frags, next); 1845 goto nextfrag; 1846 } 1847 1848 sc->sc_tx_timer = 5; 1849 } 1850 UATH_UNLOCK(sc); 1851 } 1852 1853 static int 1854 uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1855 const struct ieee80211_bpf_params *params) 1856 { 1857 struct ieee80211com *ic = ni->ni_ic; 1858 struct ifnet *ifp = ic->ic_ifp; 1859 struct uath_data *bf; 1860 struct uath_softc *sc = ifp->if_softc; 1861 1862 /* prevent management frames from being sent if we're not ready */ 1863 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1864 !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1865 m_freem(m); 1866 ieee80211_free_node(ni); 1867 return (ENETDOWN); 1868 } 1869 1870 UATH_LOCK(sc); 1871 /* grab a TX buffer */ 1872 bf = uath_getbuf(sc); 1873 if (bf == NULL) { 1874 ieee80211_free_node(ni); 1875 m_freem(m); 1876 UATH_UNLOCK(sc); 1877 return (ENOBUFS); 1878 } 1879 1880 sc->sc_seqnum = 0; 1881 if (uath_tx_start(sc, m, ni, bf) != 0) { 1882 ieee80211_free_node(ni); 1883 ifp->if_oerrors++; 1884 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1885 UATH_STAT_INC(sc, st_tx_inactive); 1886 UATH_UNLOCK(sc); 1887 return (EIO); 1888 } 1889 UATH_UNLOCK(sc); 1890 1891 sc->sc_tx_timer = 5; 1892 return (0); 1893 } 1894 1895 static void 1896 uath_scan_start(struct ieee80211com *ic) 1897 { 1898 /* do nothing */ 1899 } 1900 1901 static void 1902 uath_scan_end(struct ieee80211com *ic) 1903 { 1904 /* do nothing */ 1905 } 1906 1907 static void 1908 uath_set_channel(struct ieee80211com *ic) 1909 { 1910 struct ifnet *ifp = ic->ic_ifp; 1911 struct uath_softc *sc = ifp->if_softc; 1912 1913 UATH_LOCK(sc); 1914 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1915 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1916 UATH_UNLOCK(sc); 1917 return; 1918 } 1919 (void)uath_switch_channel(sc, ic->ic_curchan); 1920 UATH_UNLOCK(sc); 1921 } 1922 1923 static int 1924 uath_set_rxmulti_filter(struct uath_softc *sc) 1925 { 1926 /* XXX broken */ 1927 return (0); 1928 } 1929 static void 1930 uath_update_mcast(struct ifnet *ifp) 1931 { 1932 struct uath_softc *sc = ifp->if_softc; 1933 1934 UATH_LOCK(sc); 1935 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1936 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1937 UATH_UNLOCK(sc); 1938 return; 1939 } 1940 /* 1941 * this is for avoiding the race condition when we're try to 1942 * connect to the AP with WPA. 1943 */ 1944 if (sc->sc_flags & UATH_FLAG_INITDONE) 1945 (void)uath_set_rxmulti_filter(sc); 1946 UATH_UNLOCK(sc); 1947 } 1948 1949 static void 1950 uath_update_promisc(struct ifnet *ifp) 1951 { 1952 struct uath_softc *sc = ifp->if_softc; 1953 1954 UATH_LOCK(sc); 1955 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1956 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1957 UATH_UNLOCK(sc); 1958 return; 1959 } 1960 if (sc->sc_flags & UATH_FLAG_INITDONE) { 1961 uath_set_rxfilter(sc, 1962 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1963 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | 1964 UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); 1965 } 1966 UATH_UNLOCK(sc); 1967 } 1968 1969 static int 1970 uath_create_connection(struct uath_softc *sc, uint32_t connid) 1971 { 1972 const struct ieee80211_rateset *rs; 1973 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1974 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1975 struct ieee80211_node *ni; 1976 struct uath_cmd_create_connection create; 1977 1978 ni = ieee80211_ref_node(vap->iv_bss); 1979 memset(&create, 0, sizeof(create)); 1980 create.connid = htobe32(connid); 1981 create.bssid = htobe32(0); 1982 /* XXX packed or not? */ 1983 create.size = htobe32(sizeof(struct uath_cmd_rateset)); 1984 1985 rs = &ni->ni_rates; 1986 create.connattr.rateset.length = rs->rs_nrates; 1987 bcopy(rs->rs_rates, &create.connattr.rateset.set[0], 1988 rs->rs_nrates); 1989 1990 /* XXX turbo */ 1991 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 1992 create.connattr.wlanmode = htobe32(WLAN_MODE_11a); 1993 else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) 1994 create.connattr.wlanmode = htobe32(WLAN_MODE_11g); 1995 else 1996 create.connattr.wlanmode = htobe32(WLAN_MODE_11b); 1997 ieee80211_free_node(ni); 1998 1999 return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, 2000 sizeof create, 0); 2001 } 2002 2003 static int 2004 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) 2005 { 2006 struct uath_cmd_rates rates; 2007 2008 memset(&rates, 0, sizeof(rates)); 2009 rates.connid = htobe32(UATH_ID_BSS); /* XXX */ 2010 rates.size = htobe32(sizeof(struct uath_cmd_rateset)); 2011 /* XXX bounds check rs->rs_nrates */ 2012 rates.rateset.length = rs->rs_nrates; 2013 bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); 2014 2015 DPRINTF(sc, UATH_DEBUG_RATES, 2016 "setting supported rates nrates=%d\n", rs->rs_nrates); 2017 return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, 2018 &rates, sizeof rates, 0); 2019 } 2020 2021 static int 2022 uath_write_associd(struct uath_softc *sc) 2023 { 2024 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2025 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2026 struct ieee80211_node *ni; 2027 struct uath_cmd_set_associd associd; 2028 2029 ni = ieee80211_ref_node(vap->iv_bss); 2030 memset(&associd, 0, sizeof(associd)); 2031 associd.defaultrateix = htobe32(1); /* XXX */ 2032 associd.associd = htobe32(ni->ni_associd); 2033 associd.timoffset = htobe32(0x3b); /* XXX */ 2034 IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); 2035 ieee80211_free_node(ni); 2036 return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, 2037 sizeof associd, 0); 2038 } 2039 2040 static int 2041 uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) 2042 { 2043 struct uath_cmd_ledsteady led; 2044 2045 led.lednum = htobe32(lednum); 2046 led.ledmode = htobe32(ledmode); 2047 2048 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", 2049 (lednum == UATH_LED_LINK) ? "link" : "activity", 2050 ledmode ? "on" : "off"); 2051 return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); 2052 } 2053 2054 static int 2055 uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, 2056 int blinkrate, int slowmode) 2057 { 2058 struct uath_cmd_ledblink led; 2059 2060 led.lednum = htobe32(lednum); 2061 led.ledmode = htobe32(ledmode); 2062 led.blinkrate = htobe32(blinkrate); 2063 led.slowmode = htobe32(slowmode); 2064 2065 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", 2066 (lednum == UATH_LED_LINK) ? "link" : "activity", 2067 ledmode ? "on" : "off"); 2068 return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); 2069 } 2070 2071 static int 2072 uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2073 { 2074 enum ieee80211_state ostate = vap->iv_state; 2075 int error; 2076 struct ieee80211_node *ni; 2077 struct ieee80211com *ic = vap->iv_ic; 2078 struct uath_softc *sc = ic->ic_ifp->if_softc; 2079 struct uath_vap *uvp = UATH_VAP(vap); 2080 2081 DPRINTF(sc, UATH_DEBUG_STATE, 2082 "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], 2083 ieee80211_state_name[nstate]); 2084 2085 IEEE80211_UNLOCK(ic); 2086 UATH_LOCK(sc); 2087 callout_stop(&sc->stat_ch); 2088 callout_stop(&sc->watchdog_ch); 2089 ni = ieee80211_ref_node(vap->iv_bss); 2090 2091 switch (nstate) { 2092 case IEEE80211_S_INIT: 2093 if (ostate == IEEE80211_S_RUN) { 2094 /* turn link and activity LEDs off */ 2095 uath_set_ledstate(sc, 0); 2096 } 2097 break; 2098 2099 case IEEE80211_S_SCAN: 2100 break; 2101 2102 case IEEE80211_S_AUTH: 2103 /* XXX good place? set RTS threshold */ 2104 uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); 2105 /* XXX bad place */ 2106 error = uath_set_keys(sc, vap); 2107 if (error != 0) { 2108 device_printf(sc->sc_dev, 2109 "could not set crypto keys, error %d\n", error); 2110 break; 2111 } 2112 if (uath_switch_channel(sc, ni->ni_chan) != 0) { 2113 device_printf(sc->sc_dev, "could not switch channel\n"); 2114 break; 2115 } 2116 if (uath_create_connection(sc, UATH_ID_BSS) != 0) { 2117 device_printf(sc->sc_dev, 2118 "could not create connection\n"); 2119 break; 2120 } 2121 break; 2122 2123 case IEEE80211_S_ASSOC: 2124 if (uath_set_rates(sc, &ni->ni_rates) != 0) { 2125 device_printf(sc->sc_dev, 2126 "could not set negotiated rate set\n"); 2127 break; 2128 } 2129 break; 2130 2131 case IEEE80211_S_RUN: 2132 /* XXX monitor mode doesn't be tested */ 2133 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2134 uath_set_ledstate(sc, 1); 2135 break; 2136 } 2137 2138 /* 2139 * Tx rate is controlled by firmware, report the maximum 2140 * negotiated rate in ifconfig output. 2141 */ 2142 ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; 2143 2144 if (uath_write_associd(sc) != 0) { 2145 device_printf(sc->sc_dev, 2146 "could not write association id\n"); 2147 break; 2148 } 2149 /* turn link LED on */ 2150 uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); 2151 /* make activity LED blink */ 2152 uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); 2153 /* set state to associated */ 2154 uath_set_ledstate(sc, 1); 2155 2156 /* start statistics timer */ 2157 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2158 break; 2159 default: 2160 break; 2161 } 2162 ieee80211_free_node(ni); 2163 UATH_UNLOCK(sc); 2164 IEEE80211_LOCK(ic); 2165 return (uvp->newstate(vap, nstate, arg)); 2166 } 2167 2168 static int 2169 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, 2170 int index) 2171 { 2172 #if 0 2173 struct uath_cmd_crypto crypto; 2174 int i; 2175 2176 memset(&crypto, 0, sizeof(crypto)); 2177 crypto.keyidx = htobe32(index); 2178 crypto.magic1 = htobe32(1); 2179 crypto.size = htobe32(368); 2180 crypto.mask = htobe32(0xffff); 2181 crypto.flags = htobe32(0x80000068); 2182 if (index != UATH_DEFAULT_KEY) 2183 crypto.flags |= htobe32(index << 16); 2184 memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); 2185 2186 /* 2187 * Each byte of the key must be XOR'ed with 10101010 before being 2188 * transmitted to the firmware. 2189 */ 2190 for (i = 0; i < wk->wk_keylen; i++) 2191 crypto.key[i] = wk->wk_key[i] ^ 0xaa; 2192 2193 DPRINTF(sc, UATH_DEBUG_CRYPTO, 2194 "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); 2195 return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, 2196 sizeof crypto, 0); 2197 #else 2198 /* XXX support H/W cryto */ 2199 return (0); 2200 #endif 2201 } 2202 2203 static int 2204 uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) 2205 { 2206 int i, error; 2207 2208 error = 0; 2209 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2210 const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; 2211 2212 if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { 2213 error = uath_set_key(sc, wk, i); 2214 if (error) 2215 return (error); 2216 } 2217 } 2218 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2219 error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], 2220 UATH_DEFAULT_KEY); 2221 } 2222 return (error); 2223 } 2224 2225 #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2226 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2227 2228 static void 2229 uath_sysctl_node(struct uath_softc *sc) 2230 { 2231 struct sysctl_ctx_list *ctx; 2232 struct sysctl_oid_list *child; 2233 struct sysctl_oid *tree; 2234 struct uath_stat *stats; 2235 2236 stats = &sc->sc_stat; 2237 ctx = device_get_sysctl_ctx(sc->sc_dev); 2238 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2239 2240 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2241 NULL, "UATH statistics"); 2242 child = SYSCTL_CHILDREN(tree); 2243 UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", 2244 &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); 2245 UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, 2246 "Invalid length"); 2247 UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, 2248 "Multi chunks"); 2249 UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", 2250 &stats->st_toobigrxpkt, "Too big rx packets"); 2251 UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", 2252 &stats->st_stopinprogress, "Stop in progress"); 2253 UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, 2254 "CRC errors"); 2255 UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, 2256 "PHY errors"); 2257 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", 2258 &stats->st_decrypt_crcerr, "Decryption CRC errors"); 2259 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", 2260 &stats->st_decrypt_micerr, "Decryption Misc errors"); 2261 UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, 2262 "Decomp errors"); 2263 UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, 2264 "Key errors"); 2265 UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, 2266 "Unknown errors"); 2267 2268 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", 2269 &stats->st_cmd_active, "Active numbers in Command queue"); 2270 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", 2271 &stats->st_cmd_inactive, "Inactive numbers in Command queue"); 2272 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", 2273 &stats->st_cmd_pending, "Pending numbers in Command queue"); 2274 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", 2275 &stats->st_cmd_waiting, "Waiting numbers in Command queue"); 2276 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", 2277 &stats->st_rx_active, "Active numbers in RX queue"); 2278 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", 2279 &stats->st_rx_inactive, "Inactive numbers in RX queue"); 2280 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2281 &stats->st_tx_active, "Active numbers in TX queue"); 2282 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2283 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2284 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2285 &stats->st_tx_pending, "Pending numbers in TX queue"); 2286 } 2287 2288 #undef UATH_SYSCTL_STAT_ADD32 2289 2290 static void 2291 uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) 2292 { 2293 struct uath_cmd_hdr *hdr; 2294 int dlen; 2295 2296 hdr = (struct uath_cmd_hdr *)cmd->buf; 2297 /* NB: msgid is passed thru w/o byte swapping */ 2298 #ifdef UATH_DEBUG 2299 if (sc->sc_debug & UATH_DEBUG_CMDS) { 2300 int len = be32toh(hdr->len); 2301 printf("%s: %s [ix %u] len %u status %u\n", 2302 __func__, uath_codename(be32toh(hdr->code)), 2303 hdr->msgid, len, be32toh(hdr->magic)); 2304 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 2305 uath_dump_cmd(cmd->buf, 2306 len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); 2307 } 2308 #endif 2309 hdr->code = be32toh(hdr->code); 2310 hdr->len = be32toh(hdr->len); 2311 hdr->magic = be32toh(hdr->magic); /* target status on return */ 2312 2313 switch (hdr->code & 0xff) { 2314 /* reply to a read command */ 2315 default: 2316 dlen = hdr->len - sizeof(*hdr); 2317 if (dlen < 0) { 2318 device_printf(sc->sc_dev, 2319 "Invalid header length %d\n", dlen); 2320 return; 2321 } 2322 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2323 "%s: code %d data len %u\n", 2324 __func__, hdr->code & 0xff, dlen); 2325 /* 2326 * The first response from the target after the 2327 * HOST_AVAILABLE has an invalid msgid so we must 2328 * treat it specially. 2329 */ 2330 if (hdr->msgid < UATH_CMD_LIST_COUNT) { 2331 uint32_t *rp = (uint32_t *)(hdr+1); 2332 u_int olen; 2333 2334 if (!(sizeof(*hdr) <= hdr->len && 2335 hdr->len < UATH_MAX_CMDSZ)) { 2336 device_printf(sc->sc_dev, 2337 "%s: invalid WDC msg length %u; " 2338 "msg ignored\n", __func__, hdr->len); 2339 return; 2340 } 2341 /* 2342 * Calculate return/receive payload size; the 2343 * first word, if present, always gives the 2344 * number of bytes--unless it's 0 in which 2345 * case a single 32-bit word should be present. 2346 */ 2347 if (dlen >= (int)sizeof(uint32_t)) { 2348 olen = be32toh(rp[0]); 2349 dlen -= sizeof(uint32_t); 2350 if (olen == 0) { 2351 /* convention is 0 =>'s one word */ 2352 olen = sizeof(uint32_t); 2353 /* XXX KASSERT(olen == dlen ) */ 2354 } 2355 } else 2356 olen = 0; 2357 if (cmd->odata != NULL) { 2358 /* NB: cmd->olen validated in uath_cmd */ 2359 if (olen > (u_int)cmd->olen) { 2360 /* XXX complain? */ 2361 device_printf(sc->sc_dev, 2362 "%s: cmd 0x%x olen %u cmd olen %u\n", 2363 __func__, hdr->code, olen, 2364 cmd->olen); 2365 olen = cmd->olen; 2366 } 2367 if (olen > (u_int)dlen) { 2368 /* XXX complain, shouldn't happen */ 2369 device_printf(sc->sc_dev, 2370 "%s: cmd 0x%x olen %u dlen %u\n", 2371 __func__, hdr->code, olen, dlen); 2372 olen = dlen; 2373 } 2374 /* XXX have submitter do this */ 2375 /* copy answer into caller's supplied buffer */ 2376 bcopy(&rp[1], cmd->odata, olen); 2377 cmd->olen = olen; 2378 } 2379 } 2380 wakeup_one(cmd); /* wake up caller */ 2381 break; 2382 2383 case WDCMSG_TARGET_START: 2384 if (hdr->msgid >= UATH_CMD_LIST_COUNT) { 2385 /* XXX */ 2386 return; 2387 } 2388 dlen = hdr->len - sizeof(*hdr); 2389 if (dlen != (int)sizeof(uint32_t)) { 2390 /* XXX something wrong */ 2391 return; 2392 } 2393 /* XXX have submitter do this */ 2394 /* copy answer into caller's supplied buffer */ 2395 bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); 2396 cmd->olen = sizeof(uint32_t); 2397 wakeup_one(cmd); /* wake up caller */ 2398 break; 2399 2400 case WDCMSG_SEND_COMPLETE: 2401 /* this notification is sent when UATH_TX_NOTIFY is set */ 2402 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2403 "%s: received Tx notification\n", __func__); 2404 break; 2405 2406 case WDCMSG_TARGET_GET_STATS: 2407 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2408 "%s: received device statistics\n", __func__); 2409 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2410 break; 2411 } 2412 } 2413 2414 static void 2415 uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2416 { 2417 struct uath_softc *sc = usbd_xfer_softc(xfer); 2418 struct uath_cmd *cmd; 2419 struct usb_page_cache *pc; 2420 int actlen; 2421 2422 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2423 2424 UATH_ASSERT_LOCKED(sc); 2425 2426 switch (USB_GET_STATE(xfer)) { 2427 case USB_ST_TRANSFERRED: 2428 cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); 2429 if (cmd == NULL) 2430 goto setup; 2431 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); 2432 UATH_STAT_DEC(sc, st_cmd_waiting); 2433 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 2434 UATH_STAT_INC(sc, st_cmd_inactive); 2435 2436 KASSERT(actlen >= (int)sizeof(struct uath_cmd_hdr), 2437 ("short xfer error")); 2438 pc = usbd_xfer_get_frame(xfer, 0); 2439 usbd_copy_out(pc, 0, cmd->buf, actlen); 2440 uath_cmdeof(sc, cmd); 2441 case USB_ST_SETUP: 2442 setup: 2443 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2444 usbd_transfer_submit(xfer); 2445 break; 2446 default: 2447 if (error != USB_ERR_CANCELLED) { 2448 usbd_xfer_set_stall(xfer); 2449 goto setup; 2450 } 2451 break; 2452 } 2453 } 2454 2455 static void 2456 uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2457 { 2458 struct uath_softc *sc = usbd_xfer_softc(xfer); 2459 struct uath_cmd *cmd; 2460 2461 UATH_ASSERT_LOCKED(sc); 2462 2463 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2464 if (cmd != NULL && USB_GET_STATE(xfer) != USB_ST_SETUP) { 2465 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); 2466 UATH_STAT_DEC(sc, st_cmd_active); 2467 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? 2468 &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); 2469 if (cmd->flags & UATH_CMD_FLAG_READ) 2470 UATH_STAT_INC(sc, st_cmd_waiting); 2471 else 2472 UATH_STAT_INC(sc, st_cmd_inactive); 2473 } 2474 2475 switch (USB_GET_STATE(xfer)) { 2476 case USB_ST_TRANSFERRED: 2477 case USB_ST_SETUP: 2478 setup: 2479 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2480 if (cmd == NULL) { 2481 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2482 __func__); 2483 return; 2484 } 2485 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); 2486 UATH_STAT_DEC(sc, st_cmd_pending); 2487 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? 2488 &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); 2489 if (cmd->flags & UATH_CMD_FLAG_ASYNC) 2490 UATH_STAT_INC(sc, st_cmd_inactive); 2491 else 2492 UATH_STAT_INC(sc, st_cmd_active); 2493 2494 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2495 usbd_transfer_submit(xfer); 2496 break; 2497 default: 2498 if (error != USB_ERR_CANCELLED) { 2499 usbd_xfer_set_stall(xfer); 2500 goto setup; 2501 } 2502 break; 2503 } 2504 } 2505 2506 static void 2507 uath_update_rxstat(struct uath_softc *sc, uint32_t status) 2508 { 2509 2510 switch (status) { 2511 case UATH_STATUS_STOP_IN_PROGRESS: 2512 UATH_STAT_INC(sc, st_stopinprogress); 2513 break; 2514 case UATH_STATUS_CRC_ERR: 2515 UATH_STAT_INC(sc, st_crcerr); 2516 break; 2517 case UATH_STATUS_PHY_ERR: 2518 UATH_STAT_INC(sc, st_phyerr); 2519 break; 2520 case UATH_STATUS_DECRYPT_CRC_ERR: 2521 UATH_STAT_INC(sc, st_decrypt_crcerr); 2522 break; 2523 case UATH_STATUS_DECRYPT_MIC_ERR: 2524 UATH_STAT_INC(sc, st_decrypt_micerr); 2525 break; 2526 case UATH_STATUS_DECOMP_ERR: 2527 UATH_STAT_INC(sc, st_decomperr); 2528 break; 2529 case UATH_STATUS_KEY_ERR: 2530 UATH_STAT_INC(sc, st_keyerr); 2531 break; 2532 case UATH_STATUS_ERR: 2533 UATH_STAT_INC(sc, st_err); 2534 break; 2535 default: 2536 break; 2537 } 2538 } 2539 2540 static struct mbuf * 2541 uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, 2542 struct uath_rx_desc **pdesc) 2543 { 2544 struct uath_softc *sc = usbd_xfer_softc(xfer); 2545 struct ifnet *ifp = sc->sc_ifp; 2546 struct ieee80211com *ic = ifp->if_l2com; 2547 struct uath_chunk *chunk; 2548 struct uath_rx_desc *desc; 2549 struct mbuf *m = data->m, *mnew, *mp; 2550 uint16_t chunklen; 2551 int actlen; 2552 2553 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2554 2555 if (actlen < (int)UATH_MIN_RXBUFSZ) { 2556 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2557 "%s: wrong xfer size (len=%d)\n", __func__, actlen); 2558 ifp->if_ierrors++; 2559 return (NULL); 2560 } 2561 2562 chunk = (struct uath_chunk *)data->buf; 2563 if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { 2564 device_printf(sc->sc_dev, "%s: strange response\n", __func__); 2565 ifp->if_ierrors++; 2566 UATH_RESET_INTRX(sc); 2567 return (NULL); 2568 } 2569 2570 if (chunk->seqnum != sc->sc_intrx_nextnum) { 2571 DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", 2572 chunk->seqnum, sc->sc_intrx_nextnum); 2573 UATH_STAT_INC(sc, st_badchunkseqnum); 2574 if (sc->sc_intrx_head != NULL) 2575 m_freem(sc->sc_intrx_head); 2576 UATH_RESET_INTRX(sc); 2577 return (NULL); 2578 } 2579 2580 /* check multi-chunk frames */ 2581 if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || 2582 (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || 2583 chunk->flags & UATH_CFLAGS_RXMSG) 2584 UATH_STAT_INC(sc, st_multichunk); 2585 2586 chunklen = be16toh(chunk->length); 2587 if (chunk->flags & UATH_CFLAGS_FINAL) 2588 chunklen -= sizeof(struct uath_rx_desc); 2589 2590 if (chunklen > 0 && 2591 (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { 2592 /* we should use intermediate RX buffer */ 2593 if (chunk->seqnum == 0) 2594 UATH_RESET_INTRX(sc); 2595 if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + 2596 chunklen) > UATH_MAX_INTRX_SIZE) { 2597 UATH_STAT_INC(sc, st_invalidlen); 2598 ifp->if_iqdrops++; 2599 if (sc->sc_intrx_head != NULL) 2600 m_freem(sc->sc_intrx_head); 2601 UATH_RESET_INTRX(sc); 2602 return (NULL); 2603 } 2604 2605 m->m_len = chunklen; 2606 m->m_data += sizeof(struct uath_chunk); 2607 2608 if (sc->sc_intrx_head == NULL) { 2609 sc->sc_intrx_head = m; 2610 sc->sc_intrx_tail = m; 2611 } else { 2612 m->m_flags &= ~M_PKTHDR; 2613 sc->sc_intrx_tail->m_next = m; 2614 sc->sc_intrx_tail = m; 2615 } 2616 } 2617 sc->sc_intrx_len += chunklen; 2618 2619 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2620 if (mnew == NULL) { 2621 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2622 "%s: can't get new mbuf, drop frame\n", __func__); 2623 ifp->if_ierrors++; 2624 if (sc->sc_intrx_head != NULL) 2625 m_freem(sc->sc_intrx_head); 2626 UATH_RESET_INTRX(sc); 2627 return (NULL); 2628 } 2629 2630 data->m = mnew; 2631 data->buf = mtod(mnew, uint8_t *); 2632 2633 /* if the frame is not final continue the transfer */ 2634 if (!(chunk->flags & UATH_CFLAGS_FINAL)) { 2635 sc->sc_intrx_nextnum++; 2636 UATH_RESET_INTRX(sc); 2637 return (NULL); 2638 } 2639 2640 /* 2641 * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is 2642 * located at the end, 32-bit aligned 2643 */ 2644 desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? 2645 (struct uath_rx_desc *)(chunk + 1) : 2646 (struct uath_rx_desc *)(((uint8_t *)chunk) + 2647 sizeof(struct uath_chunk) + be16toh(chunk->length) - 2648 sizeof(struct uath_rx_desc)); 2649 *pdesc = desc; 2650 2651 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2652 "%s: frame len %u code %u status %u rate %u antenna %u " 2653 "rssi %d channel %u phyerror %u connix %u decrypterror %u " 2654 "keycachemiss %u\n", __func__, be32toh(desc->framelen) 2655 , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) 2656 , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) 2657 , be32toh(desc->phyerror), be32toh(desc->connix) 2658 , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); 2659 2660 if (be32toh(desc->len) > MCLBYTES) { 2661 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2662 "%s: bad descriptor (len=%d)\n", __func__, 2663 be32toh(desc->len)); 2664 ifp->if_iqdrops++; 2665 UATH_STAT_INC(sc, st_toobigrxpkt); 2666 if (sc->sc_intrx_head != NULL) 2667 m_freem(sc->sc_intrx_head); 2668 UATH_RESET_INTRX(sc); 2669 return (NULL); 2670 } 2671 2672 uath_update_rxstat(sc, be32toh(desc->status)); 2673 2674 /* finalize mbuf */ 2675 if (sc->sc_intrx_head == NULL) { 2676 m->m_pkthdr.rcvif = ifp; 2677 m->m_pkthdr.len = m->m_len = 2678 be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; 2679 m->m_data += sizeof(struct uath_chunk); 2680 } else { 2681 mp = sc->sc_intrx_head; 2682 mp->m_pkthdr.rcvif = ifp; 2683 mp->m_flags |= M_PKTHDR; 2684 mp->m_pkthdr.len = sc->sc_intrx_len; 2685 m = mp; 2686 } 2687 2688 /* there are a lot more fields in the RX descriptor */ 2689 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && 2690 ieee80211_radiotap_active(ic)) { 2691 struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; 2692 uint32_t tsf_hi = be32toh(desc->tstamp_high); 2693 uint32_t tsf_lo = be32toh(desc->tstamp_low); 2694 2695 /* XXX only get low order 24bits of tsf from h/w */ 2696 tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 2697 tap->wr_flags = 0; 2698 if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) 2699 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2700 /* XXX map other status to BADFCS? */ 2701 /* XXX ath h/w rate code, need to map */ 2702 tap->wr_rate = be32toh(desc->rate); 2703 tap->wr_antenna = be32toh(desc->antenna); 2704 tap->wr_antsignal = -95 + be32toh(desc->rssi); 2705 tap->wr_antnoise = -95; 2706 } 2707 2708 ifp->if_ipackets++; 2709 UATH_RESET_INTRX(sc); 2710 2711 return (m); 2712 } 2713 2714 static void 2715 uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2716 { 2717 struct uath_softc *sc = usbd_xfer_softc(xfer); 2718 struct ifnet *ifp = sc->sc_ifp; 2719 struct ieee80211com *ic = ifp->if_l2com; 2720 struct ieee80211_frame *wh; 2721 struct ieee80211_node *ni; 2722 struct mbuf *m = NULL; 2723 struct uath_data *data; 2724 struct uath_rx_desc *desc = NULL; 2725 int8_t nf; 2726 2727 UATH_ASSERT_LOCKED(sc); 2728 2729 switch (USB_GET_STATE(xfer)) { 2730 case USB_ST_TRANSFERRED: 2731 data = STAILQ_FIRST(&sc->sc_rx_active); 2732 if (data == NULL) 2733 goto setup; 2734 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2735 UATH_STAT_DEC(sc, st_rx_active); 2736 m = uath_data_rxeof(xfer, data, &desc); 2737 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2738 UATH_STAT_INC(sc, st_rx_inactive); 2739 /* FALLTHROUGH */ 2740 case USB_ST_SETUP: 2741 setup: 2742 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2743 if (data == NULL) 2744 return; 2745 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2746 UATH_STAT_DEC(sc, st_rx_inactive); 2747 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2748 UATH_STAT_INC(sc, st_rx_active); 2749 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2750 usbd_transfer_submit(xfer); 2751 2752 /* 2753 * To avoid LOR we should unlock our private mutex here to call 2754 * ieee80211_input() because here is at the end of a USB 2755 * callback and safe to unlock. 2756 */ 2757 if (sc->sc_flags & UATH_FLAG_INVALID) { 2758 if (m != NULL) 2759 m_freem(m); 2760 return; 2761 } 2762 UATH_UNLOCK(sc); 2763 if (m != NULL && desc != NULL) { 2764 wh = mtod(m, struct ieee80211_frame *); 2765 ni = ieee80211_find_rxnode(ic, 2766 (struct ieee80211_frame_min *)wh); 2767 nf = -95; /* XXX */ 2768 if (ni != NULL) { 2769 (void) ieee80211_input(ni, m, 2770 (int)be32toh(desc->rssi), nf); 2771 /* node is no longer needed */ 2772 ieee80211_free_node(ni); 2773 } else 2774 (void) ieee80211_input_all(ic, m, 2775 (int)be32toh(desc->rssi), nf); 2776 m = NULL; 2777 desc = NULL; 2778 } 2779 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2780 !IFQ_IS_EMPTY(&ifp->if_snd)) 2781 uath_start(ifp); 2782 UATH_LOCK(sc); 2783 break; 2784 default: 2785 /* needs it to the inactive queue due to a error. */ 2786 data = STAILQ_FIRST(&sc->sc_rx_active); 2787 if (data != NULL) { 2788 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2789 UATH_STAT_DEC(sc, st_rx_active); 2790 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2791 UATH_STAT_INC(sc, st_rx_inactive); 2792 } 2793 if (error != USB_ERR_CANCELLED) { 2794 usbd_xfer_set_stall(xfer); 2795 ifp->if_ierrors++; 2796 goto setup; 2797 } 2798 break; 2799 } 2800 } 2801 2802 static void 2803 uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) 2804 { 2805 struct uath_softc *sc = usbd_xfer_softc(xfer); 2806 struct ifnet *ifp = sc->sc_ifp; 2807 struct mbuf *m; 2808 2809 UATH_ASSERT_LOCKED(sc); 2810 2811 /* 2812 * Do any tx complete callback. Note this must be done before releasing 2813 * the node reference. 2814 */ 2815 if (data->m) { 2816 m = data->m; 2817 if (m->m_flags & M_TXCB && 2818 (sc->sc_flags & UATH_FLAG_INVALID) == 0) { 2819 /* XXX status? */ 2820 ieee80211_process_callback(data->ni, m, 0); 2821 } 2822 m_freem(m); 2823 data->m = NULL; 2824 } 2825 if (data->ni) { 2826 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2827 ieee80211_free_node(data->ni); 2828 data->ni = NULL; 2829 } 2830 sc->sc_tx_timer = 0; 2831 ifp->if_opackets++; 2832 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2833 } 2834 2835 static void 2836 uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2837 { 2838 struct uath_softc *sc = usbd_xfer_softc(xfer); 2839 struct ifnet *ifp = sc->sc_ifp; 2840 struct uath_data *data; 2841 2842 UATH_ASSERT_LOCKED(sc); 2843 2844 switch (USB_GET_STATE(xfer)) { 2845 case USB_ST_TRANSFERRED: 2846 data = STAILQ_FIRST(&sc->sc_tx_active); 2847 if (data == NULL) 2848 goto setup; 2849 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2850 UATH_STAT_DEC(sc, st_tx_active); 2851 uath_data_txeof(xfer, data); 2852 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2853 UATH_STAT_INC(sc, st_tx_inactive); 2854 /* FALLTHROUGH */ 2855 case USB_ST_SETUP: 2856 setup: 2857 data = STAILQ_FIRST(&sc->sc_tx_pending); 2858 if (data == NULL) { 2859 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2860 __func__); 2861 return; 2862 } 2863 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2864 UATH_STAT_DEC(sc, st_tx_pending); 2865 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2866 UATH_STAT_INC(sc, st_tx_active); 2867 2868 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2869 usbd_transfer_submit(xfer); 2870 2871 UATH_UNLOCK(sc); 2872 uath_start(ifp); 2873 UATH_LOCK(sc); 2874 break; 2875 default: 2876 data = STAILQ_FIRST(&sc->sc_tx_active); 2877 if (data == NULL) 2878 goto setup; 2879 if (data->ni != NULL) { 2880 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2881 ieee80211_free_node(data->ni); 2882 data->ni = NULL; 2883 ifp->if_oerrors++; 2884 } 2885 if (error != USB_ERR_CANCELLED) { 2886 usbd_xfer_set_stall(xfer); 2887 goto setup; 2888 } 2889 break; 2890 } 2891 } 2892 2893 static device_method_t uath_methods[] = { 2894 DEVMETHOD(device_probe, uath_match), 2895 DEVMETHOD(device_attach, uath_attach), 2896 DEVMETHOD(device_detach, uath_detach), 2897 DEVMETHOD_END 2898 }; 2899 static driver_t uath_driver = { 2900 .name = "uath", 2901 .methods = uath_methods, 2902 .size = sizeof(struct uath_softc) 2903 }; 2904 static devclass_t uath_devclass; 2905 2906 DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); 2907 MODULE_DEPEND(uath, wlan, 1, 1, 1); 2908 MODULE_DEPEND(uath, usb, 1, 1, 1); 2909 MODULE_VERSION(uath, 1); 2910