1 /*- 2 * Copyright (c) 2006 Sam Leffler, Errno Consulting 3 * Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 /* 32 * This driver is distantly derived from a driver of the same name 33 * by Damien Bergamini. The original copyright is included below: 34 * 35 * Copyright (c) 2006 36 * Damien Bergamini <damien.bergamini@free.fr> 37 * 38 * Permission to use, copy, modify, and distribute this software for any 39 * purpose with or without fee is hereby granted, provided that the above 40 * copyright notice and this permission notice appear in all copies. 41 * 42 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 43 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 44 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 45 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 46 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 47 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 48 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 /*- 55 * Driver for Atheros AR5523 USB parts. 56 * 57 * The driver requires firmware to be loaded into the device. This 58 * is done on device discovery from a user application (uathload) 59 * that is launched by devd when a device with suitable product ID 60 * is recognized. Once firmware has been loaded the device will 61 * reset the USB port and re-attach with the original product ID+1 62 * and this driver will be attached. The firmware is licensed for 63 * general use (royalty free) and may be incorporated in products. 64 * Note that the firmware normally packaged with the NDIS drivers 65 * for these devices does not work in this way and so does not work 66 * with this driver. 67 */ 68 #include <sys/param.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/systm.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/bus.h> 80 #include <sys/endian.h> 81 #include <sys/kdb.h> 82 83 #include <machine/bus.h> 84 #include <machine/resource.h> 85 #include <sys/rman.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_arp.h> 90 #include <net/ethernet.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 #include <net/if_types.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/in_systm.h> 98 #include <netinet/in_var.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/ip.h> 101 #endif 102 103 #include <net80211/ieee80211_var.h> 104 #include <net80211/ieee80211_regdomain.h> 105 #include <net80211/ieee80211_radiotap.h> 106 107 #include <dev/usb/usb.h> 108 #include <dev/usb/usbdi.h> 109 #include "usbdevs.h" 110 111 #include <dev/usb/wlan/if_uathreg.h> 112 #include <dev/usb/wlan/if_uathvar.h> 113 114 static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); 115 116 static int uath_countrycode = CTRY_DEFAULT; /* country code */ 117 SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RW, &uath_countrycode, 118 0, "country code"); 119 TUNABLE_INT("hw.usb.uath.countrycode", &uath_countrycode); 120 static int uath_regdomain = 0; /* regulatory domain */ 121 SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 122 0, "regulatory domain"); 123 124 #ifdef UATH_DEBUG 125 int uath_debug = 0; 126 SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RW, &uath_debug, 0, 127 "uath debug level"); 128 TUNABLE_INT("hw.usb.uath.debug", &uath_debug); 129 enum { 130 UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 131 UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ 132 UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 133 UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ 134 UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ 135 UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ 136 UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ 137 UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ 138 UATH_DEBUG_CMDS = 0x00000100, /* commands */ 139 UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ 140 UATH_DEBUG_RESET = 0x00000400, /* reset processing */ 141 UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ 142 UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ 143 UATH_DEBUG_WME = 0x00002000, /* WME */ 144 UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ 145 UATH_DEBUG_RATES = 0x00008000, /* rates */ 146 UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ 147 UATH_DEBUG_LED = 0x00020000, /* LED */ 148 UATH_DEBUG_ANY = 0xffffffff 149 }; 150 #define DPRINTF(sc, m, fmt, ...) do { \ 151 if (sc->sc_debug & (m)) \ 152 printf(fmt, __VA_ARGS__); \ 153 } while (0) 154 #else 155 #define DPRINTF(sc, m, fmt, ...) do { \ 156 (void) sc; \ 157 } while (0) 158 #endif 159 160 /* unaligned little endian access */ 161 #define LE_READ_2(p) \ 162 ((u_int16_t) \ 163 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 164 #define LE_READ_4(p) \ 165 ((u_int32_t) \ 166 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 167 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 168 169 /* recognized device vendors/products */ 170 static const STRUCT_USB_HOST_ID uath_devs[] = { 171 #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 172 UATH_DEV(ACCTON, SMCWUSBTG2), 173 UATH_DEV(ATHEROS, AR5523), 174 UATH_DEV(ATHEROS2, AR5523_1), 175 UATH_DEV(ATHEROS2, AR5523_2), 176 UATH_DEV(ATHEROS2, AR5523_3), 177 UATH_DEV(CONCEPTRONIC, AR5523_1), 178 UATH_DEV(CONCEPTRONIC, AR5523_2), 179 UATH_DEV(DLINK, DWLAG122), 180 UATH_DEV(DLINK, DWLAG132), 181 UATH_DEV(DLINK, DWLG132), 182 UATH_DEV(DLINK2, DWA120), 183 UATH_DEV(GIGASET, AR5523), 184 UATH_DEV(GIGASET, SMCWUSBTG), 185 UATH_DEV(GLOBALSUN, AR5523_1), 186 UATH_DEV(GLOBALSUN, AR5523_2), 187 UATH_DEV(NETGEAR, WG111U), 188 UATH_DEV(NETGEAR3, WG111T), 189 UATH_DEV(NETGEAR3, WPN111), 190 UATH_DEV(NETGEAR3, WPN111_2), 191 UATH_DEV(UMEDIA, TEW444UBEU), 192 UATH_DEV(UMEDIA, AR5523_2), 193 UATH_DEV(WISTRONNEWEB, AR5523_1), 194 UATH_DEV(WISTRONNEWEB, AR5523_2), 195 UATH_DEV(ZCOM, AR5523) 196 #undef UATH_DEV 197 }; 198 199 static usb_callback_t uath_intr_rx_callback; 200 static usb_callback_t uath_intr_tx_callback; 201 static usb_callback_t uath_bulk_rx_callback; 202 static usb_callback_t uath_bulk_tx_callback; 203 204 static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { 205 [UATH_INTR_RX] = { 206 .type = UE_BULK, 207 .endpoint = 0x1, 208 .direction = UE_DIR_IN, 209 .bufsize = UATH_MAX_CMDSZ, 210 .flags = { 211 .pipe_bof = 1, 212 .short_xfer_ok = 1 213 }, 214 .callback = uath_intr_rx_callback 215 }, 216 [UATH_INTR_TX] = { 217 .type = UE_BULK, 218 .endpoint = 0x1, 219 .direction = UE_DIR_OUT, 220 .bufsize = UATH_MAX_CMDSZ, 221 .flags = { 222 .ext_buffer = 1, 223 .force_short_xfer = 1, 224 .pipe_bof = 1, 225 }, 226 .callback = uath_intr_tx_callback, 227 .timeout = UATH_CMD_TIMEOUT 228 }, 229 [UATH_BULK_RX] = { 230 .type = UE_BULK, 231 .endpoint = 0x2, 232 .direction = UE_DIR_IN, 233 .bufsize = MCLBYTES, 234 .flags = { 235 .ext_buffer = 1, 236 .pipe_bof = 1, 237 .short_xfer_ok = 1 238 }, 239 .callback = uath_bulk_rx_callback 240 }, 241 [UATH_BULK_TX] = { 242 .type = UE_BULK, 243 .endpoint = 0x2, 244 .direction = UE_DIR_OUT, 245 .bufsize = UATH_MAX_TXBUFSZ, 246 .flags = { 247 .ext_buffer = 1, 248 .force_short_xfer = 1, 249 .pipe_bof = 1 250 }, 251 .callback = uath_bulk_tx_callback, 252 .timeout = UATH_DATA_TIMEOUT 253 } 254 }; 255 256 static struct ieee80211vap *uath_vap_create(struct ieee80211com *, 257 const char name[IFNAMSIZ], int unit, int opmode, 258 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 259 const uint8_t mac[IEEE80211_ADDR_LEN]); 260 static void uath_vap_delete(struct ieee80211vap *); 261 static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd [], 262 int, int); 263 static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd [], 264 int); 265 static int uath_host_available(struct uath_softc *); 266 static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); 267 static int uath_get_devcap(struct uath_softc *); 268 static struct uath_cmd * 269 uath_get_cmdbuf(struct uath_softc *); 270 static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, 271 int, void *, int, int); 272 static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, 273 int, int); 274 static void uath_stat(void *); 275 #ifdef UATH_DEBUG 276 static void uath_dump_cmd(const uint8_t *, int, char); 277 static const char * 278 uath_codename(int); 279 #endif 280 static int uath_get_devstatus(struct uath_softc *, 281 uint8_t macaddr[IEEE80211_ADDR_LEN]); 282 static int uath_get_status(struct uath_softc *, uint32_t, void *, int); 283 static int uath_alloc_rx_data_list(struct uath_softc *); 284 static int uath_alloc_tx_data_list(struct uath_softc *); 285 static void uath_free_rx_data_list(struct uath_softc *); 286 static void uath_free_tx_data_list(struct uath_softc *); 287 static int uath_init_locked(void *); 288 static void uath_init(void *); 289 static void uath_stop_locked(struct ifnet *); 290 static void uath_stop(struct ifnet *); 291 static int uath_ioctl(struct ifnet *, u_long, caddr_t); 292 static void uath_start(struct ifnet *); 293 static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, 294 const struct ieee80211_bpf_params *); 295 static void uath_scan_start(struct ieee80211com *); 296 static void uath_scan_end(struct ieee80211com *); 297 static void uath_set_channel(struct ieee80211com *); 298 static void uath_update_mcast(struct ifnet *); 299 static void uath_update_promisc(struct ifnet *); 300 static int uath_config(struct uath_softc *, uint32_t, uint32_t); 301 static int uath_config_multi(struct uath_softc *, uint32_t, const void *, 302 int); 303 static int uath_switch_channel(struct uath_softc *, 304 struct ieee80211_channel *); 305 static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); 306 static void uath_watchdog(void *); 307 static void uath_abort_xfers(struct uath_softc *); 308 static int uath_dataflush(struct uath_softc *); 309 static int uath_cmdflush(struct uath_softc *); 310 static int uath_flush(struct uath_softc *); 311 static int uath_set_ledstate(struct uath_softc *, int); 312 static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); 313 static int uath_reset_tx_queues(struct uath_softc *); 314 static int uath_wme_init(struct uath_softc *); 315 static struct uath_data * 316 uath_getbuf(struct uath_softc *); 317 static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, 318 int); 319 static int uath_set_key(struct uath_softc *, 320 const struct ieee80211_key *, int); 321 static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); 322 static void uath_sysctl_node(struct uath_softc *); 323 324 static int 325 uath_match(device_t dev) 326 { 327 struct usb_attach_arg *uaa = device_get_ivars(dev); 328 329 if (uaa->usb_mode != USB_MODE_HOST) 330 return (ENXIO); 331 if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) 332 return (ENXIO); 333 if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) 334 return (ENXIO); 335 336 return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); 337 } 338 339 static int 340 uath_attach(device_t dev) 341 { 342 struct uath_softc *sc = device_get_softc(dev); 343 struct usb_attach_arg *uaa = device_get_ivars(dev); 344 struct ieee80211com *ic; 345 struct ifnet *ifp; 346 uint8_t bands, iface_index = UATH_IFACE_INDEX; /* XXX */ 347 usb_error_t error; 348 uint8_t macaddr[IEEE80211_ADDR_LEN]; 349 350 sc->sc_dev = dev; 351 sc->sc_udev = uaa->device; 352 #ifdef UATH_DEBUG 353 sc->sc_debug = uath_debug; 354 #endif 355 device_set_usb_desc(dev); 356 357 /* 358 * Only post-firmware devices here. 359 */ 360 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 361 MTX_DEF); 362 callout_init(&sc->stat_ch, 0); 363 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 364 365 /* 366 * Allocate xfers for firmware commands. 367 */ 368 error = uath_alloc_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT, 369 UATH_MAX_CMDSZ); 370 if (error != 0) { 371 device_printf(sc->sc_dev, 372 "could not allocate Tx command list\n"); 373 goto fail; 374 } 375 376 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 377 uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); 378 if (error) { 379 device_printf(dev, "could not allocate USB transfers, " 380 "err=%s\n", usbd_errstr(error)); 381 goto fail1; 382 } 383 384 /* 385 * We're now ready to send+receive firmware commands. 386 */ 387 UATH_LOCK(sc); 388 error = uath_host_available(sc); 389 if (error != 0) { 390 device_printf(sc->sc_dev, "could not initialize adapter\n"); 391 goto fail3; 392 } 393 error = uath_get_devcap(sc); 394 if (error != 0) { 395 device_printf(sc->sc_dev, 396 "could not get device capabilities\n"); 397 goto fail3; 398 } 399 UATH_UNLOCK(sc); 400 401 /* Create device sysctl node. */ 402 uath_sysctl_node(sc); 403 404 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 405 if (ifp == NULL) { 406 device_printf(sc->sc_dev, "can not allocate ifnet\n"); 407 error = ENXIO; 408 goto fail2; 409 } 410 411 UATH_LOCK(sc); 412 error = uath_get_devstatus(sc, macaddr); 413 if (error != 0) { 414 device_printf(sc->sc_dev, "could not get device status\n"); 415 goto fail4; 416 } 417 418 /* 419 * Allocate xfers for Rx/Tx data pipes. 420 */ 421 error = uath_alloc_rx_data_list(sc); 422 if (error != 0) { 423 device_printf(sc->sc_dev, "could not allocate Rx data list\n"); 424 goto fail4; 425 } 426 error = uath_alloc_tx_data_list(sc); 427 if (error != 0) { 428 device_printf(sc->sc_dev, "could not allocate Tx data list\n"); 429 goto fail4; 430 } 431 UATH_UNLOCK(sc); 432 433 ifp->if_softc = sc; 434 if_initname(ifp, "uath", device_get_unit(sc->sc_dev)); 435 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 436 ifp->if_init = uath_init; 437 ifp->if_ioctl = uath_ioctl; 438 ifp->if_start = uath_start; 439 /* XXX UATH_TX_DATA_LIST_COUNT */ 440 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 441 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 442 IFQ_SET_READY(&ifp->if_snd); 443 444 ic = ifp->if_l2com; 445 ic->ic_ifp = ifp; 446 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 447 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 448 449 /* set device capabilities */ 450 ic->ic_caps = 451 IEEE80211_C_STA | /* station mode */ 452 IEEE80211_C_MONITOR | /* monitor mode supported */ 453 IEEE80211_C_TXPMGT | /* tx power management */ 454 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 455 IEEE80211_C_SHSLOT | /* short slot time supported */ 456 IEEE80211_C_WPA | /* 802.11i */ 457 IEEE80211_C_BGSCAN | /* capable of bg scanning */ 458 IEEE80211_C_TXFRAG; /* handle tx frags */ 459 460 /* put a regulatory domain to reveal informations. */ 461 uath_regdomain = sc->sc_devcap.regDomain; 462 463 bands = 0; 464 setbit(&bands, IEEE80211_MODE_11B); 465 setbit(&bands, IEEE80211_MODE_11G); 466 if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) 467 setbit(&bands, IEEE80211_MODE_11A); 468 /* XXX turbo */ 469 ieee80211_init_channels(ic, NULL, &bands); 470 471 ieee80211_ifattach(ic, macaddr); 472 ic->ic_raw_xmit = uath_raw_xmit; 473 ic->ic_scan_start = uath_scan_start; 474 ic->ic_scan_end = uath_scan_end; 475 ic->ic_set_channel = uath_set_channel; 476 477 ic->ic_vap_create = uath_vap_create; 478 ic->ic_vap_delete = uath_vap_delete; 479 ic->ic_update_mcast = uath_update_mcast; 480 ic->ic_update_promisc = uath_update_promisc; 481 482 ieee80211_radiotap_attach(ic, 483 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 484 UATH_TX_RADIOTAP_PRESENT, 485 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 486 UATH_RX_RADIOTAP_PRESENT); 487 488 if (bootverbose) 489 ieee80211_announce(ic); 490 491 return (0); 492 493 fail4: if_free(ifp); 494 fail3: UATH_UNLOCK(sc); 495 fail2: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 496 fail1: uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT); 497 fail: 498 return (error); 499 } 500 501 static int 502 uath_detach(device_t dev) 503 { 504 struct uath_softc *sc = device_get_softc(dev); 505 struct ifnet *ifp = sc->sc_ifp; 506 struct ieee80211com *ic = ifp->if_l2com; 507 508 if (!device_is_attached(dev)) 509 return (0); 510 511 UATH_LOCK(sc); 512 sc->sc_flags |= UATH_FLAG_INVALID; 513 UATH_UNLOCK(sc); 514 515 ieee80211_ifdetach(ic); 516 uath_stop(ifp); 517 518 callout_drain(&sc->stat_ch); 519 callout_drain(&sc->watchdog_ch); 520 521 usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 522 523 /* free buffers */ 524 UATH_LOCK(sc); 525 uath_free_rx_data_list(sc); 526 uath_free_tx_data_list(sc); 527 uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT); 528 UATH_UNLOCK(sc); 529 530 if_free(ifp); 531 mtx_destroy(&sc->sc_mtx); 532 return (0); 533 } 534 535 static void 536 uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[], int ncmd) 537 { 538 int i; 539 540 for (i = 0; i < ncmd; i++) 541 if (cmds[i].buf != NULL) 542 free(cmds[i].buf, M_USBDEV); 543 } 544 545 static int 546 uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[], 547 int ncmd, int maxsz) 548 { 549 int i, error; 550 551 STAILQ_INIT(&sc->sc_cmd_active); 552 STAILQ_INIT(&sc->sc_cmd_pending); 553 STAILQ_INIT(&sc->sc_cmd_waiting); 554 STAILQ_INIT(&sc->sc_cmd_inactive); 555 556 for (i = 0; i < ncmd; i++) { 557 struct uath_cmd *cmd = &cmds[i]; 558 559 cmd->sc = sc; /* backpointer for callbacks */ 560 cmd->msgid = i; 561 cmd->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); 562 if (cmd->buf == NULL) { 563 device_printf(sc->sc_dev, 564 "could not allocate xfer buffer\n"); 565 error = ENOMEM; 566 goto fail; 567 } 568 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 569 UATH_STAT_INC(sc, st_cmd_inactive); 570 } 571 return (0); 572 573 fail: uath_free_cmd_list(sc, cmds, ncmd); 574 return (error); 575 } 576 577 static int 578 uath_host_available(struct uath_softc *sc) 579 { 580 struct uath_cmd_host_available setup; 581 582 UATH_ASSERT_LOCKED(sc); 583 584 /* inform target the host is available */ 585 setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); 586 setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); 587 setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); 588 setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); 589 return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, 590 &setup, sizeof setup, NULL, 0, 0); 591 } 592 593 #ifdef UATH_DEBUG 594 static void 595 uath_dump_cmd(const uint8_t *buf, int len, char prefix) 596 { 597 const char *sep = ""; 598 int i; 599 600 for (i = 0; i < len; i++) { 601 if ((i % 16) == 0) { 602 printf("%s%c ", sep, prefix); 603 sep = "\n"; 604 } 605 else if ((i % 4) == 0) 606 printf(" "); 607 printf("%02x", buf[i]); 608 } 609 printf("\n"); 610 } 611 612 static const char * 613 uath_codename(int code) 614 { 615 #define N(a) (sizeof(a)/sizeof(a[0])) 616 static const char *names[] = { 617 "0x00", 618 "HOST_AVAILABLE", 619 "BIND", 620 "TARGET_RESET", 621 "TARGET_GET_CAPABILITY", 622 "TARGET_SET_CONFIG", 623 "TARGET_GET_STATUS", 624 "TARGET_GET_STATS", 625 "TARGET_START", 626 "TARGET_STOP", 627 "TARGET_ENABLE", 628 "TARGET_DISABLE", 629 "CREATE_CONNECTION", 630 "UPDATE_CONNECT_ATTR", 631 "DELETE_CONNECT", 632 "SEND", 633 "FLUSH", 634 "STATS_UPDATE", 635 "BMISS", 636 "DEVICE_AVAIL", 637 "SEND_COMPLETE", 638 "DATA_AVAIL", 639 "SET_PWR_MODE", 640 "BMISS_ACK", 641 "SET_LED_STEADY", 642 "SET_LED_BLINK", 643 "SETUP_BEACON_DESC", 644 "BEACON_INIT", 645 "RESET_KEY_CACHE", 646 "RESET_KEY_CACHE_ENTRY", 647 "SET_KEY_CACHE_ENTRY", 648 "SET_DECOMP_MASK", 649 "SET_REGULATORY_DOMAIN", 650 "SET_LED_STATE", 651 "WRITE_ASSOCID", 652 "SET_STA_BEACON_TIMERS", 653 "GET_TSF", 654 "RESET_TSF", 655 "SET_ADHOC_MODE", 656 "SET_BASIC_RATE", 657 "MIB_CONTROL", 658 "GET_CHANNEL_DATA", 659 "GET_CUR_RSSI", 660 "SET_ANTENNA_SWITCH", 661 "0x2c", "0x2d", "0x2e", 662 "USE_SHORT_SLOT_TIME", 663 "SET_POWER_MODE", 664 "SETUP_PSPOLL_DESC", 665 "SET_RX_MULTICAST_FILTER", 666 "RX_FILTER", 667 "PER_CALIBRATION", 668 "RESET", 669 "DISABLE", 670 "PHY_DISABLE", 671 "SET_TX_POWER_LIMIT", 672 "SET_TX_QUEUE_PARAMS", 673 "SETUP_TX_QUEUE", 674 "RELEASE_TX_QUEUE", 675 }; 676 static char buf[8]; 677 678 if (code < N(names)) 679 return names[code]; 680 if (code == WDCMSG_SET_DEFAULT_KEY) 681 return "SET_DEFAULT_KEY"; 682 snprintf(buf, sizeof(buf), "0x%02x", code); 683 return buf; 684 #undef N 685 } 686 #endif 687 688 /* 689 * Low-level function to send read or write commands to the firmware. 690 */ 691 static int 692 uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, 693 void *odata, int olen, int flags) 694 { 695 struct uath_cmd_hdr *hdr; 696 struct uath_cmd *cmd; 697 int error; 698 699 UATH_ASSERT_LOCKED(sc); 700 701 /* grab a xfer */ 702 cmd = uath_get_cmdbuf(sc); 703 if (cmd == NULL) { 704 device_printf(sc->sc_dev, "%s: empty inactive queue\n", 705 __func__); 706 return (ENOBUFS); 707 } 708 cmd->flags = flags; 709 /* always bulk-out a multiple of 4 bytes */ 710 cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); 711 712 hdr = (struct uath_cmd_hdr *)cmd->buf; 713 memset(hdr, 0, sizeof(struct uath_cmd_hdr)); 714 hdr->len = htobe32(cmd->buflen); 715 hdr->code = htobe32(code); 716 hdr->msgid = cmd->msgid; /* don't care about endianness */ 717 hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); 718 memcpy((uint8_t *)(hdr + 1), idata, ilen); 719 720 #ifdef UATH_DEBUG 721 if (sc->sc_debug & UATH_DEBUG_CMDS) { 722 printf("%s: send %s [flags 0x%x] olen %d\n", 723 __func__, uath_codename(code), cmd->flags, olen); 724 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 725 uath_dump_cmd(cmd->buf, cmd->buflen, '+'); 726 } 727 #endif 728 cmd->odata = odata; 729 KASSERT(odata == NULL || 730 olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), 731 ("odata %p olen %u", odata, olen)); 732 cmd->olen = olen; 733 734 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); 735 UATH_STAT_INC(sc, st_cmd_pending); 736 usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); 737 738 if (cmd->flags & UATH_CMD_FLAG_READ) { 739 usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); 740 741 /* wait at most two seconds for command reply */ 742 error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); 743 cmd->odata = NULL; /* in case reply comes too late */ 744 if (error != 0) { 745 device_printf(sc->sc_dev, "timeout waiting for reply " 746 "to cmd 0x%x (%u)\n", code, code); 747 } else if (cmd->olen != olen) { 748 device_printf(sc->sc_dev, "unexpected reply data count " 749 "to cmd 0x%x (%u), got %u, expected %u\n", 750 code, code, cmd->olen, olen); 751 error = EINVAL; 752 } 753 return (error); 754 } 755 return (0); 756 } 757 758 static int 759 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, 760 int ilen, void *odata, int olen, int flags) 761 { 762 763 flags |= UATH_CMD_FLAG_READ; 764 return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); 765 } 766 767 static int 768 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, 769 int flags) 770 { 771 772 flags &= ~UATH_CMD_FLAG_READ; 773 return uath_cmdsend(sc, code, data, len, NULL, 0, flags); 774 } 775 776 static struct uath_cmd * 777 uath_get_cmdbuf(struct uath_softc *sc) 778 { 779 struct uath_cmd *uc; 780 781 UATH_ASSERT_LOCKED(sc); 782 783 uc = STAILQ_FIRST(&sc->sc_cmd_inactive); 784 if (uc != NULL) { 785 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); 786 UATH_STAT_DEC(sc, st_cmd_inactive); 787 } else 788 uc = NULL; 789 if (uc == NULL) 790 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 791 "out of command xmit buffers"); 792 return (uc); 793 } 794 795 /* 796 * This function is called periodically (every second) when associated to 797 * query device statistics. 798 */ 799 static void 800 uath_stat(void *arg) 801 { 802 struct uath_softc *sc = arg; 803 int error; 804 805 UATH_LOCK(sc); 806 /* 807 * Send request for statistics asynchronously. The timer will be 808 * restarted when we'll get the stats notification. 809 */ 810 error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, 811 UATH_CMD_FLAG_ASYNC); 812 if (error != 0) { 813 device_printf(sc->sc_dev, 814 "could not query stats, error %d\n", error); 815 } 816 UATH_UNLOCK(sc); 817 } 818 819 static int 820 uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) 821 { 822 int error; 823 824 cap = htobe32(cap); 825 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, 826 &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); 827 if (error != 0) { 828 device_printf(sc->sc_dev, "could not read capability %u\n", 829 be32toh(cap)); 830 return (error); 831 } 832 *val = be32toh(*val); 833 return (error); 834 } 835 836 static int 837 uath_get_devcap(struct uath_softc *sc) 838 { 839 #define GETCAP(x, v) do { \ 840 error = uath_get_capability(sc, x, &v); \ 841 if (error != 0) \ 842 return (error); \ 843 DPRINTF(sc, UATH_DEBUG_DEVCAP, \ 844 "%s: %s=0x%08x\n", __func__, #x, v); \ 845 } while (0) 846 struct uath_devcap *cap = &sc->sc_devcap; 847 int error; 848 849 /* collect device capabilities */ 850 GETCAP(CAP_TARGET_VERSION, cap->targetVersion); 851 GETCAP(CAP_TARGET_REVISION, cap->targetRevision); 852 GETCAP(CAP_MAC_VERSION, cap->macVersion); 853 GETCAP(CAP_MAC_REVISION, cap->macRevision); 854 GETCAP(CAP_PHY_REVISION, cap->phyRevision); 855 GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); 856 GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); 857 858 GETCAP(CAP_REG_DOMAIN, cap->regDomain); 859 GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); 860 #if 0 861 /* NB: not supported in rev 1.5 */ 862 GETCAP(CAP_COUNTRY_CODE, cap->countryCode); 863 #endif 864 GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); 865 GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); 866 GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); 867 GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); 868 GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); 869 GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); 870 GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); 871 GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); 872 GETCAP(CAP_DEVICE_TYPE, cap->deviceType); 873 GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); 874 GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); 875 GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); 876 877 GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); 878 GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); 879 GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); 880 GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); 881 GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); 882 GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); 883 884 GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); 885 GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); 886 GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); 887 888 cap->supportCipherWEP = 1; /* NB: always available */ 889 890 return (0); 891 } 892 893 static int 894 uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 895 { 896 int error; 897 898 /* retrieve MAC address */ 899 error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); 900 if (error != 0) { 901 device_printf(sc->sc_dev, "could not read MAC address\n"); 902 return (error); 903 } 904 905 error = uath_get_status(sc, ST_SERIAL_NUMBER, 906 &sc->sc_serial[0], sizeof(sc->sc_serial)); 907 if (error != 0) { 908 device_printf(sc->sc_dev, 909 "could not read device serial number\n"); 910 return (error); 911 } 912 return (0); 913 } 914 915 static int 916 uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) 917 { 918 int error; 919 920 which = htobe32(which); 921 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, 922 &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); 923 if (error != 0) 924 device_printf(sc->sc_dev, 925 "could not read EEPROM offset 0x%02x\n", be32toh(which)); 926 return (error); 927 } 928 929 static void 930 uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, 931 int fillmbuf) 932 { 933 int i; 934 935 for (i = 0; i < ndata; i++) { 936 struct uath_data *dp = &data[i]; 937 938 if (fillmbuf == 1) { 939 if (dp->m != NULL) { 940 m_freem(dp->m); 941 dp->m = NULL; 942 dp->buf = NULL; 943 } 944 } else { 945 if (dp->buf != NULL) { 946 free(dp->buf, M_USBDEV); 947 dp->buf = NULL; 948 } 949 } 950 #ifdef UATH_DEBUG 951 if (dp->ni != NULL) 952 device_printf(sc->sc_dev, "Node isn't NULL\n"); 953 #endif 954 } 955 } 956 957 static int 958 uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], 959 int ndata, int maxsz, int fillmbuf) 960 { 961 int i, error; 962 963 for (i = 0; i < ndata; i++) { 964 struct uath_data *dp = &data[i]; 965 966 dp->sc = sc; 967 if (fillmbuf) { 968 /* XXX check maxsz */ 969 dp->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 970 if (dp->m == NULL) { 971 device_printf(sc->sc_dev, 972 "could not allocate rx mbuf\n"); 973 error = ENOMEM; 974 goto fail; 975 } 976 dp->buf = mtod(dp->m, uint8_t *); 977 } else { 978 dp->m = NULL; 979 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); 980 if (dp->buf == NULL) { 981 device_printf(sc->sc_dev, 982 "could not allocate buffer\n"); 983 error = ENOMEM; 984 goto fail; 985 } 986 } 987 dp->ni = NULL; 988 } 989 990 return (0); 991 992 fail: uath_free_data_list(sc, data, ndata, fillmbuf); 993 return (error); 994 } 995 996 static int 997 uath_alloc_rx_data_list(struct uath_softc *sc) 998 { 999 int error, i; 1000 1001 /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ 1002 error = uath_alloc_data_list(sc, 1003 sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, 1004 1 /* setup mbufs */); 1005 if (error != 0) 1006 return (error); 1007 1008 STAILQ_INIT(&sc->sc_rx_active); 1009 STAILQ_INIT(&sc->sc_rx_inactive); 1010 1011 for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { 1012 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], 1013 next); 1014 UATH_STAT_INC(sc, st_rx_inactive); 1015 } 1016 1017 return (0); 1018 } 1019 1020 static int 1021 uath_alloc_tx_data_list(struct uath_softc *sc) 1022 { 1023 int error, i; 1024 1025 error = uath_alloc_data_list(sc, 1026 sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, 1027 0 /* no mbufs */); 1028 if (error != 0) 1029 return (error); 1030 1031 STAILQ_INIT(&sc->sc_tx_active); 1032 STAILQ_INIT(&sc->sc_tx_inactive); 1033 STAILQ_INIT(&sc->sc_tx_pending); 1034 1035 for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { 1036 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], 1037 next); 1038 UATH_STAT_INC(sc, st_tx_inactive); 1039 } 1040 1041 return (0); 1042 } 1043 1044 static void 1045 uath_free_rx_data_list(struct uath_softc *sc) 1046 { 1047 1048 STAILQ_INIT(&sc->sc_rx_active); 1049 STAILQ_INIT(&sc->sc_rx_inactive); 1050 1051 uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1052 1 /* free mbufs */); 1053 } 1054 1055 static void 1056 uath_free_tx_data_list(struct uath_softc *sc) 1057 { 1058 1059 STAILQ_INIT(&sc->sc_tx_active); 1060 STAILQ_INIT(&sc->sc_tx_inactive); 1061 STAILQ_INIT(&sc->sc_tx_pending); 1062 1063 uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 1064 0 /* no mbufs */); 1065 } 1066 1067 static struct ieee80211vap * 1068 uath_vap_create(struct ieee80211com *ic, 1069 const char name[IFNAMSIZ], int unit, int opmode, int flags, 1070 const uint8_t bssid[IEEE80211_ADDR_LEN], 1071 const uint8_t mac[IEEE80211_ADDR_LEN]) 1072 { 1073 struct uath_vap *uvp; 1074 struct ieee80211vap *vap; 1075 1076 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1077 return (NULL); 1078 uvp = (struct uath_vap *) malloc(sizeof(struct uath_vap), 1079 M_80211_VAP, M_NOWAIT | M_ZERO); 1080 if (uvp == NULL) 1081 return (NULL); 1082 vap = &uvp->vap; 1083 /* enable s/w bmiss handling for sta mode */ 1084 ieee80211_vap_setup(ic, vap, name, unit, opmode, 1085 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 1086 1087 /* override state transition machine */ 1088 uvp->newstate = vap->iv_newstate; 1089 vap->iv_newstate = uath_newstate; 1090 1091 /* complete setup */ 1092 ieee80211_vap_attach(vap, ieee80211_media_change, 1093 ieee80211_media_status); 1094 ic->ic_opmode = opmode; 1095 return (vap); 1096 } 1097 1098 static void 1099 uath_vap_delete(struct ieee80211vap *vap) 1100 { 1101 struct uath_vap *uvp = UATH_VAP(vap); 1102 1103 ieee80211_vap_detach(vap); 1104 free(uvp, M_80211_VAP); 1105 } 1106 1107 static int 1108 uath_init_locked(void *arg) 1109 { 1110 struct uath_softc *sc = arg; 1111 struct ifnet *ifp = sc->sc_ifp; 1112 struct ieee80211com *ic = ifp->if_l2com; 1113 uint32_t val; 1114 int error; 1115 1116 UATH_ASSERT_LOCKED(sc); 1117 1118 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1119 uath_stop_locked(ifp); 1120 1121 /* reset variables */ 1122 sc->sc_intrx_nextnum = sc->sc_msgid = 0; 1123 1124 val = htobe32(0); 1125 uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); 1126 1127 /* set MAC address */ 1128 uath_config_multi(sc, CFG_MAC_ADDR, IF_LLADDR(ifp), IEEE80211_ADDR_LEN); 1129 1130 /* XXX honor net80211 state */ 1131 uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); 1132 uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); 1133 uath_config(sc, CFG_ABOLT, 0x0000003f); 1134 uath_config(sc, CFG_WME_ENABLED, 0x00000001); 1135 1136 uath_config(sc, CFG_SERVICE_TYPE, 1); 1137 uath_config(sc, CFG_TP_SCALE, 0x00000000); 1138 uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); 1139 uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); 1140 uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); 1141 uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); 1142 uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); 1143 uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); 1144 uath_config(sc, CFG_MODE_CTS, 0x00000002); 1145 1146 error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, 1147 &val, sizeof(val), UATH_CMD_FLAG_MAGIC); 1148 if (error) { 1149 device_printf(sc->sc_dev, 1150 "could not start target, error %d\n", error); 1151 goto fail; 1152 } 1153 DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", 1154 uath_codename(WDCMSG_TARGET_START), be32toh(val)); 1155 1156 /* set default channel */ 1157 error = uath_switch_channel(sc, ic->ic_curchan); 1158 if (error) { 1159 device_printf(sc->sc_dev, 1160 "could not switch channel, error %d\n", error); 1161 goto fail; 1162 } 1163 1164 val = htobe32(TARGET_DEVICE_AWAKE); 1165 uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); 1166 /* XXX? check */ 1167 uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); 1168 1169 usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); 1170 /* enable Rx */ 1171 uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); 1172 uath_set_rxfilter(sc, 1173 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1174 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, 1175 UATH_FILTER_OP_SET); 1176 1177 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1178 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1179 sc->sc_flags |= UATH_FLAG_INITDONE; 1180 1181 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1182 1183 return (0); 1184 1185 fail: 1186 uath_stop_locked(ifp); 1187 return (error); 1188 } 1189 1190 static void 1191 uath_init(void *arg) 1192 { 1193 struct uath_softc *sc = arg; 1194 1195 UATH_LOCK(sc); 1196 (void)uath_init_locked(sc); 1197 UATH_UNLOCK(sc); 1198 } 1199 1200 static void 1201 uath_stop_locked(struct ifnet *ifp) 1202 { 1203 struct uath_softc *sc = ifp->if_softc; 1204 1205 UATH_ASSERT_LOCKED(sc); 1206 1207 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1208 sc->sc_flags &= ~UATH_FLAG_INITDONE; 1209 1210 callout_stop(&sc->stat_ch); 1211 callout_stop(&sc->watchdog_ch); 1212 sc->sc_tx_timer = 0; 1213 /* abort pending transmits */ 1214 uath_abort_xfers(sc); 1215 /* flush data & control requests into the target */ 1216 (void)uath_flush(sc); 1217 /* set a LED status to the disconnected. */ 1218 uath_set_ledstate(sc, 0); 1219 /* stop the target */ 1220 uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); 1221 } 1222 1223 static void 1224 uath_stop(struct ifnet *ifp) 1225 { 1226 struct uath_softc *sc = ifp->if_softc; 1227 1228 UATH_LOCK(sc); 1229 uath_stop_locked(ifp); 1230 UATH_UNLOCK(sc); 1231 } 1232 1233 static int 1234 uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) 1235 { 1236 struct uath_write_mac write; 1237 int error; 1238 1239 write.reg = htobe32(reg); 1240 write.len = htobe32(0); /* 0 = single write */ 1241 *(uint32_t *)write.data = htobe32(val); 1242 1243 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1244 3 * sizeof (uint32_t), 0); 1245 if (error != 0) { 1246 device_printf(sc->sc_dev, "could not write register 0x%02x\n", 1247 reg); 1248 } 1249 return (error); 1250 } 1251 1252 static int 1253 uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, 1254 int len) 1255 { 1256 struct uath_write_mac write; 1257 int error; 1258 1259 write.reg = htobe32(reg); 1260 write.len = htobe32(len); 1261 bcopy(data, write.data, len); 1262 1263 /* properly handle the case where len is zero (reset) */ 1264 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1265 (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); 1266 if (error != 0) { 1267 device_printf(sc->sc_dev, 1268 "could not write %d bytes to register 0x%02x\n", len, reg); 1269 } 1270 return (error); 1271 } 1272 1273 static int 1274 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) 1275 { 1276 int error; 1277 1278 UATH_ASSERT_LOCKED(sc); 1279 1280 /* set radio frequency */ 1281 error = uath_set_chan(sc, c); 1282 if (error) { 1283 device_printf(sc->sc_dev, 1284 "could not set channel, error %d\n", error); 1285 goto failed; 1286 } 1287 /* reset Tx rings */ 1288 error = uath_reset_tx_queues(sc); 1289 if (error) { 1290 device_printf(sc->sc_dev, 1291 "could not reset Tx queues, error %d\n", error); 1292 goto failed; 1293 } 1294 /* set Tx rings WME properties */ 1295 error = uath_wme_init(sc); 1296 if (error) { 1297 device_printf(sc->sc_dev, 1298 "could not init Tx queues, error %d\n", error); 1299 goto failed; 1300 } 1301 error = uath_set_ledstate(sc, 0); 1302 if (error) { 1303 device_printf(sc->sc_dev, 1304 "could not set led state, error %d\n", error); 1305 goto failed; 1306 } 1307 error = uath_flush(sc); 1308 if (error) { 1309 device_printf(sc->sc_dev, 1310 "could not flush pipes, error %d\n", error); 1311 goto failed; 1312 } 1313 failed: 1314 return (error); 1315 } 1316 1317 static int 1318 uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) 1319 { 1320 struct uath_cmd_rx_filter rxfilter; 1321 1322 rxfilter.bits = htobe32(bits); 1323 rxfilter.op = htobe32(op); 1324 1325 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 1326 "setting Rx filter=0x%x flags=0x%x\n", bits, op); 1327 return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, 1328 sizeof rxfilter, 0); 1329 } 1330 1331 static void 1332 uath_watchdog(void *arg) 1333 { 1334 struct uath_softc *sc = arg; 1335 struct ifnet *ifp = sc->sc_ifp; 1336 1337 if (sc->sc_tx_timer > 0) { 1338 if (--sc->sc_tx_timer == 0) { 1339 device_printf(sc->sc_dev, "device timeout\n"); 1340 /*uath_init(ifp); XXX needs a process context! */ 1341 ifp->if_oerrors++; 1342 return; 1343 } 1344 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1345 } 1346 } 1347 1348 static void 1349 uath_abort_xfers(struct uath_softc *sc) 1350 { 1351 int i; 1352 1353 UATH_ASSERT_LOCKED(sc); 1354 /* abort any pending transfers */ 1355 for (i = 0; i < UATH_N_XFERS; i++) 1356 usbd_transfer_stop(sc->sc_xfer[i]); 1357 } 1358 1359 static int 1360 uath_flush(struct uath_softc *sc) 1361 { 1362 int error; 1363 1364 error = uath_dataflush(sc); 1365 if (error != 0) 1366 goto failed; 1367 1368 error = uath_cmdflush(sc); 1369 if (error != 0) 1370 goto failed; 1371 1372 failed: 1373 return (error); 1374 } 1375 1376 static int 1377 uath_cmdflush(struct uath_softc *sc) 1378 { 1379 1380 return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); 1381 } 1382 1383 static int 1384 uath_dataflush(struct uath_softc *sc) 1385 { 1386 struct uath_data *data; 1387 struct uath_chunk *chunk; 1388 struct uath_tx_desc *desc; 1389 1390 UATH_ASSERT_LOCKED(sc); 1391 1392 data = uath_getbuf(sc); 1393 if (data == NULL) 1394 return (ENOBUFS); 1395 data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); 1396 data->m = NULL; 1397 data->ni = NULL; 1398 chunk = (struct uath_chunk *)data->buf; 1399 desc = (struct uath_tx_desc *)(chunk + 1); 1400 1401 /* one chunk only */ 1402 chunk->seqnum = 0; 1403 chunk->flags = UATH_CFLAGS_FINAL; 1404 chunk->length = htobe16(sizeof (struct uath_tx_desc)); 1405 1406 memset(desc, 0, sizeof(struct uath_tx_desc)); 1407 desc->msglen = htobe32(sizeof(struct uath_tx_desc)); 1408 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1409 desc->type = htobe32(WDCMSG_FLUSH); 1410 desc->txqid = htobe32(0); 1411 desc->connid = htobe32(0); 1412 desc->flags = htobe32(0); 1413 1414 #ifdef UATH_DEBUG 1415 if (sc->sc_debug & UATH_DEBUG_CMDS) { 1416 DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", 1417 desc->msgid); 1418 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 1419 uath_dump_cmd(data->buf, data->buflen, '+'); 1420 } 1421 #endif 1422 1423 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1424 UATH_STAT_INC(sc, st_tx_pending); 1425 sc->sc_tx_timer = 5; 1426 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1427 1428 return (0); 1429 } 1430 1431 static struct uath_data * 1432 _uath_getbuf(struct uath_softc *sc) 1433 { 1434 struct uath_data *bf; 1435 1436 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1437 if (bf != NULL) { 1438 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1439 UATH_STAT_DEC(sc, st_tx_inactive); 1440 } else 1441 bf = NULL; 1442 if (bf == NULL) 1443 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 1444 "out of xmit buffers"); 1445 return (bf); 1446 } 1447 1448 static struct uath_data * 1449 uath_getbuf(struct uath_softc *sc) 1450 { 1451 struct uath_data *bf; 1452 1453 UATH_ASSERT_LOCKED(sc); 1454 1455 bf = _uath_getbuf(sc); 1456 if (bf == NULL) { 1457 struct ifnet *ifp = sc->sc_ifp; 1458 1459 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1460 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1461 } 1462 return (bf); 1463 } 1464 1465 static int 1466 uath_set_ledstate(struct uath_softc *sc, int connected) 1467 { 1468 1469 DPRINTF(sc, UATH_DEBUG_LED, 1470 "set led state %sconnected\n", connected ? "" : "!"); 1471 connected = htobe32(connected); 1472 return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, 1473 &connected, sizeof connected, 0); 1474 } 1475 1476 static int 1477 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) 1478 { 1479 #ifdef UATH_DEBUG 1480 struct ifnet *ifp = sc->sc_ifp; 1481 struct ieee80211com *ic = ifp->if_l2com; 1482 #endif 1483 struct uath_cmd_reset reset; 1484 1485 memset(&reset, 0, sizeof(reset)); 1486 if (IEEE80211_IS_CHAN_2GHZ(c)) 1487 reset.flags |= htobe32(UATH_CHAN_2GHZ); 1488 if (IEEE80211_IS_CHAN_5GHZ(c)) 1489 reset.flags |= htobe32(UATH_CHAN_5GHZ); 1490 /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ 1491 if (IEEE80211_IS_CHAN_OFDM(c)) 1492 reset.flags |= htobe32(UATH_CHAN_OFDM); 1493 else if (IEEE80211_IS_CHAN_CCK(c)) 1494 reset.flags |= htobe32(UATH_CHAN_CCK); 1495 /* turbo can be used in either 2GHz or 5GHz */ 1496 if (c->ic_flags & IEEE80211_CHAN_TURBO) 1497 reset.flags |= htobe32(UATH_CHAN_TURBO); 1498 reset.freq = htobe32(c->ic_freq); 1499 reset.maxrdpower = htobe32(50); /* XXX */ 1500 reset.channelchange = htobe32(1); 1501 reset.keeprccontent = htobe32(0); 1502 1503 DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", 1504 ieee80211_chan2ieee(ic, c), 1505 be32toh(reset.flags), be32toh(reset.freq)); 1506 return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); 1507 } 1508 1509 static int 1510 uath_reset_tx_queues(struct uath_softc *sc) 1511 { 1512 int ac, error; 1513 1514 DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); 1515 for (ac = 0; ac < 4; ac++) { 1516 const uint32_t qid = htobe32(ac); 1517 1518 error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, 1519 sizeof qid, 0); 1520 if (error != 0) 1521 break; 1522 } 1523 return (error); 1524 } 1525 1526 static int 1527 uath_wme_init(struct uath_softc *sc) 1528 { 1529 /* XXX get from net80211 */ 1530 static const struct uath_wme_settings uath_wme_11g[4] = { 1531 { 7, 4, 10, 0, 0 }, /* Background */ 1532 { 3, 4, 10, 0, 0 }, /* Best-Effort */ 1533 { 3, 3, 4, 26, 0 }, /* Video */ 1534 { 2, 2, 3, 47, 0 } /* Voice */ 1535 }; 1536 struct uath_cmd_txq_setup qinfo; 1537 int ac, error; 1538 1539 DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); 1540 for (ac = 0; ac < 4; ac++) { 1541 qinfo.qid = htobe32(ac); 1542 qinfo.len = htobe32(sizeof(qinfo.attr)); 1543 qinfo.attr.priority = htobe32(ac); /* XXX */ 1544 qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); 1545 qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); 1546 qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); 1547 qinfo.attr.bursttime = htobe32(UATH_TXOP_TO_US( 1548 uath_wme_11g[ac].txop)); 1549 qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ 1550 qinfo.attr.qflags = htobe32(1); /* XXX? */ 1551 1552 error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, 1553 sizeof qinfo, 0); 1554 if (error != 0) 1555 break; 1556 } 1557 return (error); 1558 } 1559 1560 static int 1561 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1562 { 1563 struct ieee80211com *ic = ifp->if_l2com; 1564 struct ifreq *ifr = (struct ifreq *) data; 1565 int error = 0, startall = 0; 1566 1567 switch (cmd) { 1568 case SIOCSIFFLAGS: 1569 if (ifp->if_flags & IFF_UP) { 1570 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1571 uath_init(ifp->if_softc); 1572 startall = 1; 1573 } 1574 } else { 1575 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1576 uath_stop(ifp); 1577 } 1578 if (startall) 1579 ieee80211_start_all(ic); 1580 break; 1581 case SIOCGIFMEDIA: 1582 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1583 break; 1584 case SIOCGIFADDR: 1585 error = ether_ioctl(ifp, cmd, data); 1586 break; 1587 default: 1588 error = EINVAL; 1589 break; 1590 } 1591 1592 return (error); 1593 } 1594 1595 static int 1596 uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1597 struct uath_data *data) 1598 { 1599 struct ieee80211vap *vap = ni->ni_vap; 1600 struct uath_chunk *chunk; 1601 struct uath_tx_desc *desc; 1602 const struct ieee80211_frame *wh; 1603 struct ieee80211_key *k; 1604 int framelen, msglen; 1605 1606 UATH_ASSERT_LOCKED(sc); 1607 1608 data->ni = ni; 1609 data->m = m0; 1610 chunk = (struct uath_chunk *)data->buf; 1611 desc = (struct uath_tx_desc *)(chunk + 1); 1612 1613 if (ieee80211_radiotap_active_vap(vap)) { 1614 struct uath_tx_radiotap_header *tap = &sc->sc_txtap; 1615 1616 tap->wt_flags = 0; 1617 if (m0->m_flags & M_FRAG) 1618 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1619 1620 ieee80211_radiotap_tx(vap, m0); 1621 } 1622 1623 wh = mtod(m0, struct ieee80211_frame *); 1624 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1625 k = ieee80211_crypto_encap(ni, m0); 1626 if (k == NULL) { 1627 m_freem(m0); 1628 return (ENOBUFS); 1629 } 1630 1631 /* packet header may have moved, reset our local pointer */ 1632 wh = mtod(m0, struct ieee80211_frame *); 1633 } 1634 m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); 1635 1636 framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1637 msglen = framelen + sizeof (struct uath_tx_desc); 1638 data->buflen = msglen + sizeof (struct uath_chunk); 1639 1640 /* one chunk only for now */ 1641 chunk->seqnum = sc->sc_seqnum++; 1642 chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; 1643 if (m0->m_flags & M_LASTFRAG) 1644 chunk->flags |= UATH_CFLAGS_FINAL; 1645 chunk->flags = UATH_CFLAGS_FINAL; 1646 chunk->length = htobe16(msglen); 1647 1648 /* fill Tx descriptor */ 1649 desc->msglen = htobe32(msglen); 1650 /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ 1651 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1652 desc->type = htobe32(WDCMSG_SEND); 1653 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1654 case IEEE80211_FC0_TYPE_CTL: 1655 case IEEE80211_FC0_TYPE_MGT: 1656 /* NB: force all management frames to highest queue */ 1657 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1658 /* NB: force all management frames to highest queue */ 1659 desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); 1660 } else 1661 desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); 1662 break; 1663 case IEEE80211_FC0_TYPE_DATA: 1664 /* XXX multicast frames should honor mcastrate */ 1665 desc->txqid = htobe32(M_WME_GETAC(m0)); 1666 break; 1667 default: 1668 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1669 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1670 m_freem(m0); 1671 return (EIO); 1672 } 1673 if (vap->iv_state == IEEE80211_S_AUTH || 1674 vap->iv_state == IEEE80211_S_ASSOC || 1675 vap->iv_state == IEEE80211_S_RUN) 1676 desc->connid = htobe32(UATH_ID_BSS); 1677 else 1678 desc->connid = htobe32(UATH_ID_INVALID); 1679 desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); 1680 desc->buflen = htobe32(m0->m_pkthdr.len); 1681 1682 #ifdef UATH_DEBUG 1683 DPRINTF(sc, UATH_DEBUG_XMIT, 1684 "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", 1685 desc->msgid, framelen, msglen, be32toh(desc->connid), 1686 be32toh(desc->txqid)); 1687 if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) 1688 uath_dump_cmd(data->buf, data->buflen, '+'); 1689 #endif 1690 1691 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1692 UATH_STAT_INC(sc, st_tx_pending); 1693 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1694 1695 return (0); 1696 } 1697 1698 /* 1699 * Cleanup driver resources when we run out of buffers while processing 1700 * fragments; return the tx buffers allocated and drop node references. 1701 */ 1702 static void 1703 uath_txfrag_cleanup(struct uath_softc *sc, 1704 uath_datahead *frags, struct ieee80211_node *ni) 1705 { 1706 struct uath_data *bf, *next; 1707 1708 UATH_ASSERT_LOCKED(sc); 1709 1710 STAILQ_FOREACH_SAFE(bf, frags, next, next) { 1711 /* NB: bf assumed clean */ 1712 STAILQ_REMOVE_HEAD(frags, next); 1713 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1714 UATH_STAT_INC(sc, st_tx_inactive); 1715 ieee80211_node_decref(ni); 1716 } 1717 } 1718 1719 /* 1720 * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump 1721 * the node reference count to reflect the held reference to be setup by 1722 * uath_tx_start. 1723 */ 1724 static int 1725 uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, 1726 struct mbuf *m0, struct ieee80211_node *ni) 1727 { 1728 struct mbuf *m; 1729 struct uath_data *bf; 1730 1731 UATH_ASSERT_LOCKED(sc); 1732 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1733 bf = uath_getbuf(sc); 1734 if (bf == NULL) { /* out of buffers, cleanup */ 1735 uath_txfrag_cleanup(sc, frags, ni); 1736 break; 1737 } 1738 ieee80211_node_incref(ni); 1739 STAILQ_INSERT_TAIL(frags, bf, next); 1740 } 1741 1742 return !STAILQ_EMPTY(frags); 1743 } 1744 1745 /* 1746 * Reclaim mbuf resources. For fragmented frames we need to claim each frag 1747 * chained with m_nextpkt. 1748 */ 1749 static void 1750 uath_freetx(struct mbuf *m) 1751 { 1752 struct mbuf *next; 1753 1754 do { 1755 next = m->m_nextpkt; 1756 m->m_nextpkt = NULL; 1757 m_freem(m); 1758 } while ((m = next) != NULL); 1759 } 1760 1761 static void 1762 uath_start(struct ifnet *ifp) 1763 { 1764 struct uath_data *bf; 1765 struct uath_softc *sc = ifp->if_softc; 1766 struct ieee80211_node *ni; 1767 struct mbuf *m, *next; 1768 uath_datahead frags; 1769 1770 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1771 (sc->sc_flags & UATH_FLAG_INVALID)) 1772 return; 1773 1774 UATH_LOCK(sc); 1775 for (;;) { 1776 bf = uath_getbuf(sc); 1777 if (bf == NULL) 1778 break; 1779 1780 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1781 if (m == NULL) { 1782 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1783 UATH_STAT_INC(sc, st_tx_inactive); 1784 break; 1785 } 1786 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1787 m->m_pkthdr.rcvif = NULL; 1788 1789 /* 1790 * Check for fragmentation. If this frame has been broken up 1791 * verify we have enough buffers to send all the fragments 1792 * so all go out or none... 1793 */ 1794 STAILQ_INIT(&frags); 1795 if ((m->m_flags & M_FRAG) && 1796 !uath_txfrag_setup(sc, &frags, m, ni)) { 1797 DPRINTF(sc, UATH_DEBUG_XMIT, 1798 "%s: out of txfrag buffers\n", __func__); 1799 uath_freetx(m); 1800 goto bad; 1801 } 1802 sc->sc_seqnum = 0; 1803 nextfrag: 1804 /* 1805 * Pass the frame to the h/w for transmission. 1806 * Fragmented frames have each frag chained together 1807 * with m_nextpkt. We know there are sufficient uath_data's 1808 * to send all the frags because of work done by 1809 * uath_txfrag_setup. 1810 */ 1811 next = m->m_nextpkt; 1812 if (uath_tx_start(sc, m, ni, bf) != 0) { 1813 bad: 1814 ifp->if_oerrors++; 1815 reclaim: 1816 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1817 UATH_STAT_INC(sc, st_tx_inactive); 1818 uath_txfrag_cleanup(sc, &frags, ni); 1819 ieee80211_free_node(ni); 1820 continue; 1821 } 1822 1823 if (next != NULL) { 1824 /* 1825 * Beware of state changing between frags. 1826 XXX check sta power-save state? 1827 */ 1828 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1829 DPRINTF(sc, UATH_DEBUG_XMIT, 1830 "%s: flush fragmented packet, state %s\n", 1831 __func__, 1832 ieee80211_state_name[ni->ni_vap->iv_state]); 1833 uath_freetx(next); 1834 goto reclaim; 1835 } 1836 m = next; 1837 bf = STAILQ_FIRST(&frags); 1838 KASSERT(bf != NULL, ("no buf for txfrag")); 1839 STAILQ_REMOVE_HEAD(&frags, next); 1840 goto nextfrag; 1841 } 1842 1843 sc->sc_tx_timer = 5; 1844 } 1845 UATH_UNLOCK(sc); 1846 } 1847 1848 static int 1849 uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1850 const struct ieee80211_bpf_params *params) 1851 { 1852 struct ieee80211com *ic = ni->ni_ic; 1853 struct ifnet *ifp = ic->ic_ifp; 1854 struct uath_data *bf; 1855 struct uath_softc *sc = ifp->if_softc; 1856 1857 /* prevent management frames from being sent if we're not ready */ 1858 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1859 !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1860 m_freem(m); 1861 ieee80211_free_node(ni); 1862 return (ENETDOWN); 1863 } 1864 1865 UATH_LOCK(sc); 1866 /* grab a TX buffer */ 1867 bf = uath_getbuf(sc); 1868 if (bf == NULL) { 1869 ieee80211_free_node(ni); 1870 m_freem(m); 1871 UATH_UNLOCK(sc); 1872 return (ENOBUFS); 1873 } 1874 1875 sc->sc_seqnum = 0; 1876 if (uath_tx_start(sc, m, ni, bf) != 0) { 1877 ieee80211_free_node(ni); 1878 ifp->if_oerrors++; 1879 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1880 UATH_STAT_INC(sc, st_tx_inactive); 1881 UATH_UNLOCK(sc); 1882 return (EIO); 1883 } 1884 UATH_UNLOCK(sc); 1885 1886 sc->sc_tx_timer = 5; 1887 return (0); 1888 } 1889 1890 static void 1891 uath_scan_start(struct ieee80211com *ic) 1892 { 1893 /* do nothing */ 1894 } 1895 1896 static void 1897 uath_scan_end(struct ieee80211com *ic) 1898 { 1899 /* do nothing */ 1900 } 1901 1902 static void 1903 uath_set_channel(struct ieee80211com *ic) 1904 { 1905 struct ifnet *ifp = ic->ic_ifp; 1906 struct uath_softc *sc = ifp->if_softc; 1907 1908 UATH_LOCK(sc); 1909 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1910 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1911 UATH_UNLOCK(sc); 1912 return; 1913 } 1914 (void)uath_switch_channel(sc, ic->ic_curchan); 1915 UATH_UNLOCK(sc); 1916 } 1917 1918 static int 1919 uath_set_rxmulti_filter(struct uath_softc *sc) 1920 { 1921 /* XXX broken */ 1922 return (0); 1923 } 1924 static void 1925 uath_update_mcast(struct ifnet *ifp) 1926 { 1927 struct uath_softc *sc = ifp->if_softc; 1928 1929 UATH_LOCK(sc); 1930 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1931 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1932 UATH_UNLOCK(sc); 1933 return; 1934 } 1935 /* 1936 * this is for avoiding the race condition when we're try to 1937 * connect to the AP with WPA. 1938 */ 1939 if (sc->sc_flags & UATH_FLAG_INITDONE) 1940 (void)uath_set_rxmulti_filter(sc); 1941 UATH_UNLOCK(sc); 1942 } 1943 1944 static void 1945 uath_update_promisc(struct ifnet *ifp) 1946 { 1947 struct uath_softc *sc = ifp->if_softc; 1948 1949 UATH_LOCK(sc); 1950 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1951 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1952 UATH_UNLOCK(sc); 1953 return; 1954 } 1955 if (sc->sc_flags & UATH_FLAG_INITDONE) { 1956 uath_set_rxfilter(sc, 1957 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1958 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | 1959 UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); 1960 } 1961 UATH_UNLOCK(sc); 1962 } 1963 1964 static int 1965 uath_create_connection(struct uath_softc *sc, uint32_t connid) 1966 { 1967 const struct ieee80211_rateset *rs; 1968 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1969 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1970 struct ieee80211_node *ni; 1971 struct uath_cmd_create_connection create; 1972 1973 ni = ieee80211_ref_node(vap->iv_bss); 1974 memset(&create, 0, sizeof(create)); 1975 create.connid = htobe32(connid); 1976 create.bssid = htobe32(0); 1977 /* XXX packed or not? */ 1978 create.size = htobe32(sizeof(struct uath_cmd_rateset)); 1979 1980 rs = &ni->ni_rates; 1981 create.connattr.rateset.length = rs->rs_nrates; 1982 bcopy(rs->rs_rates, &create.connattr.rateset.set[0], 1983 rs->rs_nrates); 1984 1985 /* XXX turbo */ 1986 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 1987 create.connattr.wlanmode = htobe32(WLAN_MODE_11a); 1988 else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) 1989 create.connattr.wlanmode = htobe32(WLAN_MODE_11g); 1990 else 1991 create.connattr.wlanmode = htobe32(WLAN_MODE_11b); 1992 ieee80211_free_node(ni); 1993 1994 return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, 1995 sizeof create, 0); 1996 } 1997 1998 static int 1999 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) 2000 { 2001 struct uath_cmd_rates rates; 2002 2003 memset(&rates, 0, sizeof(rates)); 2004 rates.connid = htobe32(UATH_ID_BSS); /* XXX */ 2005 rates.size = htobe32(sizeof(struct uath_cmd_rateset)); 2006 /* XXX bounds check rs->rs_nrates */ 2007 rates.rateset.length = rs->rs_nrates; 2008 bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); 2009 2010 DPRINTF(sc, UATH_DEBUG_RATES, 2011 "setting supported rates nrates=%d\n", rs->rs_nrates); 2012 return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, 2013 &rates, sizeof rates, 0); 2014 } 2015 2016 static int 2017 uath_write_associd(struct uath_softc *sc) 2018 { 2019 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2020 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2021 struct ieee80211_node *ni; 2022 struct uath_cmd_set_associd associd; 2023 2024 ni = ieee80211_ref_node(vap->iv_bss); 2025 memset(&associd, 0, sizeof(associd)); 2026 associd.defaultrateix = htobe32(1); /* XXX */ 2027 associd.associd = htobe32(ni->ni_associd); 2028 associd.timoffset = htobe32(0x3b); /* XXX */ 2029 IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); 2030 ieee80211_free_node(ni); 2031 return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, 2032 sizeof associd, 0); 2033 } 2034 2035 static int 2036 uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) 2037 { 2038 struct uath_cmd_ledsteady led; 2039 2040 led.lednum = htobe32(lednum); 2041 led.ledmode = htobe32(ledmode); 2042 2043 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", 2044 (lednum == UATH_LED_LINK) ? "link" : "activity", 2045 ledmode ? "on" : "off"); 2046 return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); 2047 } 2048 2049 static int 2050 uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, 2051 int blinkrate, int slowmode) 2052 { 2053 struct uath_cmd_ledblink led; 2054 2055 led.lednum = htobe32(lednum); 2056 led.ledmode = htobe32(ledmode); 2057 led.blinkrate = htobe32(blinkrate); 2058 led.slowmode = htobe32(slowmode); 2059 2060 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", 2061 (lednum == UATH_LED_LINK) ? "link" : "activity", 2062 ledmode ? "on" : "off"); 2063 return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); 2064 } 2065 2066 static int 2067 uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2068 { 2069 enum ieee80211_state ostate = vap->iv_state; 2070 int error; 2071 struct ieee80211_node *ni; 2072 struct ieee80211com *ic = vap->iv_ic; 2073 struct uath_softc *sc = ic->ic_ifp->if_softc; 2074 struct uath_vap *uvp = UATH_VAP(vap); 2075 2076 DPRINTF(sc, UATH_DEBUG_STATE, 2077 "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], 2078 ieee80211_state_name[nstate]); 2079 2080 IEEE80211_UNLOCK(ic); 2081 UATH_LOCK(sc); 2082 callout_stop(&sc->stat_ch); 2083 callout_stop(&sc->watchdog_ch); 2084 ni = ieee80211_ref_node(vap->iv_bss); 2085 2086 switch (nstate) { 2087 case IEEE80211_S_INIT: 2088 if (ostate == IEEE80211_S_RUN) { 2089 /* turn link and activity LEDs off */ 2090 uath_set_ledstate(sc, 0); 2091 } 2092 break; 2093 2094 case IEEE80211_S_SCAN: 2095 break; 2096 2097 case IEEE80211_S_AUTH: 2098 /* XXX good place? set RTS threshold */ 2099 uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); 2100 /* XXX bad place */ 2101 error = uath_set_keys(sc, vap); 2102 if (error != 0) { 2103 device_printf(sc->sc_dev, 2104 "could not set crypto keys, error %d\n", error); 2105 break; 2106 } 2107 if (uath_switch_channel(sc, ni->ni_chan) != 0) { 2108 device_printf(sc->sc_dev, "could not switch channel\n"); 2109 break; 2110 } 2111 if (uath_create_connection(sc, UATH_ID_BSS) != 0) { 2112 device_printf(sc->sc_dev, 2113 "could not create connection\n"); 2114 break; 2115 } 2116 break; 2117 2118 case IEEE80211_S_ASSOC: 2119 if (uath_set_rates(sc, &ni->ni_rates) != 0) { 2120 device_printf(sc->sc_dev, 2121 "could not set negotiated rate set\n"); 2122 break; 2123 } 2124 break; 2125 2126 case IEEE80211_S_RUN: 2127 /* XXX monitor mode doesn't be tested */ 2128 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2129 uath_set_ledstate(sc, 1); 2130 break; 2131 } 2132 2133 /* 2134 * Tx rate is controlled by firmware, report the maximum 2135 * negotiated rate in ifconfig output. 2136 */ 2137 ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; 2138 2139 if (uath_write_associd(sc) != 0) { 2140 device_printf(sc->sc_dev, 2141 "could not write association id\n"); 2142 break; 2143 } 2144 /* turn link LED on */ 2145 uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); 2146 /* make activity LED blink */ 2147 uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); 2148 /* set state to associated */ 2149 uath_set_ledstate(sc, 1); 2150 2151 /* start statistics timer */ 2152 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2153 break; 2154 default: 2155 break; 2156 } 2157 ieee80211_free_node(ni); 2158 UATH_UNLOCK(sc); 2159 IEEE80211_LOCK(ic); 2160 return (uvp->newstate(vap, nstate, arg)); 2161 } 2162 2163 static int 2164 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, 2165 int index) 2166 { 2167 #if 0 2168 struct uath_cmd_crypto crypto; 2169 int i; 2170 2171 memset(&crypto, 0, sizeof(crypto)); 2172 crypto.keyidx = htobe32(index); 2173 crypto.magic1 = htobe32(1); 2174 crypto.size = htobe32(368); 2175 crypto.mask = htobe32(0xffff); 2176 crypto.flags = htobe32(0x80000068); 2177 if (index != UATH_DEFAULT_KEY) 2178 crypto.flags |= htobe32(index << 16); 2179 memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); 2180 2181 /* 2182 * Each byte of the key must be XOR'ed with 10101010 before being 2183 * transmitted to the firmware. 2184 */ 2185 for (i = 0; i < wk->wk_keylen; i++) 2186 crypto.key[i] = wk->wk_key[i] ^ 0xaa; 2187 2188 DPRINTF(sc, UATH_DEBUG_CRYPTO, 2189 "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); 2190 return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, 2191 sizeof crypto, 0); 2192 #else 2193 /* XXX support H/W cryto */ 2194 return (0); 2195 #endif 2196 } 2197 2198 static int 2199 uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) 2200 { 2201 int i, error; 2202 2203 error = 0; 2204 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2205 const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; 2206 2207 if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { 2208 error = uath_set_key(sc, wk, i); 2209 if (error) 2210 return (error); 2211 } 2212 } 2213 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2214 error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], 2215 UATH_DEFAULT_KEY); 2216 } 2217 return (error); 2218 } 2219 2220 #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2221 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2222 2223 static void 2224 uath_sysctl_node(struct uath_softc *sc) 2225 { 2226 struct sysctl_ctx_list *ctx; 2227 struct sysctl_oid_list *child; 2228 struct sysctl_oid *tree; 2229 struct uath_stat *stats; 2230 2231 stats = &sc->sc_stat; 2232 ctx = device_get_sysctl_ctx(sc->sc_dev); 2233 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2234 2235 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2236 NULL, "UATH statistics"); 2237 child = SYSCTL_CHILDREN(tree); 2238 UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", 2239 &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); 2240 UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, 2241 "Invalid length"); 2242 UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, 2243 "Multi chunks"); 2244 UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", 2245 &stats->st_toobigrxpkt, "Too big rx packets"); 2246 UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", 2247 &stats->st_stopinprogress, "Stop in progress"); 2248 UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, 2249 "CRC errors"); 2250 UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, 2251 "PHY errors"); 2252 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", 2253 &stats->st_decrypt_crcerr, "Decryption CRC errors"); 2254 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", 2255 &stats->st_decrypt_micerr, "Decryption Misc errors"); 2256 UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, 2257 "Decomp errors"); 2258 UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, 2259 "Key errors"); 2260 UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, 2261 "Unknown errors"); 2262 2263 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", 2264 &stats->st_cmd_active, "Active numbers in Command queue"); 2265 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", 2266 &stats->st_cmd_inactive, "Inactive numbers in Command queue"); 2267 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", 2268 &stats->st_cmd_pending, "Pending numbers in Command queue"); 2269 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", 2270 &stats->st_cmd_waiting, "Waiting numbers in Command queue"); 2271 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", 2272 &stats->st_rx_active, "Active numbers in RX queue"); 2273 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", 2274 &stats->st_rx_inactive, "Inactive numbers in RX queue"); 2275 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2276 &stats->st_tx_active, "Active numbers in TX queue"); 2277 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2278 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2279 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2280 &stats->st_tx_pending, "Pending numbers in TX queue"); 2281 } 2282 2283 #undef UATH_SYSCTL_STAT_ADD32 2284 2285 static void 2286 uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) 2287 { 2288 struct uath_cmd_hdr *hdr; 2289 int dlen; 2290 2291 hdr = (struct uath_cmd_hdr *)cmd->buf; 2292 /* NB: msgid is passed thru w/o byte swapping */ 2293 #ifdef UATH_DEBUG 2294 if (sc->sc_debug & UATH_DEBUG_CMDS) { 2295 int len = be32toh(hdr->len); 2296 printf("%s: %s [ix %u] len %u status %u\n", 2297 __func__, uath_codename(be32toh(hdr->code)), 2298 hdr->msgid, len, be32toh(hdr->magic)); 2299 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 2300 uath_dump_cmd(cmd->buf, 2301 len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); 2302 } 2303 #endif 2304 hdr->code = be32toh(hdr->code); 2305 hdr->len = be32toh(hdr->len); 2306 hdr->magic = be32toh(hdr->magic); /* target status on return */ 2307 2308 switch (hdr->code & 0xff) { 2309 /* reply to a read command */ 2310 default: 2311 dlen = hdr->len - sizeof(*hdr); 2312 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2313 "%s: code %d data len %u\n", 2314 __func__, hdr->code & 0xff, dlen); 2315 /* 2316 * The first response from the target after the 2317 * HOST_AVAILABLE has an invalid msgid so we must 2318 * treat it specially. 2319 */ 2320 if (hdr->msgid < UATH_CMD_LIST_COUNT) { 2321 uint32_t *rp = (uint32_t *)(hdr+1); 2322 u_int olen; 2323 2324 if (!(sizeof(*hdr) <= hdr->len && 2325 hdr->len < UATH_MAX_CMDSZ)) { 2326 device_printf(sc->sc_dev, 2327 "%s: invalid WDC msg length %u; " 2328 "msg ignored\n", __func__, hdr->len); 2329 return; 2330 } 2331 /* 2332 * Calculate return/receive payload size; the 2333 * first word, if present, always gives the 2334 * number of bytes--unless it's 0 in which 2335 * case a single 32-bit word should be present. 2336 */ 2337 if (dlen >= sizeof(uint32_t)) { 2338 olen = be32toh(rp[0]); 2339 dlen -= sizeof(uint32_t); 2340 if (olen == 0) { 2341 /* convention is 0 =>'s one word */ 2342 olen = sizeof(uint32_t); 2343 /* XXX KASSERT(olen == dlen ) */ 2344 } 2345 } else 2346 olen = 0; 2347 if (cmd->odata != NULL) { 2348 /* NB: cmd->olen validated in uath_cmd */ 2349 if (olen > cmd->olen) { 2350 /* XXX complain? */ 2351 device_printf(sc->sc_dev, 2352 "%s: cmd 0x%x olen %u cmd olen %u\n", 2353 __func__, hdr->code, olen, 2354 cmd->olen); 2355 olen = cmd->olen; 2356 } 2357 if (olen > dlen) { 2358 /* XXX complain, shouldn't happen */ 2359 device_printf(sc->sc_dev, 2360 "%s: cmd 0x%x olen %u dlen %u\n", 2361 __func__, hdr->code, olen, dlen); 2362 olen = dlen; 2363 } 2364 /* XXX have submitter do this */ 2365 /* copy answer into caller's supplied buffer */ 2366 bcopy(&rp[1], cmd->odata, olen); 2367 cmd->olen = olen; 2368 } 2369 } 2370 wakeup_one(cmd); /* wake up caller */ 2371 break; 2372 2373 case WDCMSG_TARGET_START: 2374 if (hdr->msgid >= UATH_CMD_LIST_COUNT) { 2375 /* XXX */ 2376 return; 2377 } 2378 dlen = hdr->len - sizeof(*hdr); 2379 if (dlen != sizeof(uint32_t)) { 2380 /* XXX something wrong */ 2381 return; 2382 } 2383 /* XXX have submitter do this */ 2384 /* copy answer into caller's supplied buffer */ 2385 bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); 2386 cmd->olen = sizeof(uint32_t); 2387 wakeup_one(cmd); /* wake up caller */ 2388 break; 2389 2390 case WDCMSG_SEND_COMPLETE: 2391 /* this notification is sent when UATH_TX_NOTIFY is set */ 2392 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2393 "%s: received Tx notification\n", __func__); 2394 break; 2395 2396 case WDCMSG_TARGET_GET_STATS: 2397 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2398 "%s: received device statistics\n", __func__); 2399 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2400 break; 2401 } 2402 } 2403 2404 static void 2405 uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2406 { 2407 struct uath_softc *sc = usbd_xfer_softc(xfer); 2408 struct uath_cmd *cmd; 2409 struct usb_page_cache *pc; 2410 int actlen; 2411 2412 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2413 2414 UATH_ASSERT_LOCKED(sc); 2415 2416 switch (USB_GET_STATE(xfer)) { 2417 case USB_ST_TRANSFERRED: 2418 cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); 2419 if (cmd == NULL) 2420 goto setup; 2421 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); 2422 UATH_STAT_DEC(sc, st_cmd_waiting); 2423 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 2424 UATH_STAT_INC(sc, st_cmd_inactive); 2425 2426 KASSERT(actlen >= sizeof(struct uath_cmd_hdr), 2427 ("short xfer error")); 2428 pc = usbd_xfer_get_frame(xfer, 0); 2429 usbd_copy_out(pc, 0, cmd->buf, actlen); 2430 uath_cmdeof(sc, cmd); 2431 case USB_ST_SETUP: 2432 setup: 2433 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2434 usbd_transfer_submit(xfer); 2435 break; 2436 default: 2437 if (error != USB_ERR_CANCELLED) { 2438 usbd_xfer_set_stall(xfer); 2439 goto setup; 2440 } 2441 break; 2442 } 2443 } 2444 2445 static void 2446 uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2447 { 2448 struct uath_softc *sc = usbd_xfer_softc(xfer); 2449 struct uath_cmd *cmd; 2450 2451 UATH_ASSERT_LOCKED(sc); 2452 2453 switch (USB_GET_STATE(xfer)) { 2454 case USB_ST_TRANSFERRED: 2455 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2456 if (cmd == NULL) 2457 goto setup; 2458 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); 2459 UATH_STAT_DEC(sc, st_cmd_active); 2460 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? 2461 &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); 2462 if (cmd->flags & UATH_CMD_FLAG_READ) 2463 UATH_STAT_INC(sc, st_cmd_waiting); 2464 else 2465 UATH_STAT_INC(sc, st_cmd_inactive); 2466 /* FALLTHROUGH */ 2467 case USB_ST_SETUP: 2468 setup: 2469 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2470 if (cmd == NULL) { 2471 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2472 __func__); 2473 return; 2474 } 2475 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); 2476 UATH_STAT_DEC(sc, st_cmd_pending); 2477 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? 2478 &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); 2479 if (cmd->flags & UATH_CMD_FLAG_ASYNC) 2480 UATH_STAT_INC(sc, st_cmd_inactive); 2481 else 2482 UATH_STAT_INC(sc, st_cmd_active); 2483 2484 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2485 usbd_transfer_submit(xfer); 2486 break; 2487 default: 2488 if (error != USB_ERR_CANCELLED) { 2489 usbd_xfer_set_stall(xfer); 2490 goto setup; 2491 } 2492 break; 2493 } 2494 } 2495 2496 static void 2497 uath_update_rxstat(struct uath_softc *sc, uint32_t status) 2498 { 2499 2500 switch (status) { 2501 case UATH_STATUS_STOP_IN_PROGRESS: 2502 UATH_STAT_INC(sc, st_stopinprogress); 2503 break; 2504 case UATH_STATUS_CRC_ERR: 2505 UATH_STAT_INC(sc, st_crcerr); 2506 break; 2507 case UATH_STATUS_PHY_ERR: 2508 UATH_STAT_INC(sc, st_phyerr); 2509 break; 2510 case UATH_STATUS_DECRYPT_CRC_ERR: 2511 UATH_STAT_INC(sc, st_decrypt_crcerr); 2512 break; 2513 case UATH_STATUS_DECRYPT_MIC_ERR: 2514 UATH_STAT_INC(sc, st_decrypt_micerr); 2515 break; 2516 case UATH_STATUS_DECOMP_ERR: 2517 UATH_STAT_INC(sc, st_decomperr); 2518 break; 2519 case UATH_STATUS_KEY_ERR: 2520 UATH_STAT_INC(sc, st_keyerr); 2521 break; 2522 case UATH_STATUS_ERR: 2523 UATH_STAT_INC(sc, st_err); 2524 break; 2525 default: 2526 break; 2527 } 2528 } 2529 2530 static struct mbuf * 2531 uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, 2532 struct uath_rx_desc **pdesc) 2533 { 2534 struct uath_softc *sc = usbd_xfer_softc(xfer); 2535 struct ifnet *ifp = sc->sc_ifp; 2536 struct ieee80211com *ic = ifp->if_l2com; 2537 struct uath_chunk *chunk; 2538 struct uath_rx_desc *desc; 2539 struct mbuf *m = data->m, *mnew, *mp; 2540 uint16_t chunklen; 2541 int actlen; 2542 2543 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2544 2545 if (actlen < UATH_MIN_RXBUFSZ) { 2546 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2547 "%s: wrong xfer size (len=%d)\n", __func__, actlen); 2548 ifp->if_ierrors++; 2549 return (NULL); 2550 } 2551 2552 chunk = (struct uath_chunk *)data->buf; 2553 if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { 2554 device_printf(sc->sc_dev, "%s: strange response\n", __func__); 2555 ifp->if_ierrors++; 2556 UATH_RESET_INTRX(sc); 2557 return (NULL); 2558 } 2559 2560 if (chunk->seqnum != sc->sc_intrx_nextnum) { 2561 DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", 2562 chunk->seqnum, sc->sc_intrx_nextnum); 2563 UATH_STAT_INC(sc, st_badchunkseqnum); 2564 if (sc->sc_intrx_head != NULL) 2565 m_freem(sc->sc_intrx_head); 2566 UATH_RESET_INTRX(sc); 2567 return (NULL); 2568 } 2569 2570 /* check multi-chunk frames */ 2571 if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || 2572 (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || 2573 chunk->flags & UATH_CFLAGS_RXMSG) 2574 UATH_STAT_INC(sc, st_multichunk); 2575 2576 chunklen = be16toh(chunk->length); 2577 if (chunk->flags & UATH_CFLAGS_FINAL) 2578 chunklen -= sizeof(struct uath_rx_desc); 2579 2580 if (chunklen > 0 && 2581 (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { 2582 /* we should use intermediate RX buffer */ 2583 if (chunk->seqnum == 0) 2584 UATH_RESET_INTRX(sc); 2585 if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + 2586 chunklen) > UATH_MAX_INTRX_SIZE) { 2587 UATH_STAT_INC(sc, st_invalidlen); 2588 ifp->if_iqdrops++; 2589 if (sc->sc_intrx_head != NULL) 2590 m_freem(sc->sc_intrx_head); 2591 UATH_RESET_INTRX(sc); 2592 return (NULL); 2593 } 2594 2595 m->m_len = chunklen; 2596 m->m_data += sizeof(struct uath_chunk); 2597 2598 if (sc->sc_intrx_head == NULL) { 2599 sc->sc_intrx_head = m; 2600 sc->sc_intrx_tail = m; 2601 } else { 2602 m->m_flags &= ~M_PKTHDR; 2603 sc->sc_intrx_tail->m_next = m; 2604 sc->sc_intrx_tail = m; 2605 } 2606 } 2607 sc->sc_intrx_len += chunklen; 2608 2609 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2610 if (mnew == NULL) { 2611 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2612 "%s: can't get new mbuf, drop frame\n", __func__); 2613 ifp->if_ierrors++; 2614 if (sc->sc_intrx_head != NULL) 2615 m_freem(sc->sc_intrx_head); 2616 UATH_RESET_INTRX(sc); 2617 return (NULL); 2618 } 2619 2620 data->m = mnew; 2621 data->buf = mtod(mnew, uint8_t *); 2622 2623 /* if the frame is not final continue the transfer */ 2624 if (!(chunk->flags & UATH_CFLAGS_FINAL)) { 2625 sc->sc_intrx_nextnum++; 2626 UATH_RESET_INTRX(sc); 2627 return (NULL); 2628 } 2629 2630 /* 2631 * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is 2632 * located at the end, 32-bit aligned 2633 */ 2634 desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? 2635 (struct uath_rx_desc *)(chunk + 1) : 2636 (struct uath_rx_desc *)(((uint8_t *)chunk) + 2637 sizeof(struct uath_chunk) + be16toh(chunk->length) - 2638 sizeof(struct uath_rx_desc)); 2639 *pdesc = desc; 2640 2641 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2642 "%s: frame len %u code %u status %u rate %u antenna %u " 2643 "rssi %d channel %u phyerror %u connix %u decrypterror %u " 2644 "keycachemiss %u\n", __func__, be32toh(desc->framelen) 2645 , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) 2646 , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) 2647 , be32toh(desc->phyerror), be32toh(desc->connix) 2648 , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); 2649 2650 if (be32toh(desc->len) > MCLBYTES) { 2651 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2652 "%s: bad descriptor (len=%d)\n", __func__, 2653 be32toh(desc->len)); 2654 ifp->if_iqdrops++; 2655 UATH_STAT_INC(sc, st_toobigrxpkt); 2656 if (sc->sc_intrx_head != NULL) 2657 m_freem(sc->sc_intrx_head); 2658 UATH_RESET_INTRX(sc); 2659 return (NULL); 2660 } 2661 2662 uath_update_rxstat(sc, be32toh(desc->status)); 2663 2664 /* finalize mbuf */ 2665 if (sc->sc_intrx_head == NULL) { 2666 m->m_pkthdr.rcvif = ifp; 2667 m->m_pkthdr.len = m->m_len = 2668 be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; 2669 m->m_data += sizeof(struct uath_chunk); 2670 } else { 2671 mp = sc->sc_intrx_head; 2672 mp->m_pkthdr.rcvif = ifp; 2673 mp->m_flags |= M_PKTHDR; 2674 mp->m_pkthdr.len = sc->sc_intrx_len; 2675 m = mp; 2676 } 2677 2678 /* there are a lot more fields in the RX descriptor */ 2679 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && 2680 ieee80211_radiotap_active(ic)) { 2681 struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; 2682 uint32_t tsf_hi = be32toh(desc->tstamp_high); 2683 uint32_t tsf_lo = be32toh(desc->tstamp_low); 2684 2685 /* XXX only get low order 24bits of tsf from h/w */ 2686 tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 2687 tap->wr_flags = 0; 2688 if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) 2689 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2690 /* XXX map other status to BADFCS? */ 2691 /* XXX ath h/w rate code, need to map */ 2692 tap->wr_rate = be32toh(desc->rate); 2693 tap->wr_antenna = be32toh(desc->antenna); 2694 tap->wr_antsignal = -95 + be32toh(desc->rssi); 2695 tap->wr_antnoise = -95; 2696 } 2697 2698 ifp->if_ipackets++; 2699 UATH_RESET_INTRX(sc); 2700 2701 return (m); 2702 } 2703 2704 static void 2705 uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2706 { 2707 struct uath_softc *sc = usbd_xfer_softc(xfer); 2708 struct ifnet *ifp = sc->sc_ifp; 2709 struct ieee80211com *ic = ifp->if_l2com; 2710 struct ieee80211_frame *wh; 2711 struct ieee80211_node *ni; 2712 struct mbuf *m = NULL; 2713 struct uath_data *data; 2714 struct uath_rx_desc *desc = NULL; 2715 int8_t nf; 2716 2717 UATH_ASSERT_LOCKED(sc); 2718 2719 switch (USB_GET_STATE(xfer)) { 2720 case USB_ST_TRANSFERRED: 2721 data = STAILQ_FIRST(&sc->sc_rx_active); 2722 if (data == NULL) 2723 goto setup; 2724 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2725 UATH_STAT_DEC(sc, st_rx_active); 2726 m = uath_data_rxeof(xfer, data, &desc); 2727 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2728 UATH_STAT_INC(sc, st_rx_inactive); 2729 /* FALLTHROUGH */ 2730 case USB_ST_SETUP: 2731 setup: 2732 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2733 if (data == NULL) 2734 return; 2735 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2736 UATH_STAT_DEC(sc, st_rx_inactive); 2737 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2738 UATH_STAT_INC(sc, st_rx_active); 2739 usbd_xfer_set_frame_data(xfer, 0, data->buf, 2740 usbd_xfer_max_len(xfer)); 2741 usbd_transfer_submit(xfer); 2742 2743 /* 2744 * To avoid LOR we should unlock our private mutex here to call 2745 * ieee80211_input() because here is at the end of a USB 2746 * callback and safe to unlock. 2747 */ 2748 if (sc->sc_flags & UATH_FLAG_INVALID) { 2749 if (m != NULL) 2750 m_freem(m); 2751 return; 2752 } 2753 UATH_UNLOCK(sc); 2754 if (m != NULL && desc != NULL) { 2755 wh = mtod(m, struct ieee80211_frame *); 2756 ni = ieee80211_find_rxnode(ic, 2757 (struct ieee80211_frame_min *)wh); 2758 nf = -95; /* XXX */ 2759 if (ni != NULL) { 2760 (void) ieee80211_input(ni, m, 2761 (int)be32toh(desc->rssi), nf); 2762 /* node is no longer needed */ 2763 ieee80211_free_node(ni); 2764 } else 2765 (void) ieee80211_input_all(ic, m, 2766 (int)be32toh(desc->rssi), nf); 2767 m = NULL; 2768 desc = NULL; 2769 } 2770 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2771 !IFQ_IS_EMPTY(&ifp->if_snd)) 2772 uath_start(ifp); 2773 UATH_LOCK(sc); 2774 break; 2775 default: 2776 /* needs it to the inactive queue due to a error. */ 2777 data = STAILQ_FIRST(&sc->sc_rx_active); 2778 if (data != NULL) { 2779 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2780 UATH_STAT_DEC(sc, st_rx_active); 2781 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2782 UATH_STAT_INC(sc, st_rx_inactive); 2783 } 2784 if (error != USB_ERR_CANCELLED) { 2785 usbd_xfer_set_stall(xfer); 2786 ifp->if_ierrors++; 2787 goto setup; 2788 } 2789 break; 2790 } 2791 } 2792 2793 static void 2794 uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) 2795 { 2796 struct uath_softc *sc = usbd_xfer_softc(xfer); 2797 struct ifnet *ifp = sc->sc_ifp; 2798 struct mbuf *m; 2799 2800 UATH_ASSERT_LOCKED(sc); 2801 2802 /* 2803 * Do any tx complete callback. Note this must be done before releasing 2804 * the node reference. 2805 */ 2806 if (data->m) { 2807 m = data->m; 2808 if (m->m_flags & M_TXCB && 2809 (sc->sc_flags & UATH_FLAG_INVALID) == 0) { 2810 /* XXX status? */ 2811 ieee80211_process_callback(data->ni, m, 0); 2812 } 2813 m_freem(m); 2814 data->m = NULL; 2815 } 2816 if (data->ni) { 2817 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2818 ieee80211_free_node(data->ni); 2819 data->ni = NULL; 2820 } 2821 sc->sc_tx_timer = 0; 2822 ifp->if_opackets++; 2823 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2824 } 2825 2826 static void 2827 uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2828 { 2829 struct uath_softc *sc = usbd_xfer_softc(xfer); 2830 struct ifnet *ifp = sc->sc_ifp; 2831 struct uath_data *data; 2832 2833 UATH_ASSERT_LOCKED(sc); 2834 2835 switch (USB_GET_STATE(xfer)) { 2836 case USB_ST_TRANSFERRED: 2837 data = STAILQ_FIRST(&sc->sc_tx_active); 2838 if (data == NULL) 2839 goto setup; 2840 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2841 UATH_STAT_DEC(sc, st_tx_active); 2842 uath_data_txeof(xfer, data); 2843 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2844 UATH_STAT_INC(sc, st_tx_inactive); 2845 /* FALLTHROUGH */ 2846 case USB_ST_SETUP: 2847 setup: 2848 data = STAILQ_FIRST(&sc->sc_tx_pending); 2849 if (data == NULL) { 2850 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2851 __func__); 2852 return; 2853 } 2854 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2855 UATH_STAT_DEC(sc, st_tx_pending); 2856 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2857 UATH_STAT_INC(sc, st_tx_active); 2858 2859 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2860 usbd_transfer_submit(xfer); 2861 2862 UATH_UNLOCK(sc); 2863 uath_start(ifp); 2864 UATH_LOCK(sc); 2865 break; 2866 default: 2867 data = STAILQ_FIRST(&sc->sc_tx_active); 2868 if (data == NULL) 2869 goto setup; 2870 if (data->ni != NULL) { 2871 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2872 ieee80211_free_node(data->ni); 2873 data->ni = NULL; 2874 ifp->if_oerrors++; 2875 } 2876 if (error != USB_ERR_CANCELLED) { 2877 usbd_xfer_set_stall(xfer); 2878 goto setup; 2879 } 2880 break; 2881 } 2882 } 2883 2884 static device_method_t uath_methods[] = { 2885 DEVMETHOD(device_probe, uath_match), 2886 DEVMETHOD(device_attach, uath_attach), 2887 DEVMETHOD(device_detach, uath_detach), 2888 { 0, 0 } 2889 }; 2890 static driver_t uath_driver = { 2891 "uath", 2892 uath_methods, 2893 sizeof(struct uath_softc) 2894 }; 2895 static devclass_t uath_devclass; 2896 2897 DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); 2898 MODULE_DEPEND(uath, wlan, 1, 1, 1); 2899 MODULE_DEPEND(uath, usb, 1, 1, 1); 2900 MODULE_VERSION(uath, 1); 2901