1 /*- 2 * Copyright (c) 2006 Sam Leffler, Errno Consulting 3 * Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 /* 32 * This driver is distantly derived from a driver of the same name 33 * by Damien Bergamini. The original copyright is included below: 34 * 35 * Copyright (c) 2006 36 * Damien Bergamini <damien.bergamini@free.fr> 37 * 38 * Permission to use, copy, modify, and distribute this software for any 39 * purpose with or without fee is hereby granted, provided that the above 40 * copyright notice and this permission notice appear in all copies. 41 * 42 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 43 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 44 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 45 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 46 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 47 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 48 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 /*- 55 * Driver for Atheros AR5523 USB parts. 56 * 57 * The driver requires firmware to be loaded into the device. This 58 * is done on device discovery from a user application (uathload) 59 * that is launched by devd when a device with suitable product ID 60 * is recognized. Once firmware has been loaded the device will 61 * reset the USB port and re-attach with the original product ID+1 62 * and this driver will be attached. The firmware is licensed for 63 * general use (royalty free) and may be incorporated in products. 64 * Note that the firmware normally packaged with the NDIS drivers 65 * for these devices does not work in this way and so does not work 66 * with this driver. 67 */ 68 #include <sys/param.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/systm.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/bus.h> 80 #include <sys/endian.h> 81 #include <sys/kdb.h> 82 83 #include <machine/bus.h> 84 #include <machine/resource.h> 85 #include <sys/rman.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/if_ether.h> 101 #include <netinet/ip.h> 102 #endif 103 104 #include <net80211/ieee80211_var.h> 105 #include <net80211/ieee80211_regdomain.h> 106 #include <net80211/ieee80211_radiotap.h> 107 108 #include <dev/usb/usb.h> 109 #include <dev/usb/usbdi.h> 110 #include "usbdevs.h" 111 112 #include <dev/usb/wlan/if_uathreg.h> 113 #include <dev/usb/wlan/if_uathvar.h> 114 115 static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); 116 117 static int uath_countrycode = CTRY_DEFAULT; /* country code */ 118 SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RWTUN, &uath_countrycode, 119 0, "country code"); 120 static int uath_regdomain = 0; /* regulatory domain */ 121 SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 122 0, "regulatory domain"); 123 124 #ifdef UATH_DEBUG 125 int uath_debug = 0; 126 SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RWTUN, &uath_debug, 0, 127 "uath debug level"); 128 enum { 129 UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 130 UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ 131 UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 132 UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ 133 UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ 134 UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ 135 UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ 136 UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ 137 UATH_DEBUG_CMDS = 0x00000100, /* commands */ 138 UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ 139 UATH_DEBUG_RESET = 0x00000400, /* reset processing */ 140 UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ 141 UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ 142 UATH_DEBUG_WME = 0x00002000, /* WME */ 143 UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ 144 UATH_DEBUG_RATES = 0x00008000, /* rates */ 145 UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ 146 UATH_DEBUG_LED = 0x00020000, /* LED */ 147 UATH_DEBUG_ANY = 0xffffffff 148 }; 149 #define DPRINTF(sc, m, fmt, ...) do { \ 150 if (sc->sc_debug & (m)) \ 151 printf(fmt, __VA_ARGS__); \ 152 } while (0) 153 #else 154 #define DPRINTF(sc, m, fmt, ...) do { \ 155 (void) sc; \ 156 } while (0) 157 #endif 158 159 /* unaligned little endian access */ 160 #define LE_READ_2(p) \ 161 ((u_int16_t) \ 162 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 163 #define LE_READ_4(p) \ 164 ((u_int32_t) \ 165 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 166 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 167 168 /* recognized device vendors/products */ 169 static const STRUCT_USB_HOST_ID uath_devs[] = { 170 #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 171 UATH_DEV(ACCTON, SMCWUSBTG2), 172 UATH_DEV(ATHEROS, AR5523), 173 UATH_DEV(ATHEROS2, AR5523_1), 174 UATH_DEV(ATHEROS2, AR5523_2), 175 UATH_DEV(ATHEROS2, AR5523_3), 176 UATH_DEV(CONCEPTRONIC, AR5523_1), 177 UATH_DEV(CONCEPTRONIC, AR5523_2), 178 UATH_DEV(DLINK, DWLAG122), 179 UATH_DEV(DLINK, DWLAG132), 180 UATH_DEV(DLINK, DWLG132), 181 UATH_DEV(DLINK2, DWA120), 182 UATH_DEV(GIGASET, AR5523), 183 UATH_DEV(GIGASET, SMCWUSBTG), 184 UATH_DEV(GLOBALSUN, AR5523_1), 185 UATH_DEV(GLOBALSUN, AR5523_2), 186 UATH_DEV(NETGEAR, WG111U), 187 UATH_DEV(NETGEAR3, WG111T), 188 UATH_DEV(NETGEAR3, WPN111), 189 UATH_DEV(NETGEAR3, WPN111_2), 190 UATH_DEV(UMEDIA, TEW444UBEU), 191 UATH_DEV(UMEDIA, AR5523_2), 192 UATH_DEV(WISTRONNEWEB, AR5523_1), 193 UATH_DEV(WISTRONNEWEB, AR5523_2), 194 UATH_DEV(ZCOM, AR5523) 195 #undef UATH_DEV 196 }; 197 198 static usb_callback_t uath_intr_rx_callback; 199 static usb_callback_t uath_intr_tx_callback; 200 static usb_callback_t uath_bulk_rx_callback; 201 static usb_callback_t uath_bulk_tx_callback; 202 203 static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { 204 [UATH_INTR_RX] = { 205 .type = UE_BULK, 206 .endpoint = 0x1, 207 .direction = UE_DIR_IN, 208 .bufsize = UATH_MAX_CMDSZ, 209 .flags = { 210 .pipe_bof = 1, 211 .short_xfer_ok = 1 212 }, 213 .callback = uath_intr_rx_callback 214 }, 215 [UATH_INTR_TX] = { 216 .type = UE_BULK, 217 .endpoint = 0x1, 218 .direction = UE_DIR_OUT, 219 .bufsize = UATH_MAX_CMDSZ * UATH_CMD_LIST_COUNT, 220 .flags = { 221 .force_short_xfer = 1, 222 .pipe_bof = 1, 223 }, 224 .callback = uath_intr_tx_callback, 225 .timeout = UATH_CMD_TIMEOUT 226 }, 227 [UATH_BULK_RX] = { 228 .type = UE_BULK, 229 .endpoint = 0x2, 230 .direction = UE_DIR_IN, 231 .bufsize = MCLBYTES, 232 .flags = { 233 .ext_buffer = 1, 234 .pipe_bof = 1, 235 .short_xfer_ok = 1 236 }, 237 .callback = uath_bulk_rx_callback 238 }, 239 [UATH_BULK_TX] = { 240 .type = UE_BULK, 241 .endpoint = 0x2, 242 .direction = UE_DIR_OUT, 243 .bufsize = UATH_MAX_TXBUFSZ * UATH_TX_DATA_LIST_COUNT, 244 .flags = { 245 .force_short_xfer = 1, 246 .pipe_bof = 1 247 }, 248 .callback = uath_bulk_tx_callback, 249 .timeout = UATH_DATA_TIMEOUT 250 } 251 }; 252 253 static struct ieee80211vap *uath_vap_create(struct ieee80211com *, 254 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 255 const uint8_t [IEEE80211_ADDR_LEN], 256 const uint8_t [IEEE80211_ADDR_LEN]); 257 static void uath_vap_delete(struct ieee80211vap *); 258 static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd []); 259 static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd []); 260 static int uath_host_available(struct uath_softc *); 261 static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); 262 static int uath_get_devcap(struct uath_softc *); 263 static struct uath_cmd * 264 uath_get_cmdbuf(struct uath_softc *); 265 static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, 266 int, void *, int, int); 267 static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, 268 int, int); 269 static void uath_stat(void *); 270 #ifdef UATH_DEBUG 271 static void uath_dump_cmd(const uint8_t *, int, char); 272 static const char * 273 uath_codename(int); 274 #endif 275 static int uath_get_devstatus(struct uath_softc *, 276 uint8_t macaddr[IEEE80211_ADDR_LEN]); 277 static int uath_get_status(struct uath_softc *, uint32_t, void *, int); 278 static int uath_alloc_rx_data_list(struct uath_softc *); 279 static int uath_alloc_tx_data_list(struct uath_softc *); 280 static void uath_free_rx_data_list(struct uath_softc *); 281 static void uath_free_tx_data_list(struct uath_softc *); 282 static int uath_init_locked(void *); 283 static void uath_init(void *); 284 static void uath_stop_locked(struct ifnet *); 285 static void uath_stop(struct ifnet *); 286 static int uath_ioctl(struct ifnet *, u_long, caddr_t); 287 static void uath_start(struct ifnet *); 288 static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, 289 const struct ieee80211_bpf_params *); 290 static void uath_scan_start(struct ieee80211com *); 291 static void uath_scan_end(struct ieee80211com *); 292 static void uath_set_channel(struct ieee80211com *); 293 static void uath_update_mcast(struct ifnet *); 294 static void uath_update_promisc(struct ifnet *); 295 static int uath_config(struct uath_softc *, uint32_t, uint32_t); 296 static int uath_config_multi(struct uath_softc *, uint32_t, const void *, 297 int); 298 static int uath_switch_channel(struct uath_softc *, 299 struct ieee80211_channel *); 300 static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); 301 static void uath_watchdog(void *); 302 static void uath_abort_xfers(struct uath_softc *); 303 static int uath_dataflush(struct uath_softc *); 304 static int uath_cmdflush(struct uath_softc *); 305 static int uath_flush(struct uath_softc *); 306 static int uath_set_ledstate(struct uath_softc *, int); 307 static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); 308 static int uath_reset_tx_queues(struct uath_softc *); 309 static int uath_wme_init(struct uath_softc *); 310 static struct uath_data * 311 uath_getbuf(struct uath_softc *); 312 static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, 313 int); 314 static int uath_set_key(struct uath_softc *, 315 const struct ieee80211_key *, int); 316 static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); 317 static void uath_sysctl_node(struct uath_softc *); 318 319 static int 320 uath_match(device_t dev) 321 { 322 struct usb_attach_arg *uaa = device_get_ivars(dev); 323 324 if (uaa->usb_mode != USB_MODE_HOST) 325 return (ENXIO); 326 if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) 327 return (ENXIO); 328 if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) 329 return (ENXIO); 330 331 return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); 332 } 333 334 static int 335 uath_attach(device_t dev) 336 { 337 struct uath_softc *sc = device_get_softc(dev); 338 struct usb_attach_arg *uaa = device_get_ivars(dev); 339 struct ieee80211com *ic; 340 struct ifnet *ifp; 341 uint8_t bands, iface_index = UATH_IFACE_INDEX; /* XXX */ 342 usb_error_t error; 343 uint8_t macaddr[IEEE80211_ADDR_LEN]; 344 345 sc->sc_dev = dev; 346 sc->sc_udev = uaa->device; 347 #ifdef UATH_DEBUG 348 sc->sc_debug = uath_debug; 349 #endif 350 device_set_usb_desc(dev); 351 352 /* 353 * Only post-firmware devices here. 354 */ 355 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 356 MTX_DEF); 357 callout_init(&sc->stat_ch, 0); 358 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 359 360 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 361 uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); 362 if (error) { 363 device_printf(dev, "could not allocate USB transfers, " 364 "err=%s\n", usbd_errstr(error)); 365 goto fail; 366 } 367 368 sc->sc_cmd_dma_buf = 369 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_INTR_TX], 0); 370 sc->sc_tx_dma_buf = 371 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_BULK_TX], 0); 372 373 /* 374 * Setup buffers for firmware commands. 375 */ 376 error = uath_alloc_cmd_list(sc, sc->sc_cmd); 377 if (error != 0) { 378 device_printf(sc->sc_dev, 379 "could not allocate Tx command list\n"); 380 goto fail1; 381 } 382 383 /* 384 * We're now ready to send+receive firmware commands. 385 */ 386 UATH_LOCK(sc); 387 error = uath_host_available(sc); 388 if (error != 0) { 389 device_printf(sc->sc_dev, "could not initialize adapter\n"); 390 goto fail3; 391 } 392 error = uath_get_devcap(sc); 393 if (error != 0) { 394 device_printf(sc->sc_dev, 395 "could not get device capabilities\n"); 396 goto fail3; 397 } 398 UATH_UNLOCK(sc); 399 400 /* Create device sysctl node. */ 401 uath_sysctl_node(sc); 402 403 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 404 if (ifp == NULL) { 405 device_printf(sc->sc_dev, "can not allocate ifnet\n"); 406 error = ENXIO; 407 goto fail2; 408 } 409 410 UATH_LOCK(sc); 411 error = uath_get_devstatus(sc, macaddr); 412 if (error != 0) { 413 device_printf(sc->sc_dev, "could not get device status\n"); 414 goto fail4; 415 } 416 417 /* 418 * Allocate xfers for Rx/Tx data pipes. 419 */ 420 error = uath_alloc_rx_data_list(sc); 421 if (error != 0) { 422 device_printf(sc->sc_dev, "could not allocate Rx data list\n"); 423 goto fail4; 424 } 425 error = uath_alloc_tx_data_list(sc); 426 if (error != 0) { 427 device_printf(sc->sc_dev, "could not allocate Tx data list\n"); 428 goto fail4; 429 } 430 UATH_UNLOCK(sc); 431 432 ifp->if_softc = sc; 433 if_initname(ifp, "uath", device_get_unit(sc->sc_dev)); 434 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 435 ifp->if_init = uath_init; 436 ifp->if_ioctl = uath_ioctl; 437 ifp->if_start = uath_start; 438 /* XXX UATH_TX_DATA_LIST_COUNT */ 439 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 440 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 441 IFQ_SET_READY(&ifp->if_snd); 442 443 ic = ifp->if_l2com; 444 ic->ic_ifp = ifp; 445 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 446 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 447 448 /* set device capabilities */ 449 ic->ic_caps = 450 IEEE80211_C_STA | /* station mode */ 451 IEEE80211_C_MONITOR | /* monitor mode supported */ 452 IEEE80211_C_TXPMGT | /* tx power management */ 453 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 454 IEEE80211_C_SHSLOT | /* short slot time supported */ 455 IEEE80211_C_WPA | /* 802.11i */ 456 IEEE80211_C_BGSCAN | /* capable of bg scanning */ 457 IEEE80211_C_TXFRAG; /* handle tx frags */ 458 459 /* put a regulatory domain to reveal informations. */ 460 uath_regdomain = sc->sc_devcap.regDomain; 461 462 bands = 0; 463 setbit(&bands, IEEE80211_MODE_11B); 464 setbit(&bands, IEEE80211_MODE_11G); 465 if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) 466 setbit(&bands, IEEE80211_MODE_11A); 467 /* XXX turbo */ 468 ieee80211_init_channels(ic, NULL, &bands); 469 470 ieee80211_ifattach(ic, macaddr); 471 ic->ic_raw_xmit = uath_raw_xmit; 472 ic->ic_scan_start = uath_scan_start; 473 ic->ic_scan_end = uath_scan_end; 474 ic->ic_set_channel = uath_set_channel; 475 476 ic->ic_vap_create = uath_vap_create; 477 ic->ic_vap_delete = uath_vap_delete; 478 ic->ic_update_mcast = uath_update_mcast; 479 ic->ic_update_promisc = uath_update_promisc; 480 481 ieee80211_radiotap_attach(ic, 482 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 483 UATH_TX_RADIOTAP_PRESENT, 484 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 485 UATH_RX_RADIOTAP_PRESENT); 486 487 if (bootverbose) 488 ieee80211_announce(ic); 489 490 return (0); 491 492 fail4: if_free(ifp); 493 fail3: UATH_UNLOCK(sc); 494 fail2: uath_free_cmd_list(sc, sc->sc_cmd); 495 fail1: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 496 fail: 497 return (error); 498 } 499 500 static int 501 uath_detach(device_t dev) 502 { 503 struct uath_softc *sc = device_get_softc(dev); 504 struct ifnet *ifp = sc->sc_ifp; 505 struct ieee80211com *ic = ifp->if_l2com; 506 unsigned int x; 507 508 /* 509 * Prevent further allocations from RX/TX/CMD 510 * data lists and ioctls 511 */ 512 UATH_LOCK(sc); 513 sc->sc_flags |= UATH_FLAG_INVALID; 514 515 STAILQ_INIT(&sc->sc_rx_active); 516 STAILQ_INIT(&sc->sc_rx_inactive); 517 518 STAILQ_INIT(&sc->sc_tx_active); 519 STAILQ_INIT(&sc->sc_tx_inactive); 520 STAILQ_INIT(&sc->sc_tx_pending); 521 522 STAILQ_INIT(&sc->sc_cmd_active); 523 STAILQ_INIT(&sc->sc_cmd_pending); 524 STAILQ_INIT(&sc->sc_cmd_waiting); 525 STAILQ_INIT(&sc->sc_cmd_inactive); 526 UATH_UNLOCK(sc); 527 528 uath_stop(ifp); 529 530 callout_drain(&sc->stat_ch); 531 callout_drain(&sc->watchdog_ch); 532 533 /* drain USB transfers */ 534 for (x = 0; x != UATH_N_XFERS; x++) 535 usbd_transfer_drain(sc->sc_xfer[x]); 536 537 /* free data buffers */ 538 UATH_LOCK(sc); 539 uath_free_rx_data_list(sc); 540 uath_free_tx_data_list(sc); 541 uath_free_cmd_list(sc, sc->sc_cmd); 542 UATH_UNLOCK(sc); 543 544 /* free USB transfers and some data buffers */ 545 usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 546 547 ieee80211_ifdetach(ic); 548 if_free(ifp); 549 mtx_destroy(&sc->sc_mtx); 550 return (0); 551 } 552 553 static void 554 uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 555 { 556 int i; 557 558 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) 559 cmds[i].buf = NULL; 560 } 561 562 static int 563 uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 564 { 565 int i; 566 567 STAILQ_INIT(&sc->sc_cmd_active); 568 STAILQ_INIT(&sc->sc_cmd_pending); 569 STAILQ_INIT(&sc->sc_cmd_waiting); 570 STAILQ_INIT(&sc->sc_cmd_inactive); 571 572 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) { 573 struct uath_cmd *cmd = &cmds[i]; 574 575 cmd->sc = sc; /* backpointer for callbacks */ 576 cmd->msgid = i; 577 cmd->buf = ((uint8_t *)sc->sc_cmd_dma_buf) + 578 (i * UATH_MAX_CMDSZ); 579 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 580 UATH_STAT_INC(sc, st_cmd_inactive); 581 } 582 return (0); 583 } 584 585 static int 586 uath_host_available(struct uath_softc *sc) 587 { 588 struct uath_cmd_host_available setup; 589 590 UATH_ASSERT_LOCKED(sc); 591 592 /* inform target the host is available */ 593 setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); 594 setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); 595 setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); 596 setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); 597 return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, 598 &setup, sizeof setup, NULL, 0, 0); 599 } 600 601 #ifdef UATH_DEBUG 602 static void 603 uath_dump_cmd(const uint8_t *buf, int len, char prefix) 604 { 605 const char *sep = ""; 606 int i; 607 608 for (i = 0; i < len; i++) { 609 if ((i % 16) == 0) { 610 printf("%s%c ", sep, prefix); 611 sep = "\n"; 612 } 613 else if ((i % 4) == 0) 614 printf(" "); 615 printf("%02x", buf[i]); 616 } 617 printf("\n"); 618 } 619 620 static const char * 621 uath_codename(int code) 622 { 623 #define N(a) (sizeof(a)/sizeof(a[0])) 624 static const char *names[] = { 625 "0x00", 626 "HOST_AVAILABLE", 627 "BIND", 628 "TARGET_RESET", 629 "TARGET_GET_CAPABILITY", 630 "TARGET_SET_CONFIG", 631 "TARGET_GET_STATUS", 632 "TARGET_GET_STATS", 633 "TARGET_START", 634 "TARGET_STOP", 635 "TARGET_ENABLE", 636 "TARGET_DISABLE", 637 "CREATE_CONNECTION", 638 "UPDATE_CONNECT_ATTR", 639 "DELETE_CONNECT", 640 "SEND", 641 "FLUSH", 642 "STATS_UPDATE", 643 "BMISS", 644 "DEVICE_AVAIL", 645 "SEND_COMPLETE", 646 "DATA_AVAIL", 647 "SET_PWR_MODE", 648 "BMISS_ACK", 649 "SET_LED_STEADY", 650 "SET_LED_BLINK", 651 "SETUP_BEACON_DESC", 652 "BEACON_INIT", 653 "RESET_KEY_CACHE", 654 "RESET_KEY_CACHE_ENTRY", 655 "SET_KEY_CACHE_ENTRY", 656 "SET_DECOMP_MASK", 657 "SET_REGULATORY_DOMAIN", 658 "SET_LED_STATE", 659 "WRITE_ASSOCID", 660 "SET_STA_BEACON_TIMERS", 661 "GET_TSF", 662 "RESET_TSF", 663 "SET_ADHOC_MODE", 664 "SET_BASIC_RATE", 665 "MIB_CONTROL", 666 "GET_CHANNEL_DATA", 667 "GET_CUR_RSSI", 668 "SET_ANTENNA_SWITCH", 669 "0x2c", "0x2d", "0x2e", 670 "USE_SHORT_SLOT_TIME", 671 "SET_POWER_MODE", 672 "SETUP_PSPOLL_DESC", 673 "SET_RX_MULTICAST_FILTER", 674 "RX_FILTER", 675 "PER_CALIBRATION", 676 "RESET", 677 "DISABLE", 678 "PHY_DISABLE", 679 "SET_TX_POWER_LIMIT", 680 "SET_TX_QUEUE_PARAMS", 681 "SETUP_TX_QUEUE", 682 "RELEASE_TX_QUEUE", 683 }; 684 static char buf[8]; 685 686 if (code < N(names)) 687 return names[code]; 688 if (code == WDCMSG_SET_DEFAULT_KEY) 689 return "SET_DEFAULT_KEY"; 690 snprintf(buf, sizeof(buf), "0x%02x", code); 691 return buf; 692 #undef N 693 } 694 #endif 695 696 /* 697 * Low-level function to send read or write commands to the firmware. 698 */ 699 static int 700 uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, 701 void *odata, int olen, int flags) 702 { 703 struct uath_cmd_hdr *hdr; 704 struct uath_cmd *cmd; 705 int error; 706 707 UATH_ASSERT_LOCKED(sc); 708 709 /* grab a xfer */ 710 cmd = uath_get_cmdbuf(sc); 711 if (cmd == NULL) { 712 device_printf(sc->sc_dev, "%s: empty inactive queue\n", 713 __func__); 714 return (ENOBUFS); 715 } 716 cmd->flags = flags; 717 /* always bulk-out a multiple of 4 bytes */ 718 cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); 719 720 hdr = (struct uath_cmd_hdr *)cmd->buf; 721 memset(hdr, 0, sizeof(struct uath_cmd_hdr)); 722 hdr->len = htobe32(cmd->buflen); 723 hdr->code = htobe32(code); 724 hdr->msgid = cmd->msgid; /* don't care about endianness */ 725 hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); 726 memcpy((uint8_t *)(hdr + 1), idata, ilen); 727 728 #ifdef UATH_DEBUG 729 if (sc->sc_debug & UATH_DEBUG_CMDS) { 730 printf("%s: send %s [flags 0x%x] olen %d\n", 731 __func__, uath_codename(code), cmd->flags, olen); 732 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 733 uath_dump_cmd(cmd->buf, cmd->buflen, '+'); 734 } 735 #endif 736 cmd->odata = odata; 737 KASSERT(odata == NULL || 738 olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), 739 ("odata %p olen %u", odata, olen)); 740 cmd->olen = olen; 741 742 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); 743 UATH_STAT_INC(sc, st_cmd_pending); 744 usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); 745 746 if (cmd->flags & UATH_CMD_FLAG_READ) { 747 usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); 748 749 /* wait at most two seconds for command reply */ 750 error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); 751 cmd->odata = NULL; /* in case reply comes too late */ 752 if (error != 0) { 753 device_printf(sc->sc_dev, "timeout waiting for reply " 754 "to cmd 0x%x (%u)\n", code, code); 755 } else if (cmd->olen != olen) { 756 device_printf(sc->sc_dev, "unexpected reply data count " 757 "to cmd 0x%x (%u), got %u, expected %u\n", 758 code, code, cmd->olen, olen); 759 error = EINVAL; 760 } 761 return (error); 762 } 763 return (0); 764 } 765 766 static int 767 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, 768 int ilen, void *odata, int olen, int flags) 769 { 770 771 flags |= UATH_CMD_FLAG_READ; 772 return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); 773 } 774 775 static int 776 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, 777 int flags) 778 { 779 780 flags &= ~UATH_CMD_FLAG_READ; 781 return uath_cmdsend(sc, code, data, len, NULL, 0, flags); 782 } 783 784 static struct uath_cmd * 785 uath_get_cmdbuf(struct uath_softc *sc) 786 { 787 struct uath_cmd *uc; 788 789 UATH_ASSERT_LOCKED(sc); 790 791 uc = STAILQ_FIRST(&sc->sc_cmd_inactive); 792 if (uc != NULL) { 793 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); 794 UATH_STAT_DEC(sc, st_cmd_inactive); 795 } else 796 uc = NULL; 797 if (uc == NULL) 798 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 799 "out of command xmit buffers"); 800 return (uc); 801 } 802 803 /* 804 * This function is called periodically (every second) when associated to 805 * query device statistics. 806 */ 807 static void 808 uath_stat(void *arg) 809 { 810 struct uath_softc *sc = arg; 811 int error; 812 813 UATH_LOCK(sc); 814 /* 815 * Send request for statistics asynchronously. The timer will be 816 * restarted when we'll get the stats notification. 817 */ 818 error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, 819 UATH_CMD_FLAG_ASYNC); 820 if (error != 0) { 821 device_printf(sc->sc_dev, 822 "could not query stats, error %d\n", error); 823 } 824 UATH_UNLOCK(sc); 825 } 826 827 static int 828 uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) 829 { 830 int error; 831 832 cap = htobe32(cap); 833 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, 834 &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); 835 if (error != 0) { 836 device_printf(sc->sc_dev, "could not read capability %u\n", 837 be32toh(cap)); 838 return (error); 839 } 840 *val = be32toh(*val); 841 return (error); 842 } 843 844 static int 845 uath_get_devcap(struct uath_softc *sc) 846 { 847 #define GETCAP(x, v) do { \ 848 error = uath_get_capability(sc, x, &v); \ 849 if (error != 0) \ 850 return (error); \ 851 DPRINTF(sc, UATH_DEBUG_DEVCAP, \ 852 "%s: %s=0x%08x\n", __func__, #x, v); \ 853 } while (0) 854 struct uath_devcap *cap = &sc->sc_devcap; 855 int error; 856 857 /* collect device capabilities */ 858 GETCAP(CAP_TARGET_VERSION, cap->targetVersion); 859 GETCAP(CAP_TARGET_REVISION, cap->targetRevision); 860 GETCAP(CAP_MAC_VERSION, cap->macVersion); 861 GETCAP(CAP_MAC_REVISION, cap->macRevision); 862 GETCAP(CAP_PHY_REVISION, cap->phyRevision); 863 GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); 864 GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); 865 866 GETCAP(CAP_REG_DOMAIN, cap->regDomain); 867 GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); 868 #if 0 869 /* NB: not supported in rev 1.5 */ 870 GETCAP(CAP_COUNTRY_CODE, cap->countryCode); 871 #endif 872 GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); 873 GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); 874 GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); 875 GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); 876 GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); 877 GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); 878 GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); 879 GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); 880 GETCAP(CAP_DEVICE_TYPE, cap->deviceType); 881 GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); 882 GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); 883 GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); 884 885 GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); 886 GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); 887 GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); 888 GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); 889 GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); 890 GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); 891 892 GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); 893 GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); 894 GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); 895 896 cap->supportCipherWEP = 1; /* NB: always available */ 897 898 return (0); 899 } 900 901 static int 902 uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 903 { 904 int error; 905 906 /* retrieve MAC address */ 907 error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); 908 if (error != 0) { 909 device_printf(sc->sc_dev, "could not read MAC address\n"); 910 return (error); 911 } 912 913 error = uath_get_status(sc, ST_SERIAL_NUMBER, 914 &sc->sc_serial[0], sizeof(sc->sc_serial)); 915 if (error != 0) { 916 device_printf(sc->sc_dev, 917 "could not read device serial number\n"); 918 return (error); 919 } 920 return (0); 921 } 922 923 static int 924 uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) 925 { 926 int error; 927 928 which = htobe32(which); 929 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, 930 &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); 931 if (error != 0) 932 device_printf(sc->sc_dev, 933 "could not read EEPROM offset 0x%02x\n", be32toh(which)); 934 return (error); 935 } 936 937 static void 938 uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, 939 int fillmbuf) 940 { 941 int i; 942 943 for (i = 0; i < ndata; i++) { 944 struct uath_data *dp = &data[i]; 945 946 if (fillmbuf == 1) { 947 if (dp->m != NULL) { 948 m_freem(dp->m); 949 dp->m = NULL; 950 dp->buf = NULL; 951 } 952 } else { 953 dp->buf = NULL; 954 } 955 if (dp->ni != NULL) { 956 ieee80211_free_node(dp->ni); 957 dp->ni = NULL; 958 } 959 } 960 } 961 962 static int 963 uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], 964 int ndata, int maxsz, void *dma_buf) 965 { 966 int i, error; 967 968 for (i = 0; i < ndata; i++) { 969 struct uath_data *dp = &data[i]; 970 971 dp->sc = sc; 972 if (dma_buf == NULL) { 973 /* XXX check maxsz */ 974 dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 975 if (dp->m == NULL) { 976 device_printf(sc->sc_dev, 977 "could not allocate rx mbuf\n"); 978 error = ENOMEM; 979 goto fail; 980 } 981 dp->buf = mtod(dp->m, uint8_t *); 982 } else { 983 dp->m = NULL; 984 dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); 985 } 986 dp->ni = NULL; 987 } 988 989 return (0); 990 991 fail: uath_free_data_list(sc, data, ndata, 1 /* free mbufs */); 992 return (error); 993 } 994 995 static int 996 uath_alloc_rx_data_list(struct uath_softc *sc) 997 { 998 int error, i; 999 1000 /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ 1001 error = uath_alloc_data_list(sc, 1002 sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, 1003 NULL /* setup mbufs */); 1004 if (error != 0) 1005 return (error); 1006 1007 STAILQ_INIT(&sc->sc_rx_active); 1008 STAILQ_INIT(&sc->sc_rx_inactive); 1009 1010 for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { 1011 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], 1012 next); 1013 UATH_STAT_INC(sc, st_rx_inactive); 1014 } 1015 1016 return (0); 1017 } 1018 1019 static int 1020 uath_alloc_tx_data_list(struct uath_softc *sc) 1021 { 1022 int error, i; 1023 1024 error = uath_alloc_data_list(sc, 1025 sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, 1026 sc->sc_tx_dma_buf); 1027 if (error != 0) 1028 return (error); 1029 1030 STAILQ_INIT(&sc->sc_tx_active); 1031 STAILQ_INIT(&sc->sc_tx_inactive); 1032 STAILQ_INIT(&sc->sc_tx_pending); 1033 1034 for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { 1035 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], 1036 next); 1037 UATH_STAT_INC(sc, st_tx_inactive); 1038 } 1039 1040 return (0); 1041 } 1042 1043 static void 1044 uath_free_rx_data_list(struct uath_softc *sc) 1045 { 1046 uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1047 1 /* free mbufs */); 1048 } 1049 1050 static void 1051 uath_free_tx_data_list(struct uath_softc *sc) 1052 { 1053 uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 1054 0 /* no mbufs */); 1055 } 1056 1057 static struct ieee80211vap * 1058 uath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1059 enum ieee80211_opmode opmode, int flags, 1060 const uint8_t bssid[IEEE80211_ADDR_LEN], 1061 const uint8_t mac[IEEE80211_ADDR_LEN]) 1062 { 1063 struct uath_vap *uvp; 1064 struct ieee80211vap *vap; 1065 1066 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1067 return (NULL); 1068 uvp = (struct uath_vap *) malloc(sizeof(struct uath_vap), 1069 M_80211_VAP, M_NOWAIT | M_ZERO); 1070 if (uvp == NULL) 1071 return (NULL); 1072 vap = &uvp->vap; 1073 /* enable s/w bmiss handling for sta mode */ 1074 1075 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 1076 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { 1077 /* out of memory */ 1078 free(uvp, M_80211_VAP); 1079 return (NULL); 1080 } 1081 1082 /* override state transition machine */ 1083 uvp->newstate = vap->iv_newstate; 1084 vap->iv_newstate = uath_newstate; 1085 1086 /* complete setup */ 1087 ieee80211_vap_attach(vap, ieee80211_media_change, 1088 ieee80211_media_status); 1089 ic->ic_opmode = opmode; 1090 return (vap); 1091 } 1092 1093 static void 1094 uath_vap_delete(struct ieee80211vap *vap) 1095 { 1096 struct uath_vap *uvp = UATH_VAP(vap); 1097 1098 ieee80211_vap_detach(vap); 1099 free(uvp, M_80211_VAP); 1100 } 1101 1102 static int 1103 uath_init_locked(void *arg) 1104 { 1105 struct uath_softc *sc = arg; 1106 struct ifnet *ifp = sc->sc_ifp; 1107 struct ieee80211com *ic = ifp->if_l2com; 1108 uint32_t val; 1109 int error; 1110 1111 UATH_ASSERT_LOCKED(sc); 1112 1113 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1114 uath_stop_locked(ifp); 1115 1116 /* reset variables */ 1117 sc->sc_intrx_nextnum = sc->sc_msgid = 0; 1118 1119 val = htobe32(0); 1120 uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); 1121 1122 /* set MAC address */ 1123 uath_config_multi(sc, CFG_MAC_ADDR, IF_LLADDR(ifp), IEEE80211_ADDR_LEN); 1124 1125 /* XXX honor net80211 state */ 1126 uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); 1127 uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); 1128 uath_config(sc, CFG_ABOLT, 0x0000003f); 1129 uath_config(sc, CFG_WME_ENABLED, 0x00000001); 1130 1131 uath_config(sc, CFG_SERVICE_TYPE, 1); 1132 uath_config(sc, CFG_TP_SCALE, 0x00000000); 1133 uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); 1134 uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); 1135 uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); 1136 uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); 1137 uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); 1138 uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); 1139 uath_config(sc, CFG_MODE_CTS, 0x00000002); 1140 1141 error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, 1142 &val, sizeof(val), UATH_CMD_FLAG_MAGIC); 1143 if (error) { 1144 device_printf(sc->sc_dev, 1145 "could not start target, error %d\n", error); 1146 goto fail; 1147 } 1148 DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", 1149 uath_codename(WDCMSG_TARGET_START), be32toh(val)); 1150 1151 /* set default channel */ 1152 error = uath_switch_channel(sc, ic->ic_curchan); 1153 if (error) { 1154 device_printf(sc->sc_dev, 1155 "could not switch channel, error %d\n", error); 1156 goto fail; 1157 } 1158 1159 val = htobe32(TARGET_DEVICE_AWAKE); 1160 uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); 1161 /* XXX? check */ 1162 uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); 1163 1164 usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); 1165 /* enable Rx */ 1166 uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); 1167 uath_set_rxfilter(sc, 1168 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1169 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, 1170 UATH_FILTER_OP_SET); 1171 1172 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1173 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1174 sc->sc_flags |= UATH_FLAG_INITDONE; 1175 1176 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1177 1178 return (0); 1179 1180 fail: 1181 uath_stop_locked(ifp); 1182 return (error); 1183 } 1184 1185 static void 1186 uath_init(void *arg) 1187 { 1188 struct uath_softc *sc = arg; 1189 1190 UATH_LOCK(sc); 1191 (void)uath_init_locked(sc); 1192 UATH_UNLOCK(sc); 1193 } 1194 1195 static void 1196 uath_stop_locked(struct ifnet *ifp) 1197 { 1198 struct uath_softc *sc = ifp->if_softc; 1199 1200 UATH_ASSERT_LOCKED(sc); 1201 1202 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1203 sc->sc_flags &= ~UATH_FLAG_INITDONE; 1204 1205 callout_stop(&sc->stat_ch); 1206 callout_stop(&sc->watchdog_ch); 1207 sc->sc_tx_timer = 0; 1208 /* abort pending transmits */ 1209 uath_abort_xfers(sc); 1210 /* flush data & control requests into the target */ 1211 (void)uath_flush(sc); 1212 /* set a LED status to the disconnected. */ 1213 uath_set_ledstate(sc, 0); 1214 /* stop the target */ 1215 uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); 1216 } 1217 1218 static void 1219 uath_stop(struct ifnet *ifp) 1220 { 1221 struct uath_softc *sc = ifp->if_softc; 1222 1223 UATH_LOCK(sc); 1224 uath_stop_locked(ifp); 1225 UATH_UNLOCK(sc); 1226 } 1227 1228 static int 1229 uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) 1230 { 1231 struct uath_write_mac write; 1232 int error; 1233 1234 write.reg = htobe32(reg); 1235 write.len = htobe32(0); /* 0 = single write */ 1236 *(uint32_t *)write.data = htobe32(val); 1237 1238 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1239 3 * sizeof (uint32_t), 0); 1240 if (error != 0) { 1241 device_printf(sc->sc_dev, "could not write register 0x%02x\n", 1242 reg); 1243 } 1244 return (error); 1245 } 1246 1247 static int 1248 uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, 1249 int len) 1250 { 1251 struct uath_write_mac write; 1252 int error; 1253 1254 write.reg = htobe32(reg); 1255 write.len = htobe32(len); 1256 bcopy(data, write.data, len); 1257 1258 /* properly handle the case where len is zero (reset) */ 1259 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1260 (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); 1261 if (error != 0) { 1262 device_printf(sc->sc_dev, 1263 "could not write %d bytes to register 0x%02x\n", len, reg); 1264 } 1265 return (error); 1266 } 1267 1268 static int 1269 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) 1270 { 1271 int error; 1272 1273 UATH_ASSERT_LOCKED(sc); 1274 1275 /* set radio frequency */ 1276 error = uath_set_chan(sc, c); 1277 if (error) { 1278 device_printf(sc->sc_dev, 1279 "could not set channel, error %d\n", error); 1280 goto failed; 1281 } 1282 /* reset Tx rings */ 1283 error = uath_reset_tx_queues(sc); 1284 if (error) { 1285 device_printf(sc->sc_dev, 1286 "could not reset Tx queues, error %d\n", error); 1287 goto failed; 1288 } 1289 /* set Tx rings WME properties */ 1290 error = uath_wme_init(sc); 1291 if (error) { 1292 device_printf(sc->sc_dev, 1293 "could not init Tx queues, error %d\n", error); 1294 goto failed; 1295 } 1296 error = uath_set_ledstate(sc, 0); 1297 if (error) { 1298 device_printf(sc->sc_dev, 1299 "could not set led state, error %d\n", error); 1300 goto failed; 1301 } 1302 error = uath_flush(sc); 1303 if (error) { 1304 device_printf(sc->sc_dev, 1305 "could not flush pipes, error %d\n", error); 1306 goto failed; 1307 } 1308 failed: 1309 return (error); 1310 } 1311 1312 static int 1313 uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) 1314 { 1315 struct uath_cmd_rx_filter rxfilter; 1316 1317 rxfilter.bits = htobe32(bits); 1318 rxfilter.op = htobe32(op); 1319 1320 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 1321 "setting Rx filter=0x%x flags=0x%x\n", bits, op); 1322 return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, 1323 sizeof rxfilter, 0); 1324 } 1325 1326 static void 1327 uath_watchdog(void *arg) 1328 { 1329 struct uath_softc *sc = arg; 1330 struct ifnet *ifp = sc->sc_ifp; 1331 1332 if (sc->sc_tx_timer > 0) { 1333 if (--sc->sc_tx_timer == 0) { 1334 device_printf(sc->sc_dev, "device timeout\n"); 1335 /*uath_init(ifp); XXX needs a process context! */ 1336 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1337 return; 1338 } 1339 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1340 } 1341 } 1342 1343 static void 1344 uath_abort_xfers(struct uath_softc *sc) 1345 { 1346 int i; 1347 1348 UATH_ASSERT_LOCKED(sc); 1349 /* abort any pending transfers */ 1350 for (i = 0; i < UATH_N_XFERS; i++) 1351 usbd_transfer_stop(sc->sc_xfer[i]); 1352 } 1353 1354 static int 1355 uath_flush(struct uath_softc *sc) 1356 { 1357 int error; 1358 1359 error = uath_dataflush(sc); 1360 if (error != 0) 1361 goto failed; 1362 1363 error = uath_cmdflush(sc); 1364 if (error != 0) 1365 goto failed; 1366 1367 failed: 1368 return (error); 1369 } 1370 1371 static int 1372 uath_cmdflush(struct uath_softc *sc) 1373 { 1374 1375 return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); 1376 } 1377 1378 static int 1379 uath_dataflush(struct uath_softc *sc) 1380 { 1381 struct uath_data *data; 1382 struct uath_chunk *chunk; 1383 struct uath_tx_desc *desc; 1384 1385 UATH_ASSERT_LOCKED(sc); 1386 1387 data = uath_getbuf(sc); 1388 if (data == NULL) 1389 return (ENOBUFS); 1390 data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); 1391 data->m = NULL; 1392 data->ni = NULL; 1393 chunk = (struct uath_chunk *)data->buf; 1394 desc = (struct uath_tx_desc *)(chunk + 1); 1395 1396 /* one chunk only */ 1397 chunk->seqnum = 0; 1398 chunk->flags = UATH_CFLAGS_FINAL; 1399 chunk->length = htobe16(sizeof (struct uath_tx_desc)); 1400 1401 memset(desc, 0, sizeof(struct uath_tx_desc)); 1402 desc->msglen = htobe32(sizeof(struct uath_tx_desc)); 1403 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1404 desc->type = htobe32(WDCMSG_FLUSH); 1405 desc->txqid = htobe32(0); 1406 desc->connid = htobe32(0); 1407 desc->flags = htobe32(0); 1408 1409 #ifdef UATH_DEBUG 1410 if (sc->sc_debug & UATH_DEBUG_CMDS) { 1411 DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", 1412 desc->msgid); 1413 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 1414 uath_dump_cmd(data->buf, data->buflen, '+'); 1415 } 1416 #endif 1417 1418 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1419 UATH_STAT_INC(sc, st_tx_pending); 1420 sc->sc_tx_timer = 5; 1421 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1422 1423 return (0); 1424 } 1425 1426 static struct uath_data * 1427 _uath_getbuf(struct uath_softc *sc) 1428 { 1429 struct uath_data *bf; 1430 1431 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1432 if (bf != NULL) { 1433 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1434 UATH_STAT_DEC(sc, st_tx_inactive); 1435 } else 1436 bf = NULL; 1437 if (bf == NULL) 1438 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 1439 "out of xmit buffers"); 1440 return (bf); 1441 } 1442 1443 static struct uath_data * 1444 uath_getbuf(struct uath_softc *sc) 1445 { 1446 struct uath_data *bf; 1447 1448 UATH_ASSERT_LOCKED(sc); 1449 1450 bf = _uath_getbuf(sc); 1451 if (bf == NULL) { 1452 struct ifnet *ifp = sc->sc_ifp; 1453 1454 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1455 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1456 } 1457 return (bf); 1458 } 1459 1460 static int 1461 uath_set_ledstate(struct uath_softc *sc, int connected) 1462 { 1463 1464 DPRINTF(sc, UATH_DEBUG_LED, 1465 "set led state %sconnected\n", connected ? "" : "!"); 1466 connected = htobe32(connected); 1467 return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, 1468 &connected, sizeof connected, 0); 1469 } 1470 1471 static int 1472 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) 1473 { 1474 #ifdef UATH_DEBUG 1475 struct ifnet *ifp = sc->sc_ifp; 1476 struct ieee80211com *ic = ifp->if_l2com; 1477 #endif 1478 struct uath_cmd_reset reset; 1479 1480 memset(&reset, 0, sizeof(reset)); 1481 if (IEEE80211_IS_CHAN_2GHZ(c)) 1482 reset.flags |= htobe32(UATH_CHAN_2GHZ); 1483 if (IEEE80211_IS_CHAN_5GHZ(c)) 1484 reset.flags |= htobe32(UATH_CHAN_5GHZ); 1485 /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ 1486 if (IEEE80211_IS_CHAN_OFDM(c)) 1487 reset.flags |= htobe32(UATH_CHAN_OFDM); 1488 else if (IEEE80211_IS_CHAN_CCK(c)) 1489 reset.flags |= htobe32(UATH_CHAN_CCK); 1490 /* turbo can be used in either 2GHz or 5GHz */ 1491 if (c->ic_flags & IEEE80211_CHAN_TURBO) 1492 reset.flags |= htobe32(UATH_CHAN_TURBO); 1493 reset.freq = htobe32(c->ic_freq); 1494 reset.maxrdpower = htobe32(50); /* XXX */ 1495 reset.channelchange = htobe32(1); 1496 reset.keeprccontent = htobe32(0); 1497 1498 DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", 1499 ieee80211_chan2ieee(ic, c), 1500 be32toh(reset.flags), be32toh(reset.freq)); 1501 return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); 1502 } 1503 1504 static int 1505 uath_reset_tx_queues(struct uath_softc *sc) 1506 { 1507 int ac, error; 1508 1509 DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); 1510 for (ac = 0; ac < 4; ac++) { 1511 const uint32_t qid = htobe32(ac); 1512 1513 error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, 1514 sizeof qid, 0); 1515 if (error != 0) 1516 break; 1517 } 1518 return (error); 1519 } 1520 1521 static int 1522 uath_wme_init(struct uath_softc *sc) 1523 { 1524 /* XXX get from net80211 */ 1525 static const struct uath_wme_settings uath_wme_11g[4] = { 1526 { 7, 4, 10, 0, 0 }, /* Background */ 1527 { 3, 4, 10, 0, 0 }, /* Best-Effort */ 1528 { 3, 3, 4, 26, 0 }, /* Video */ 1529 { 2, 2, 3, 47, 0 } /* Voice */ 1530 }; 1531 struct uath_cmd_txq_setup qinfo; 1532 int ac, error; 1533 1534 DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); 1535 for (ac = 0; ac < 4; ac++) { 1536 qinfo.qid = htobe32(ac); 1537 qinfo.len = htobe32(sizeof(qinfo.attr)); 1538 qinfo.attr.priority = htobe32(ac); /* XXX */ 1539 qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); 1540 qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); 1541 qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); 1542 qinfo.attr.bursttime = htobe32(UATH_TXOP_TO_US( 1543 uath_wme_11g[ac].txop)); 1544 qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ 1545 qinfo.attr.qflags = htobe32(1); /* XXX? */ 1546 1547 error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, 1548 sizeof qinfo, 0); 1549 if (error != 0) 1550 break; 1551 } 1552 return (error); 1553 } 1554 1555 static int 1556 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1557 { 1558 struct ieee80211com *ic = ifp->if_l2com; 1559 struct ifreq *ifr = (struct ifreq *) data; 1560 struct uath_softc *sc = ifp->if_softc; 1561 int error; 1562 int startall = 0; 1563 1564 UATH_LOCK(sc); 1565 error = (sc->sc_flags & UATH_FLAG_INVALID) ? ENXIO : 0; 1566 UATH_UNLOCK(sc); 1567 if (error) 1568 return (error); 1569 1570 switch (cmd) { 1571 case SIOCSIFFLAGS: 1572 if (ifp->if_flags & IFF_UP) { 1573 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1574 uath_init(ifp->if_softc); 1575 startall = 1; 1576 } 1577 } else { 1578 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1579 uath_stop(ifp); 1580 } 1581 if (startall) 1582 ieee80211_start_all(ic); 1583 break; 1584 case SIOCGIFMEDIA: 1585 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1586 break; 1587 case SIOCGIFADDR: 1588 error = ether_ioctl(ifp, cmd, data); 1589 break; 1590 default: 1591 error = EINVAL; 1592 break; 1593 } 1594 1595 return (error); 1596 } 1597 1598 static int 1599 uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1600 struct uath_data *data) 1601 { 1602 struct ieee80211vap *vap = ni->ni_vap; 1603 struct uath_chunk *chunk; 1604 struct uath_tx_desc *desc; 1605 const struct ieee80211_frame *wh; 1606 struct ieee80211_key *k; 1607 int framelen, msglen; 1608 1609 UATH_ASSERT_LOCKED(sc); 1610 1611 data->ni = ni; 1612 data->m = m0; 1613 chunk = (struct uath_chunk *)data->buf; 1614 desc = (struct uath_tx_desc *)(chunk + 1); 1615 1616 if (ieee80211_radiotap_active_vap(vap)) { 1617 struct uath_tx_radiotap_header *tap = &sc->sc_txtap; 1618 1619 tap->wt_flags = 0; 1620 if (m0->m_flags & M_FRAG) 1621 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1622 1623 ieee80211_radiotap_tx(vap, m0); 1624 } 1625 1626 wh = mtod(m0, struct ieee80211_frame *); 1627 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1628 k = ieee80211_crypto_encap(ni, m0); 1629 if (k == NULL) { 1630 m_freem(m0); 1631 return (ENOBUFS); 1632 } 1633 1634 /* packet header may have moved, reset our local pointer */ 1635 wh = mtod(m0, struct ieee80211_frame *); 1636 } 1637 m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); 1638 1639 framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1640 msglen = framelen + sizeof (struct uath_tx_desc); 1641 data->buflen = msglen + sizeof (struct uath_chunk); 1642 1643 /* one chunk only for now */ 1644 chunk->seqnum = sc->sc_seqnum++; 1645 chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; 1646 if (m0->m_flags & M_LASTFRAG) 1647 chunk->flags |= UATH_CFLAGS_FINAL; 1648 chunk->flags = UATH_CFLAGS_FINAL; 1649 chunk->length = htobe16(msglen); 1650 1651 /* fill Tx descriptor */ 1652 desc->msglen = htobe32(msglen); 1653 /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ 1654 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1655 desc->type = htobe32(WDCMSG_SEND); 1656 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1657 case IEEE80211_FC0_TYPE_CTL: 1658 case IEEE80211_FC0_TYPE_MGT: 1659 /* NB: force all management frames to highest queue */ 1660 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1661 /* NB: force all management frames to highest queue */ 1662 desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); 1663 } else 1664 desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); 1665 break; 1666 case IEEE80211_FC0_TYPE_DATA: 1667 /* XXX multicast frames should honor mcastrate */ 1668 desc->txqid = htobe32(M_WME_GETAC(m0)); 1669 break; 1670 default: 1671 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1672 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1673 m_freem(m0); 1674 return (EIO); 1675 } 1676 if (vap->iv_state == IEEE80211_S_AUTH || 1677 vap->iv_state == IEEE80211_S_ASSOC || 1678 vap->iv_state == IEEE80211_S_RUN) 1679 desc->connid = htobe32(UATH_ID_BSS); 1680 else 1681 desc->connid = htobe32(UATH_ID_INVALID); 1682 desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); 1683 desc->buflen = htobe32(m0->m_pkthdr.len); 1684 1685 #ifdef UATH_DEBUG 1686 DPRINTF(sc, UATH_DEBUG_XMIT, 1687 "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", 1688 desc->msgid, framelen, msglen, be32toh(desc->connid), 1689 be32toh(desc->txqid)); 1690 if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) 1691 uath_dump_cmd(data->buf, data->buflen, '+'); 1692 #endif 1693 1694 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1695 UATH_STAT_INC(sc, st_tx_pending); 1696 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1697 1698 return (0); 1699 } 1700 1701 /* 1702 * Cleanup driver resources when we run out of buffers while processing 1703 * fragments; return the tx buffers allocated and drop node references. 1704 */ 1705 static void 1706 uath_txfrag_cleanup(struct uath_softc *sc, 1707 uath_datahead *frags, struct ieee80211_node *ni) 1708 { 1709 struct uath_data *bf, *next; 1710 1711 UATH_ASSERT_LOCKED(sc); 1712 1713 STAILQ_FOREACH_SAFE(bf, frags, next, next) { 1714 /* NB: bf assumed clean */ 1715 STAILQ_REMOVE_HEAD(frags, next); 1716 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1717 UATH_STAT_INC(sc, st_tx_inactive); 1718 ieee80211_node_decref(ni); 1719 } 1720 } 1721 1722 /* 1723 * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump 1724 * the node reference count to reflect the held reference to be setup by 1725 * uath_tx_start. 1726 */ 1727 static int 1728 uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, 1729 struct mbuf *m0, struct ieee80211_node *ni) 1730 { 1731 struct mbuf *m; 1732 struct uath_data *bf; 1733 1734 UATH_ASSERT_LOCKED(sc); 1735 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1736 bf = uath_getbuf(sc); 1737 if (bf == NULL) { /* out of buffers, cleanup */ 1738 uath_txfrag_cleanup(sc, frags, ni); 1739 break; 1740 } 1741 ieee80211_node_incref(ni); 1742 STAILQ_INSERT_TAIL(frags, bf, next); 1743 } 1744 1745 return !STAILQ_EMPTY(frags); 1746 } 1747 1748 /* 1749 * Reclaim mbuf resources. For fragmented frames we need to claim each frag 1750 * chained with m_nextpkt. 1751 */ 1752 static void 1753 uath_freetx(struct mbuf *m) 1754 { 1755 struct mbuf *next; 1756 1757 do { 1758 next = m->m_nextpkt; 1759 m->m_nextpkt = NULL; 1760 m_freem(m); 1761 } while ((m = next) != NULL); 1762 } 1763 1764 static void 1765 uath_start(struct ifnet *ifp) 1766 { 1767 struct uath_data *bf; 1768 struct uath_softc *sc = ifp->if_softc; 1769 struct ieee80211_node *ni; 1770 struct mbuf *m, *next; 1771 uath_datahead frags; 1772 1773 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1774 (sc->sc_flags & UATH_FLAG_INVALID)) 1775 return; 1776 1777 UATH_LOCK(sc); 1778 for (;;) { 1779 bf = uath_getbuf(sc); 1780 if (bf == NULL) 1781 break; 1782 1783 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1784 if (m == NULL) { 1785 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1786 UATH_STAT_INC(sc, st_tx_inactive); 1787 break; 1788 } 1789 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1790 m->m_pkthdr.rcvif = NULL; 1791 1792 /* 1793 * Check for fragmentation. If this frame has been broken up 1794 * verify we have enough buffers to send all the fragments 1795 * so all go out or none... 1796 */ 1797 STAILQ_INIT(&frags); 1798 if ((m->m_flags & M_FRAG) && 1799 !uath_txfrag_setup(sc, &frags, m, ni)) { 1800 DPRINTF(sc, UATH_DEBUG_XMIT, 1801 "%s: out of txfrag buffers\n", __func__); 1802 uath_freetx(m); 1803 goto bad; 1804 } 1805 sc->sc_seqnum = 0; 1806 nextfrag: 1807 /* 1808 * Pass the frame to the h/w for transmission. 1809 * Fragmented frames have each frag chained together 1810 * with m_nextpkt. We know there are sufficient uath_data's 1811 * to send all the frags because of work done by 1812 * uath_txfrag_setup. 1813 */ 1814 next = m->m_nextpkt; 1815 if (uath_tx_start(sc, m, ni, bf) != 0) { 1816 bad: 1817 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1818 reclaim: 1819 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1820 UATH_STAT_INC(sc, st_tx_inactive); 1821 uath_txfrag_cleanup(sc, &frags, ni); 1822 ieee80211_free_node(ni); 1823 continue; 1824 } 1825 1826 if (next != NULL) { 1827 /* 1828 * Beware of state changing between frags. 1829 XXX check sta power-save state? 1830 */ 1831 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1832 DPRINTF(sc, UATH_DEBUG_XMIT, 1833 "%s: flush fragmented packet, state %s\n", 1834 __func__, 1835 ieee80211_state_name[ni->ni_vap->iv_state]); 1836 uath_freetx(next); 1837 goto reclaim; 1838 } 1839 m = next; 1840 bf = STAILQ_FIRST(&frags); 1841 KASSERT(bf != NULL, ("no buf for txfrag")); 1842 STAILQ_REMOVE_HEAD(&frags, next); 1843 goto nextfrag; 1844 } 1845 1846 sc->sc_tx_timer = 5; 1847 } 1848 UATH_UNLOCK(sc); 1849 } 1850 1851 static int 1852 uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1853 const struct ieee80211_bpf_params *params) 1854 { 1855 struct ieee80211com *ic = ni->ni_ic; 1856 struct ifnet *ifp = ic->ic_ifp; 1857 struct uath_data *bf; 1858 struct uath_softc *sc = ifp->if_softc; 1859 1860 /* prevent management frames from being sent if we're not ready */ 1861 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1862 !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1863 m_freem(m); 1864 ieee80211_free_node(ni); 1865 return (ENETDOWN); 1866 } 1867 1868 UATH_LOCK(sc); 1869 /* grab a TX buffer */ 1870 bf = uath_getbuf(sc); 1871 if (bf == NULL) { 1872 ieee80211_free_node(ni); 1873 m_freem(m); 1874 UATH_UNLOCK(sc); 1875 return (ENOBUFS); 1876 } 1877 1878 sc->sc_seqnum = 0; 1879 if (uath_tx_start(sc, m, ni, bf) != 0) { 1880 ieee80211_free_node(ni); 1881 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1882 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1883 UATH_STAT_INC(sc, st_tx_inactive); 1884 UATH_UNLOCK(sc); 1885 return (EIO); 1886 } 1887 UATH_UNLOCK(sc); 1888 1889 sc->sc_tx_timer = 5; 1890 return (0); 1891 } 1892 1893 static void 1894 uath_scan_start(struct ieee80211com *ic) 1895 { 1896 /* do nothing */ 1897 } 1898 1899 static void 1900 uath_scan_end(struct ieee80211com *ic) 1901 { 1902 /* do nothing */ 1903 } 1904 1905 static void 1906 uath_set_channel(struct ieee80211com *ic) 1907 { 1908 struct ifnet *ifp = ic->ic_ifp; 1909 struct uath_softc *sc = ifp->if_softc; 1910 1911 UATH_LOCK(sc); 1912 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1913 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1914 UATH_UNLOCK(sc); 1915 return; 1916 } 1917 (void)uath_switch_channel(sc, ic->ic_curchan); 1918 UATH_UNLOCK(sc); 1919 } 1920 1921 static int 1922 uath_set_rxmulti_filter(struct uath_softc *sc) 1923 { 1924 /* XXX broken */ 1925 return (0); 1926 } 1927 static void 1928 uath_update_mcast(struct ifnet *ifp) 1929 { 1930 struct uath_softc *sc = ifp->if_softc; 1931 1932 UATH_LOCK(sc); 1933 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1934 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1935 UATH_UNLOCK(sc); 1936 return; 1937 } 1938 /* 1939 * this is for avoiding the race condition when we're try to 1940 * connect to the AP with WPA. 1941 */ 1942 if (sc->sc_flags & UATH_FLAG_INITDONE) 1943 (void)uath_set_rxmulti_filter(sc); 1944 UATH_UNLOCK(sc); 1945 } 1946 1947 static void 1948 uath_update_promisc(struct ifnet *ifp) 1949 { 1950 struct uath_softc *sc = ifp->if_softc; 1951 1952 UATH_LOCK(sc); 1953 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1954 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1955 UATH_UNLOCK(sc); 1956 return; 1957 } 1958 if (sc->sc_flags & UATH_FLAG_INITDONE) { 1959 uath_set_rxfilter(sc, 1960 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1961 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | 1962 UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); 1963 } 1964 UATH_UNLOCK(sc); 1965 } 1966 1967 static int 1968 uath_create_connection(struct uath_softc *sc, uint32_t connid) 1969 { 1970 const struct ieee80211_rateset *rs; 1971 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1972 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1973 struct ieee80211_node *ni; 1974 struct uath_cmd_create_connection create; 1975 1976 ni = ieee80211_ref_node(vap->iv_bss); 1977 memset(&create, 0, sizeof(create)); 1978 create.connid = htobe32(connid); 1979 create.bssid = htobe32(0); 1980 /* XXX packed or not? */ 1981 create.size = htobe32(sizeof(struct uath_cmd_rateset)); 1982 1983 rs = &ni->ni_rates; 1984 create.connattr.rateset.length = rs->rs_nrates; 1985 bcopy(rs->rs_rates, &create.connattr.rateset.set[0], 1986 rs->rs_nrates); 1987 1988 /* XXX turbo */ 1989 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 1990 create.connattr.wlanmode = htobe32(WLAN_MODE_11a); 1991 else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) 1992 create.connattr.wlanmode = htobe32(WLAN_MODE_11g); 1993 else 1994 create.connattr.wlanmode = htobe32(WLAN_MODE_11b); 1995 ieee80211_free_node(ni); 1996 1997 return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, 1998 sizeof create, 0); 1999 } 2000 2001 static int 2002 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) 2003 { 2004 struct uath_cmd_rates rates; 2005 2006 memset(&rates, 0, sizeof(rates)); 2007 rates.connid = htobe32(UATH_ID_BSS); /* XXX */ 2008 rates.size = htobe32(sizeof(struct uath_cmd_rateset)); 2009 /* XXX bounds check rs->rs_nrates */ 2010 rates.rateset.length = rs->rs_nrates; 2011 bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); 2012 2013 DPRINTF(sc, UATH_DEBUG_RATES, 2014 "setting supported rates nrates=%d\n", rs->rs_nrates); 2015 return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, 2016 &rates, sizeof rates, 0); 2017 } 2018 2019 static int 2020 uath_write_associd(struct uath_softc *sc) 2021 { 2022 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2023 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2024 struct ieee80211_node *ni; 2025 struct uath_cmd_set_associd associd; 2026 2027 ni = ieee80211_ref_node(vap->iv_bss); 2028 memset(&associd, 0, sizeof(associd)); 2029 associd.defaultrateix = htobe32(1); /* XXX */ 2030 associd.associd = htobe32(ni->ni_associd); 2031 associd.timoffset = htobe32(0x3b); /* XXX */ 2032 IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); 2033 ieee80211_free_node(ni); 2034 return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, 2035 sizeof associd, 0); 2036 } 2037 2038 static int 2039 uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) 2040 { 2041 struct uath_cmd_ledsteady led; 2042 2043 led.lednum = htobe32(lednum); 2044 led.ledmode = htobe32(ledmode); 2045 2046 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", 2047 (lednum == UATH_LED_LINK) ? "link" : "activity", 2048 ledmode ? "on" : "off"); 2049 return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); 2050 } 2051 2052 static int 2053 uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, 2054 int blinkrate, int slowmode) 2055 { 2056 struct uath_cmd_ledblink led; 2057 2058 led.lednum = htobe32(lednum); 2059 led.ledmode = htobe32(ledmode); 2060 led.blinkrate = htobe32(blinkrate); 2061 led.slowmode = htobe32(slowmode); 2062 2063 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", 2064 (lednum == UATH_LED_LINK) ? "link" : "activity", 2065 ledmode ? "on" : "off"); 2066 return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); 2067 } 2068 2069 static int 2070 uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2071 { 2072 enum ieee80211_state ostate = vap->iv_state; 2073 int error; 2074 struct ieee80211_node *ni; 2075 struct ieee80211com *ic = vap->iv_ic; 2076 struct uath_softc *sc = ic->ic_ifp->if_softc; 2077 struct uath_vap *uvp = UATH_VAP(vap); 2078 2079 DPRINTF(sc, UATH_DEBUG_STATE, 2080 "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], 2081 ieee80211_state_name[nstate]); 2082 2083 IEEE80211_UNLOCK(ic); 2084 UATH_LOCK(sc); 2085 callout_stop(&sc->stat_ch); 2086 callout_stop(&sc->watchdog_ch); 2087 ni = ieee80211_ref_node(vap->iv_bss); 2088 2089 switch (nstate) { 2090 case IEEE80211_S_INIT: 2091 if (ostate == IEEE80211_S_RUN) { 2092 /* turn link and activity LEDs off */ 2093 uath_set_ledstate(sc, 0); 2094 } 2095 break; 2096 2097 case IEEE80211_S_SCAN: 2098 break; 2099 2100 case IEEE80211_S_AUTH: 2101 /* XXX good place? set RTS threshold */ 2102 uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); 2103 /* XXX bad place */ 2104 error = uath_set_keys(sc, vap); 2105 if (error != 0) { 2106 device_printf(sc->sc_dev, 2107 "could not set crypto keys, error %d\n", error); 2108 break; 2109 } 2110 if (uath_switch_channel(sc, ni->ni_chan) != 0) { 2111 device_printf(sc->sc_dev, "could not switch channel\n"); 2112 break; 2113 } 2114 if (uath_create_connection(sc, UATH_ID_BSS) != 0) { 2115 device_printf(sc->sc_dev, 2116 "could not create connection\n"); 2117 break; 2118 } 2119 break; 2120 2121 case IEEE80211_S_ASSOC: 2122 if (uath_set_rates(sc, &ni->ni_rates) != 0) { 2123 device_printf(sc->sc_dev, 2124 "could not set negotiated rate set\n"); 2125 break; 2126 } 2127 break; 2128 2129 case IEEE80211_S_RUN: 2130 /* XXX monitor mode doesn't be tested */ 2131 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2132 uath_set_ledstate(sc, 1); 2133 break; 2134 } 2135 2136 /* 2137 * Tx rate is controlled by firmware, report the maximum 2138 * negotiated rate in ifconfig output. 2139 */ 2140 ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; 2141 2142 if (uath_write_associd(sc) != 0) { 2143 device_printf(sc->sc_dev, 2144 "could not write association id\n"); 2145 break; 2146 } 2147 /* turn link LED on */ 2148 uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); 2149 /* make activity LED blink */ 2150 uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); 2151 /* set state to associated */ 2152 uath_set_ledstate(sc, 1); 2153 2154 /* start statistics timer */ 2155 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2156 break; 2157 default: 2158 break; 2159 } 2160 ieee80211_free_node(ni); 2161 UATH_UNLOCK(sc); 2162 IEEE80211_LOCK(ic); 2163 return (uvp->newstate(vap, nstate, arg)); 2164 } 2165 2166 static int 2167 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, 2168 int index) 2169 { 2170 #if 0 2171 struct uath_cmd_crypto crypto; 2172 int i; 2173 2174 memset(&crypto, 0, sizeof(crypto)); 2175 crypto.keyidx = htobe32(index); 2176 crypto.magic1 = htobe32(1); 2177 crypto.size = htobe32(368); 2178 crypto.mask = htobe32(0xffff); 2179 crypto.flags = htobe32(0x80000068); 2180 if (index != UATH_DEFAULT_KEY) 2181 crypto.flags |= htobe32(index << 16); 2182 memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); 2183 2184 /* 2185 * Each byte of the key must be XOR'ed with 10101010 before being 2186 * transmitted to the firmware. 2187 */ 2188 for (i = 0; i < wk->wk_keylen; i++) 2189 crypto.key[i] = wk->wk_key[i] ^ 0xaa; 2190 2191 DPRINTF(sc, UATH_DEBUG_CRYPTO, 2192 "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); 2193 return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, 2194 sizeof crypto, 0); 2195 #else 2196 /* XXX support H/W cryto */ 2197 return (0); 2198 #endif 2199 } 2200 2201 static int 2202 uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) 2203 { 2204 int i, error; 2205 2206 error = 0; 2207 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2208 const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; 2209 2210 if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { 2211 error = uath_set_key(sc, wk, i); 2212 if (error) 2213 return (error); 2214 } 2215 } 2216 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2217 error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], 2218 UATH_DEFAULT_KEY); 2219 } 2220 return (error); 2221 } 2222 2223 #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2224 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2225 2226 static void 2227 uath_sysctl_node(struct uath_softc *sc) 2228 { 2229 struct sysctl_ctx_list *ctx; 2230 struct sysctl_oid_list *child; 2231 struct sysctl_oid *tree; 2232 struct uath_stat *stats; 2233 2234 stats = &sc->sc_stat; 2235 ctx = device_get_sysctl_ctx(sc->sc_dev); 2236 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2237 2238 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2239 NULL, "UATH statistics"); 2240 child = SYSCTL_CHILDREN(tree); 2241 UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", 2242 &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); 2243 UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, 2244 "Invalid length"); 2245 UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, 2246 "Multi chunks"); 2247 UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", 2248 &stats->st_toobigrxpkt, "Too big rx packets"); 2249 UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", 2250 &stats->st_stopinprogress, "Stop in progress"); 2251 UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, 2252 "CRC errors"); 2253 UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, 2254 "PHY errors"); 2255 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", 2256 &stats->st_decrypt_crcerr, "Decryption CRC errors"); 2257 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", 2258 &stats->st_decrypt_micerr, "Decryption Misc errors"); 2259 UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, 2260 "Decomp errors"); 2261 UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, 2262 "Key errors"); 2263 UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, 2264 "Unknown errors"); 2265 2266 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", 2267 &stats->st_cmd_active, "Active numbers in Command queue"); 2268 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", 2269 &stats->st_cmd_inactive, "Inactive numbers in Command queue"); 2270 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", 2271 &stats->st_cmd_pending, "Pending numbers in Command queue"); 2272 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", 2273 &stats->st_cmd_waiting, "Waiting numbers in Command queue"); 2274 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", 2275 &stats->st_rx_active, "Active numbers in RX queue"); 2276 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", 2277 &stats->st_rx_inactive, "Inactive numbers in RX queue"); 2278 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2279 &stats->st_tx_active, "Active numbers in TX queue"); 2280 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2281 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2282 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2283 &stats->st_tx_pending, "Pending numbers in TX queue"); 2284 } 2285 2286 #undef UATH_SYSCTL_STAT_ADD32 2287 2288 static void 2289 uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) 2290 { 2291 struct uath_cmd_hdr *hdr; 2292 int dlen; 2293 2294 hdr = (struct uath_cmd_hdr *)cmd->buf; 2295 /* NB: msgid is passed thru w/o byte swapping */ 2296 #ifdef UATH_DEBUG 2297 if (sc->sc_debug & UATH_DEBUG_CMDS) { 2298 int len = be32toh(hdr->len); 2299 printf("%s: %s [ix %u] len %u status %u\n", 2300 __func__, uath_codename(be32toh(hdr->code)), 2301 hdr->msgid, len, be32toh(hdr->magic)); 2302 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 2303 uath_dump_cmd(cmd->buf, 2304 len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); 2305 } 2306 #endif 2307 hdr->code = be32toh(hdr->code); 2308 hdr->len = be32toh(hdr->len); 2309 hdr->magic = be32toh(hdr->magic); /* target status on return */ 2310 2311 switch (hdr->code & 0xff) { 2312 /* reply to a read command */ 2313 default: 2314 dlen = hdr->len - sizeof(*hdr); 2315 if (dlen < 0) { 2316 device_printf(sc->sc_dev, 2317 "Invalid header length %d\n", dlen); 2318 return; 2319 } 2320 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2321 "%s: code %d data len %u\n", 2322 __func__, hdr->code & 0xff, dlen); 2323 /* 2324 * The first response from the target after the 2325 * HOST_AVAILABLE has an invalid msgid so we must 2326 * treat it specially. 2327 */ 2328 if (hdr->msgid < UATH_CMD_LIST_COUNT) { 2329 uint32_t *rp = (uint32_t *)(hdr+1); 2330 u_int olen; 2331 2332 if (!(sizeof(*hdr) <= hdr->len && 2333 hdr->len < UATH_MAX_CMDSZ)) { 2334 device_printf(sc->sc_dev, 2335 "%s: invalid WDC msg length %u; " 2336 "msg ignored\n", __func__, hdr->len); 2337 return; 2338 } 2339 /* 2340 * Calculate return/receive payload size; the 2341 * first word, if present, always gives the 2342 * number of bytes--unless it's 0 in which 2343 * case a single 32-bit word should be present. 2344 */ 2345 if (dlen >= (int)sizeof(uint32_t)) { 2346 olen = be32toh(rp[0]); 2347 dlen -= sizeof(uint32_t); 2348 if (olen == 0) { 2349 /* convention is 0 =>'s one word */ 2350 olen = sizeof(uint32_t); 2351 /* XXX KASSERT(olen == dlen ) */ 2352 } 2353 } else 2354 olen = 0; 2355 if (cmd->odata != NULL) { 2356 /* NB: cmd->olen validated in uath_cmd */ 2357 if (olen > (u_int)cmd->olen) { 2358 /* XXX complain? */ 2359 device_printf(sc->sc_dev, 2360 "%s: cmd 0x%x olen %u cmd olen %u\n", 2361 __func__, hdr->code, olen, 2362 cmd->olen); 2363 olen = cmd->olen; 2364 } 2365 if (olen > (u_int)dlen) { 2366 /* XXX complain, shouldn't happen */ 2367 device_printf(sc->sc_dev, 2368 "%s: cmd 0x%x olen %u dlen %u\n", 2369 __func__, hdr->code, olen, dlen); 2370 olen = dlen; 2371 } 2372 /* XXX have submitter do this */ 2373 /* copy answer into caller's supplied buffer */ 2374 bcopy(&rp[1], cmd->odata, olen); 2375 cmd->olen = olen; 2376 } 2377 } 2378 wakeup_one(cmd); /* wake up caller */ 2379 break; 2380 2381 case WDCMSG_TARGET_START: 2382 if (hdr->msgid >= UATH_CMD_LIST_COUNT) { 2383 /* XXX */ 2384 return; 2385 } 2386 dlen = hdr->len - sizeof(*hdr); 2387 if (dlen != (int)sizeof(uint32_t)) { 2388 /* XXX something wrong */ 2389 return; 2390 } 2391 /* XXX have submitter do this */ 2392 /* copy answer into caller's supplied buffer */ 2393 bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); 2394 cmd->olen = sizeof(uint32_t); 2395 wakeup_one(cmd); /* wake up caller */ 2396 break; 2397 2398 case WDCMSG_SEND_COMPLETE: 2399 /* this notification is sent when UATH_TX_NOTIFY is set */ 2400 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2401 "%s: received Tx notification\n", __func__); 2402 break; 2403 2404 case WDCMSG_TARGET_GET_STATS: 2405 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2406 "%s: received device statistics\n", __func__); 2407 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2408 break; 2409 } 2410 } 2411 2412 static void 2413 uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2414 { 2415 struct uath_softc *sc = usbd_xfer_softc(xfer); 2416 struct uath_cmd *cmd; 2417 struct usb_page_cache *pc; 2418 int actlen; 2419 2420 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2421 2422 UATH_ASSERT_LOCKED(sc); 2423 2424 switch (USB_GET_STATE(xfer)) { 2425 case USB_ST_TRANSFERRED: 2426 cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); 2427 if (cmd == NULL) 2428 goto setup; 2429 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); 2430 UATH_STAT_DEC(sc, st_cmd_waiting); 2431 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 2432 UATH_STAT_INC(sc, st_cmd_inactive); 2433 2434 KASSERT(actlen >= (int)sizeof(struct uath_cmd_hdr), 2435 ("short xfer error")); 2436 pc = usbd_xfer_get_frame(xfer, 0); 2437 usbd_copy_out(pc, 0, cmd->buf, actlen); 2438 uath_cmdeof(sc, cmd); 2439 case USB_ST_SETUP: 2440 setup: 2441 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2442 usbd_transfer_submit(xfer); 2443 break; 2444 default: 2445 if (error != USB_ERR_CANCELLED) { 2446 usbd_xfer_set_stall(xfer); 2447 goto setup; 2448 } 2449 break; 2450 } 2451 } 2452 2453 static void 2454 uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2455 { 2456 struct uath_softc *sc = usbd_xfer_softc(xfer); 2457 struct uath_cmd *cmd; 2458 2459 UATH_ASSERT_LOCKED(sc); 2460 2461 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2462 if (cmd != NULL && USB_GET_STATE(xfer) != USB_ST_SETUP) { 2463 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); 2464 UATH_STAT_DEC(sc, st_cmd_active); 2465 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? 2466 &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); 2467 if (cmd->flags & UATH_CMD_FLAG_READ) 2468 UATH_STAT_INC(sc, st_cmd_waiting); 2469 else 2470 UATH_STAT_INC(sc, st_cmd_inactive); 2471 } 2472 2473 switch (USB_GET_STATE(xfer)) { 2474 case USB_ST_TRANSFERRED: 2475 case USB_ST_SETUP: 2476 setup: 2477 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2478 if (cmd == NULL) { 2479 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2480 __func__); 2481 return; 2482 } 2483 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); 2484 UATH_STAT_DEC(sc, st_cmd_pending); 2485 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? 2486 &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); 2487 if (cmd->flags & UATH_CMD_FLAG_ASYNC) 2488 UATH_STAT_INC(sc, st_cmd_inactive); 2489 else 2490 UATH_STAT_INC(sc, st_cmd_active); 2491 2492 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2493 usbd_transfer_submit(xfer); 2494 break; 2495 default: 2496 if (error != USB_ERR_CANCELLED) { 2497 usbd_xfer_set_stall(xfer); 2498 goto setup; 2499 } 2500 break; 2501 } 2502 } 2503 2504 static void 2505 uath_update_rxstat(struct uath_softc *sc, uint32_t status) 2506 { 2507 2508 switch (status) { 2509 case UATH_STATUS_STOP_IN_PROGRESS: 2510 UATH_STAT_INC(sc, st_stopinprogress); 2511 break; 2512 case UATH_STATUS_CRC_ERR: 2513 UATH_STAT_INC(sc, st_crcerr); 2514 break; 2515 case UATH_STATUS_PHY_ERR: 2516 UATH_STAT_INC(sc, st_phyerr); 2517 break; 2518 case UATH_STATUS_DECRYPT_CRC_ERR: 2519 UATH_STAT_INC(sc, st_decrypt_crcerr); 2520 break; 2521 case UATH_STATUS_DECRYPT_MIC_ERR: 2522 UATH_STAT_INC(sc, st_decrypt_micerr); 2523 break; 2524 case UATH_STATUS_DECOMP_ERR: 2525 UATH_STAT_INC(sc, st_decomperr); 2526 break; 2527 case UATH_STATUS_KEY_ERR: 2528 UATH_STAT_INC(sc, st_keyerr); 2529 break; 2530 case UATH_STATUS_ERR: 2531 UATH_STAT_INC(sc, st_err); 2532 break; 2533 default: 2534 break; 2535 } 2536 } 2537 2538 static struct mbuf * 2539 uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, 2540 struct uath_rx_desc **pdesc) 2541 { 2542 struct uath_softc *sc = usbd_xfer_softc(xfer); 2543 struct ifnet *ifp = sc->sc_ifp; 2544 struct ieee80211com *ic = ifp->if_l2com; 2545 struct uath_chunk *chunk; 2546 struct uath_rx_desc *desc; 2547 struct mbuf *m = data->m, *mnew, *mp; 2548 uint16_t chunklen; 2549 int actlen; 2550 2551 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2552 2553 if (actlen < (int)UATH_MIN_RXBUFSZ) { 2554 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2555 "%s: wrong xfer size (len=%d)\n", __func__, actlen); 2556 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2557 return (NULL); 2558 } 2559 2560 chunk = (struct uath_chunk *)data->buf; 2561 if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { 2562 device_printf(sc->sc_dev, "%s: strange response\n", __func__); 2563 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2564 UATH_RESET_INTRX(sc); 2565 return (NULL); 2566 } 2567 2568 if (chunk->seqnum != sc->sc_intrx_nextnum) { 2569 DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", 2570 chunk->seqnum, sc->sc_intrx_nextnum); 2571 UATH_STAT_INC(sc, st_badchunkseqnum); 2572 if (sc->sc_intrx_head != NULL) 2573 m_freem(sc->sc_intrx_head); 2574 UATH_RESET_INTRX(sc); 2575 return (NULL); 2576 } 2577 2578 /* check multi-chunk frames */ 2579 if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || 2580 (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || 2581 chunk->flags & UATH_CFLAGS_RXMSG) 2582 UATH_STAT_INC(sc, st_multichunk); 2583 2584 chunklen = be16toh(chunk->length); 2585 if (chunk->flags & UATH_CFLAGS_FINAL) 2586 chunklen -= sizeof(struct uath_rx_desc); 2587 2588 if (chunklen > 0 && 2589 (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { 2590 /* we should use intermediate RX buffer */ 2591 if (chunk->seqnum == 0) 2592 UATH_RESET_INTRX(sc); 2593 if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + 2594 chunklen) > UATH_MAX_INTRX_SIZE) { 2595 UATH_STAT_INC(sc, st_invalidlen); 2596 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2597 if (sc->sc_intrx_head != NULL) 2598 m_freem(sc->sc_intrx_head); 2599 UATH_RESET_INTRX(sc); 2600 return (NULL); 2601 } 2602 2603 m->m_len = chunklen; 2604 m->m_data += sizeof(struct uath_chunk); 2605 2606 if (sc->sc_intrx_head == NULL) { 2607 sc->sc_intrx_head = m; 2608 sc->sc_intrx_tail = m; 2609 } else { 2610 m->m_flags &= ~M_PKTHDR; 2611 sc->sc_intrx_tail->m_next = m; 2612 sc->sc_intrx_tail = m; 2613 } 2614 } 2615 sc->sc_intrx_len += chunklen; 2616 2617 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2618 if (mnew == NULL) { 2619 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2620 "%s: can't get new mbuf, drop frame\n", __func__); 2621 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2622 if (sc->sc_intrx_head != NULL) 2623 m_freem(sc->sc_intrx_head); 2624 UATH_RESET_INTRX(sc); 2625 return (NULL); 2626 } 2627 2628 data->m = mnew; 2629 data->buf = mtod(mnew, uint8_t *); 2630 2631 /* if the frame is not final continue the transfer */ 2632 if (!(chunk->flags & UATH_CFLAGS_FINAL)) { 2633 sc->sc_intrx_nextnum++; 2634 UATH_RESET_INTRX(sc); 2635 return (NULL); 2636 } 2637 2638 /* 2639 * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is 2640 * located at the end, 32-bit aligned 2641 */ 2642 desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? 2643 (struct uath_rx_desc *)(chunk + 1) : 2644 (struct uath_rx_desc *)(((uint8_t *)chunk) + 2645 sizeof(struct uath_chunk) + be16toh(chunk->length) - 2646 sizeof(struct uath_rx_desc)); 2647 *pdesc = desc; 2648 2649 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2650 "%s: frame len %u code %u status %u rate %u antenna %u " 2651 "rssi %d channel %u phyerror %u connix %u decrypterror %u " 2652 "keycachemiss %u\n", __func__, be32toh(desc->framelen) 2653 , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) 2654 , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) 2655 , be32toh(desc->phyerror), be32toh(desc->connix) 2656 , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); 2657 2658 if (be32toh(desc->len) > MCLBYTES) { 2659 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2660 "%s: bad descriptor (len=%d)\n", __func__, 2661 be32toh(desc->len)); 2662 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2663 UATH_STAT_INC(sc, st_toobigrxpkt); 2664 if (sc->sc_intrx_head != NULL) 2665 m_freem(sc->sc_intrx_head); 2666 UATH_RESET_INTRX(sc); 2667 return (NULL); 2668 } 2669 2670 uath_update_rxstat(sc, be32toh(desc->status)); 2671 2672 /* finalize mbuf */ 2673 if (sc->sc_intrx_head == NULL) { 2674 m->m_pkthdr.rcvif = ifp; 2675 m->m_pkthdr.len = m->m_len = 2676 be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; 2677 m->m_data += sizeof(struct uath_chunk); 2678 } else { 2679 mp = sc->sc_intrx_head; 2680 mp->m_pkthdr.rcvif = ifp; 2681 mp->m_flags |= M_PKTHDR; 2682 mp->m_pkthdr.len = sc->sc_intrx_len; 2683 m = mp; 2684 } 2685 2686 /* there are a lot more fields in the RX descriptor */ 2687 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && 2688 ieee80211_radiotap_active(ic)) { 2689 struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; 2690 uint32_t tsf_hi = be32toh(desc->tstamp_high); 2691 uint32_t tsf_lo = be32toh(desc->tstamp_low); 2692 2693 /* XXX only get low order 24bits of tsf from h/w */ 2694 tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 2695 tap->wr_flags = 0; 2696 if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) 2697 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2698 /* XXX map other status to BADFCS? */ 2699 /* XXX ath h/w rate code, need to map */ 2700 tap->wr_rate = be32toh(desc->rate); 2701 tap->wr_antenna = be32toh(desc->antenna); 2702 tap->wr_antsignal = -95 + be32toh(desc->rssi); 2703 tap->wr_antnoise = -95; 2704 } 2705 2706 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2707 UATH_RESET_INTRX(sc); 2708 2709 return (m); 2710 } 2711 2712 static void 2713 uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2714 { 2715 struct uath_softc *sc = usbd_xfer_softc(xfer); 2716 struct ifnet *ifp = sc->sc_ifp; 2717 struct ieee80211com *ic = ifp->if_l2com; 2718 struct ieee80211_frame *wh; 2719 struct ieee80211_node *ni; 2720 struct mbuf *m = NULL; 2721 struct uath_data *data; 2722 struct uath_rx_desc *desc = NULL; 2723 int8_t nf; 2724 2725 UATH_ASSERT_LOCKED(sc); 2726 2727 switch (USB_GET_STATE(xfer)) { 2728 case USB_ST_TRANSFERRED: 2729 data = STAILQ_FIRST(&sc->sc_rx_active); 2730 if (data == NULL) 2731 goto setup; 2732 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2733 UATH_STAT_DEC(sc, st_rx_active); 2734 m = uath_data_rxeof(xfer, data, &desc); 2735 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2736 UATH_STAT_INC(sc, st_rx_inactive); 2737 /* FALLTHROUGH */ 2738 case USB_ST_SETUP: 2739 setup: 2740 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2741 if (data == NULL) 2742 return; 2743 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2744 UATH_STAT_DEC(sc, st_rx_inactive); 2745 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2746 UATH_STAT_INC(sc, st_rx_active); 2747 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2748 usbd_transfer_submit(xfer); 2749 2750 /* 2751 * To avoid LOR we should unlock our private mutex here to call 2752 * ieee80211_input() because here is at the end of a USB 2753 * callback and safe to unlock. 2754 */ 2755 if (sc->sc_flags & UATH_FLAG_INVALID) { 2756 if (m != NULL) 2757 m_freem(m); 2758 return; 2759 } 2760 UATH_UNLOCK(sc); 2761 if (m != NULL && desc != NULL) { 2762 wh = mtod(m, struct ieee80211_frame *); 2763 ni = ieee80211_find_rxnode(ic, 2764 (struct ieee80211_frame_min *)wh); 2765 nf = -95; /* XXX */ 2766 if (ni != NULL) { 2767 (void) ieee80211_input(ni, m, 2768 (int)be32toh(desc->rssi), nf); 2769 /* node is no longer needed */ 2770 ieee80211_free_node(ni); 2771 } else 2772 (void) ieee80211_input_all(ic, m, 2773 (int)be32toh(desc->rssi), nf); 2774 m = NULL; 2775 desc = NULL; 2776 } 2777 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2778 !IFQ_IS_EMPTY(&ifp->if_snd)) 2779 uath_start(ifp); 2780 UATH_LOCK(sc); 2781 break; 2782 default: 2783 /* needs it to the inactive queue due to a error. */ 2784 data = STAILQ_FIRST(&sc->sc_rx_active); 2785 if (data != NULL) { 2786 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2787 UATH_STAT_DEC(sc, st_rx_active); 2788 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2789 UATH_STAT_INC(sc, st_rx_inactive); 2790 } 2791 if (error != USB_ERR_CANCELLED) { 2792 usbd_xfer_set_stall(xfer); 2793 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2794 goto setup; 2795 } 2796 break; 2797 } 2798 } 2799 2800 static void 2801 uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) 2802 { 2803 struct uath_softc *sc = usbd_xfer_softc(xfer); 2804 struct ifnet *ifp = sc->sc_ifp; 2805 struct mbuf *m; 2806 2807 UATH_ASSERT_LOCKED(sc); 2808 2809 /* 2810 * Do any tx complete callback. Note this must be done before releasing 2811 * the node reference. 2812 */ 2813 if (data->m) { 2814 m = data->m; 2815 if (m->m_flags & M_TXCB && 2816 (sc->sc_flags & UATH_FLAG_INVALID) == 0) { 2817 /* XXX status? */ 2818 ieee80211_process_callback(data->ni, m, 0); 2819 } 2820 m_freem(m); 2821 data->m = NULL; 2822 } 2823 if (data->ni) { 2824 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2825 ieee80211_free_node(data->ni); 2826 data->ni = NULL; 2827 } 2828 sc->sc_tx_timer = 0; 2829 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2830 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2831 } 2832 2833 static void 2834 uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2835 { 2836 struct uath_softc *sc = usbd_xfer_softc(xfer); 2837 struct ifnet *ifp = sc->sc_ifp; 2838 struct uath_data *data; 2839 2840 UATH_ASSERT_LOCKED(sc); 2841 2842 switch (USB_GET_STATE(xfer)) { 2843 case USB_ST_TRANSFERRED: 2844 data = STAILQ_FIRST(&sc->sc_tx_active); 2845 if (data == NULL) 2846 goto setup; 2847 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2848 UATH_STAT_DEC(sc, st_tx_active); 2849 uath_data_txeof(xfer, data); 2850 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2851 UATH_STAT_INC(sc, st_tx_inactive); 2852 /* FALLTHROUGH */ 2853 case USB_ST_SETUP: 2854 setup: 2855 data = STAILQ_FIRST(&sc->sc_tx_pending); 2856 if (data == NULL) { 2857 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2858 __func__); 2859 return; 2860 } 2861 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2862 UATH_STAT_DEC(sc, st_tx_pending); 2863 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2864 UATH_STAT_INC(sc, st_tx_active); 2865 2866 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2867 usbd_transfer_submit(xfer); 2868 2869 UATH_UNLOCK(sc); 2870 uath_start(ifp); 2871 UATH_LOCK(sc); 2872 break; 2873 default: 2874 data = STAILQ_FIRST(&sc->sc_tx_active); 2875 if (data == NULL) 2876 goto setup; 2877 if (data->ni != NULL) { 2878 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2879 ieee80211_free_node(data->ni); 2880 data->ni = NULL; 2881 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2882 } 2883 if (error != USB_ERR_CANCELLED) { 2884 usbd_xfer_set_stall(xfer); 2885 goto setup; 2886 } 2887 break; 2888 } 2889 } 2890 2891 static device_method_t uath_methods[] = { 2892 DEVMETHOD(device_probe, uath_match), 2893 DEVMETHOD(device_attach, uath_attach), 2894 DEVMETHOD(device_detach, uath_detach), 2895 DEVMETHOD_END 2896 }; 2897 static driver_t uath_driver = { 2898 .name = "uath", 2899 .methods = uath_methods, 2900 .size = sizeof(struct uath_softc) 2901 }; 2902 static devclass_t uath_devclass; 2903 2904 DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); 2905 MODULE_DEPEND(uath, wlan, 1, 1, 1); 2906 MODULE_DEPEND(uath, usb, 1, 1, 1); 2907 MODULE_VERSION(uath, 1); 2908